Loads and Load Combinations for NBCC. Outline
|
|
|
- Meryl Dixon
- 10 years ago
- Views:
Transcription
1 Loads and Load Combinations for NBCC Prepared by Dr Michael Bartlett, P.Eng University of Western Ontario Presented with minor modifications by Dr Robert Sexsmith, P.Eng. University of British Columbia CSCE Workshop NBCC Loads and Seismic Design 2004 June 10, Calgary AB Outline Companion Action Principle Review of NBCC 1995 Snow Load Factor Return Period on Environmental Loads NBCC 2004 Provisions Dead Loads & Load Effects Load Combinations Impact on Design Load Effects Summary 1
2 NBCC 1995 Format IR > D D D + \J^D L L + D Q Q + D T T` where \ = load combination factor J = importance factor NBCC 1995 Load Combinations: 1.25 D L 1.25 D Q (wind) 1.25 D {1.5 L Q (wind)} = 1.25 D L Q (wind) note that snow is (was!) included with live Reminder These are combinations of EFFECTS ie Axial force in a column, moment in part of a frame, etc A we can apply to the structure the combined factored load and find the resulting effect OR B- we can apply unfactored loads of each type, and then calculate the combined factored effect. This is easier to automate, but only valid for linear structures. 2
3 Time History of Loading Load Maximum Load Transient Live/Wind Snow Sustained Live Renovation Dead time Turkstra s Rule (early 80s) Worst case of combined transient loads occurs when: one load, the principal action, is its extreme value other loads, the companion actions, are the largest that would be expected while the principal action has its extreme value 3
4 Companion Action Format IR > D D D + D i S i + 6D ik S k, i z k where S i = principal action S k = companion actions Typical Load Combinations: 1.25 D L W (wind) 1.25 D W (wind) L Companion Action Format Better represents the situation of one extreme event with the other loads that may be acting Permits logical extensions for special cases 4
5 Designer can Envisage Hazards Correlation of transient loads explicitly considered Can you imagine a structure where simultaneous maximum values of transient loads are: unlikely? expected? 1995 NBCC Reliability Indices 4 Reliability index (50-year) D + L D + W D + S Nominal variable load/nominal dead load reliability for snow load deficient? 5
6 2000/2001 Failures: Sarnia Mall Collapse Source: Globe and Mail 2000 December 09 Return Period for Environmental Loads NBCC 1995 specifies: 30 years for specified Snow, Wind 10 years for Wind for Deflections 100 years for wind on Important Structures Use 50 year or 500 year return periods (only) for 2004 NBCC? Ratio n-yr/30-yr depends coefficient of variation of annual maximum load 6
7 Specified Load Return Period n-year pressure / 30-year pressure mean 90% of values in this range 1-in in in-50 1-in-10 Note: if we used 1/500 values we could drop the load factor COV of Maximum Annual Wind Velocity NBCC 2004 Calibration Process 1. Reliability indices for 1995 NBCC 2. Preliminary load combinations for 50-yr, 500- yr loads by Bartlett, Hong & Zhou review by Part 4 Task Group on Snow & Wind Loads review by Part 4 Standing Committee 3. Revised load combinations, 50-yr loads review by Task Group and Part 4 committee public review 7
8 Proposed 1.2 D Criticized History: 1.3 proposed for 1975 NBCC reduced to 1.25 to maintain same ratio of dead/live load factor as in ACI Specific concerns: floor thickness variability dead load of soil & landscaping tributary area computation 2000 Survey: Concrete Floor Thickness Marked variability for Cast-in-place toppings on precast Cover slabs in unshored composite construction (no specified tolerances?) Uncertain D with load factor of 1.5 considered but not adopted Make allowances for extra dead load Consider deflections of supporting members 8
9 Tributary Areas in NBCC Commentary G: lines of zero shear 0.55a 0.5a a (typ) halfway between column lines 0.55a 0.5a Safe for corners Unsafe for 1 st interior columns Note: problem with low D factor when approximations are used 2004 NBCC Combinations 1.4 D 1.25 D L + (0.4 W or 0.5 S) 1.25 D W + (0.5 L or 0.5 S) 1.25 D S + (0.5 L or 0.4 W) 0.9 D + (1.5 L or 1.4 W or 1.5 S) Add to all combinations: P = prestress H = horizontal earth pressures T = restrained deformations (safety) 9
10 50-yr Wind & Snow Specified typically ~10% greater than 30-yr values snow load factor initially 1.7, implies a 25% increase in factored load, deemed too big. modify for importance categories based on use & occupancy reduce for SLS checks Importance Factors for S, W Importance Ultimate Serviceability Category (Snow or Wind) Snow Wind Low Normal 1.0 High 1.15 Post Disaster
11 Impact: Single Transient Load 1.10 Proposed/NBCC D+S Up to 8% increase for high snow/dead ratio D+W Up to 2% increase for high wind/dead ratio D+L Transient-to-dead load ratio Uncoupling Snow & Live Members resisting low D, high L (use + occupancy), high S require less resistance. Logical consequence of considering Live and Snow as independent Similar format adopted in ASCE-7 based on load combinations derived in
12 Impact: D+L+S Proposed/1995 NBCC S/D = Live-to-dead load ratio, L/D Impact: D+L+W 1.2 W/D = Proposed/1995 NBCC Live-to-dead load ratio, L/D 12
13 Impact: D+W+S Proposed/1995 NBCC W/D = Snow-to-dead load ratio Summary 1. Companion action load combination format proposed for NBCC 2004: more realistic representation permits logical decisions for unusual cases little difference for many members consistent with other international standards (ACI 318, AISC LRFD, etc.) 13
14 2. Dead loads: make allowance for extra thickness of thin toppings tributary areas for first interior columns 3. Snow loads are no longer classified with live loads due to use and occupancy. less resistance needed for members carrying snow and live loads 4. Only 50 year environmental loads specified: increases specified loads by ~ 10% additional increases for important and post-disaster buildings load factors less than 1.0 reduce specified loads for serviceability checks. 5. New load combinations give similar demands to NBCC 1995: less demand due to snow & live loads more demand due to snow only 14
15 6. New load combinations have been reviewed by various committees Additional references: papers by Bartlett, Hong & Zhou in Canadian Journal of Civil Engineering Acknowledgements National Research Council of Canada Natural Sciences & Engineering Research Council of Canada NBC Part 4 Task Group on Snow and Wind Loads (D. E. Allen, Chair) Canadian Meteorological Centre Steel Structures Education Foundation J. G. MacGregor Michael Bartlett (who prepared this presentation and permitted its use for this CSCE short course) 15
Loads and Seismic Design. 2005 National Building Code Wind and Snow Importance Factors
Loads and Seismic Design 2005 National Building Code Wind and Snow Importance Factors Russ Riffell, P.Eng. Chair, Standing Committee on Structural Design Part 4 of the National Building Code of Canada
Reinforced Concrete Design
FALL 2013 C C Reinforced Concrete Design CIVL 4135 ii 1 Chapter 1. Introduction 1.1. Reading Assignment Chapter 1 Sections 1.1 through 1.8 of text. 1.2. Introduction In the design and analysis of reinforced
SPECIFICATIONS, LOADS, AND METHODS OF DESIGN
CHAPTER Structural Steel Design LRFD Method Third Edition SPECIFICATIONS, LOADS, AND METHODS OF DESIGN A. J. Clark School of Engineering Department of Civil and Environmental Engineering Part II Structural
CH. 2 LOADS ON BUILDINGS
CH. 2 LOADS ON BUILDINGS GRAVITY LOADS Dead loads Vertical loads due to weight of building and any permanent equipment Dead loads of structural elements cannot be readily determined b/c weight depends
Basics of Reinforced Concrete Design
Basics of Reinforced Concrete Design Presented by: Ronald Thornton, P.E. Define several terms related to reinforced concrete design Learn the basic theory behind structural analysis and reinforced concrete
A Case Study Comparing Two Approaches for Applying Area Loads: Tributary Area Loads vs Shell Pressure Loads
1 A Case Study Comparing Two Approaches for Applying Area Loads: Tributary Area Loads vs Shell Pressure Loads By Dr. Siriwut Sasibut (Application Engineer) S-FRAME Software Inc. #1158 13351 Commerce Parkway
Load and Resistance Factor Geotechnical Design Code Development in Canada. by Gordon A. Fenton Dalhousie University, Halifax, Canada
Load and Resistance Factor Geotechnical Design Code Development in Canada by Gordon A. Fenton Dalhousie University, Halifax, Canada 1 Overview 1. Past: Where we ve been allowable stress design partial
Review of Design Code Experiences in Conversion from ASD Methodology to LRFD Methodology
Review of Design Code Experiences in Conversion from ASD Methodology to LRFD Methodology By Michael Effenberger, P.E. and Sathish Ramamoorthy Ph.D., P.E. Introduction API 4F, the specification for design
Designing a Structural Steel Beam. Kristen M. Lechner
Designing a Structural Steel Beam Kristen M. Lechner November 3, 2009 1 Introduction Have you ever looked at a building under construction and wondered how the structure was designed? What assumptions
Professional Engineers Providing Structural Engineering Services In Buildings
GUIDELINE Professional Engineers Providing Structural Engineering Services In Buildings 1995 Published by Association of Professional Engineers of Ontario Revised 12/11/98 CONTENTS INTRODUCTION...3 PART
SEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP
13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 3279 SEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP Yuming DING 1, Bruce HAMERSLEY 2 SUMMARY Vancouver
INTRODUCTION TO LIMIT STATES
4 INTRODUCTION TO LIMIT STATES 1.0 INTRODUCTION A Civil Engineering Designer has to ensure that the structures and facilities he designs are (i) fit for their purpose (ii) safe and (iii) economical and
Executive Summary Inclusion of Current Firewall Requirements in NBCC
Executive Summary Inclusion of Current Firewall Requirements in NBCC This background paper has been prepared on behalf of the Gypsum Manufacturers of Canada by Standing Committee on Fire Safety & Occupancy
9.3 Two-way Slabs (Part I)
9.3 Two-way Slabs (Part I) This section covers the following topics. Introduction Analysis and Design Features in Modeling and Analysis Distribution of Moments to Strips 9.3.1 Introduction The slabs are
Requirements for the Use of PRESSS Moment-Resisting Frame Systems
Requirements for the Use of PRESSS Moment-Resisting Frame Systems Neil M. Hawkins, Ph.D. Professor Emeritus Department of Civil Engineering University of Illinois at Urbana-Champaign Urbana, Illinois S.
DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,
DESIGN OF SLABS Dr. G. P. Chandradhara Professor of Civil Engineering S. J. College of Engineering Mysore 1. GENERAL A slab is a flat two dimensional planar structural element having thickness small compared
[TECHNICAL REPORT I:]
[Helios Plaza] Houston, Texas Structural Option Adviser: Dr. Linda Hanagan [TECHNICAL REPORT I:] Structural Concepts & Existing Conditions Table of Contents Executive Summary... 2 Introduction... 3 Structural
Technical Assignment 2 TABLE OF CONTENTS
2 TABLE OF CONTENTS Executive Summary...3 Introduction..5 Gravity Loads......6 Design Codes......7 Materials..8 Existing Structural System.. 10 Existing Floor System 15 Alternate Floor Framing Systems...17
4B-2. 2. The stiffness of the floor and roof diaphragms. 3. The relative flexural and shear stiffness of the shear walls and of connections.
Shear Walls Buildings that use shear walls as the lateral force-resisting system can be designed to provide a safe, serviceable, and economical solution for wind and earthquake resistance. Shear walls
Technical Notes 3B - Brick Masonry Section Properties May 1993
Technical Notes 3B - Brick Masonry Section Properties May 1993 Abstract: This Technical Notes is a design aid for the Building Code Requirements for Masonry Structures (ACI 530/ASCE 5/TMS 402-92) and Specifications
Seismic Risk Prioritization of RC Public Buildings
Seismic Risk Prioritization of RC Public Buildings In Turkey H. Sucuoğlu & A. Yakut Middle East Technical University, Ankara, Turkey J. Kubin & A. Özmen Prota Inc, Ankara, Turkey SUMMARY Over the past
Miss S. S. Nibhorkar 1 1 M. E (Structure) Scholar,
Volume, Special Issue, ICSTSD Behaviour of Steel Bracing as a Global Retrofitting Technique Miss S. S. Nibhorkar M. E (Structure) Scholar, Civil Engineering Department, G. H. Raisoni College of Engineering
SEISMIC ANALYSIS AND RETROFITTING OF R.C.C STRUCTURE
International Journal of Advanced Research in Biology Engineering Science and Technology (IJARBEST) Vol., Issue, April 1 SEISMIC ANALYSIS AND RETROFITTING OF R.C.C STRUCTURE M.R.NAVANEETHA KRISHNAN 1,
SLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems:
Reading Assignment SLAB DESIGN Chapter 9 of Text and, Chapter 13 of ACI318-02 Introduction ACI318 Code provides two design procedures for slab systems: 13.6.1 Direct Design Method (DDM) For slab systems
Session 5D: Benefits of Live Load Testing and Finite Element Modeling in Rating Bridges
Session 5D: Benefits of Live Load Testing and Finite Element Modeling in Rating Bridges Douglas R. Heath P.E., Structural Engineer Corey Richard P.E., Project Manager AECOM Overview Bridge Testing/Rating
Optimum proportions for the design of suspension bridge
Journal of Civil Engineering (IEB), 34 (1) (26) 1-14 Optimum proportions for the design of suspension bridge Tanvir Manzur and Alamgir Habib Department of Civil Engineering Bangladesh University of Engineering
SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading:
SEISMIC DESIGN Various building codes consider the following categories for the analysis and design for earthquake loading: 1. Seismic Performance Category (SPC), varies from A to E, depending on how the
DESIGN OF SLABS. Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia
DESIGN OF SLABS Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia Introduction Types of Slab Slabs are plate elements
SEISMIC RETROFITTING OF STRUCTURES
SEISMIC RETROFITTING OF STRUCTURES RANJITH DISSANAYAKE DEPT. OF CIVIL ENGINEERING, FACULTY OF ENGINEERING, UNIVERSITY OF PERADENIYA, SRI LANKA ABSTRACT Many existing reinforced concrete structures in present
FOUNDATION DESIGN. Instructional Materials Complementing FEMA 451, Design Examples
FOUNDATION DESIGN Proportioning elements for: Transfer of seismic forces Strength and stiffness Shallow and deep foundations Elastic and plastic analysis Foundation Design 14-1 Load Path and Transfer to
Seismic Retrofit of Existing Buildings: Innovative Alternatives
Seismic Retrofit of Existing Buildings: Innovative Alternatives Moe Cheung and Simon Foo Public Works & Government Services Canada Hull, Quebec, Canada Jacques Granadino Public Works & Government Services
National Building Code of Canada 2010
National Building Code of Canada 2010 Emergency Change Issued by the Canadian Commission on Building and Fire Codes The table that follows lists two emergency changes that apply to the National Building
Analysis and Repair of an Earthquake-Damaged High-rise Building in Santiago, Chile
Analysis and Repair of an Earthquake-Damaged High-rise Building in Santiago, Chile J. Sherstobitoff Ausenco Sandwell, Vancouver, Canada P. Cajiao AMEC, Vancouver, Canada P. Adebar University of British
16. Beam-and-Slab Design
ENDP311 Structural Concrete Design 16. Beam-and-Slab Design Beam-and-Slab System How does the slab work? L- beams and T- beams Holding beam and slab together University of Western Australia School of Civil
SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED
SECTION 5 ANALYSIS OF CONTINUOUS SPANS DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: BRYAN ALLRED NOTE: MOMENT DIAGRAM CONVENTION In PT design, it is preferable to draw moment diagrams
Design of reinforced concrete columns. Type of columns. Failure of reinforced concrete columns. Short column. Long column
Design of reinforced concrete columns Type of columns Failure of reinforced concrete columns Short column Column fails in concrete crushed and bursting. Outward pressure break horizontal ties and bend
Draft Table of Contents. Building Code Requirements for Structural Concrete and Commentary ACI 318-14
Draft Table of Contents Building Code Requirements for Structural Concrete and Commentary ACI 318-14 BUILDING CODE REQUIREMENTS FOR STRUCTURAL CONCRETE (ACI 318 14) Chapter 1 General 1.1 Scope of ACI 318
The ACI 562 Repair Code
The ACI 562 Repair Code Code Requirements for Evaluation, Repair and Rehabilitation of Concrete Buildings by Keith Kesner 1 Chair ACI 562 Lawrence Kahn 2 Former Chair ACI 562 1. Associate WDP & Associates,
PROJECT SUMMARY. Scope of work details: (If phased construction, please see plan submittal guidelines.)
APPENDIX B BUILDING CODE SUMMARY FOR ALL COMMERCIAL FIRE RESTORATION PROJECTS (EXCEPT 1 AND 2-FAMILY DWELLINGS AND TOWNHOUSES) (Reproduce the following data on the building plans sheet 1 or 2) Name of
Seismic performance evaluation of an existing school building in Turkey
CHALLENGE JOURNAL OF STRUCTURAL MECHANICS 1 (4) (2015) 161 167 Seismic performance evaluation of an existing school building in Turkey Hüseyin Bilgin * Department of Civil Engineering, Epoka University,
Firewalls. By Gary Sturgeon, B.Eng., MSc., P.Eng. Technical Services Engineer, CCMPA. w w w. c c m p a. c a 5A-0
By Gary Sturgeon, B.Eng., MSc., P.Eng. Technical Services Engineer, CCMPA 5A-0 This Chapter of the CCMPA Metric Technical Manual has been largely reproduced from Firewalls, A Design Guide, published by
Concrete Design Manual
The Reinforced Concrete Design Manual In Accordance with ACI 318-11 SP-17(11) Vol 2 ACI SP-17(11) Volume 2 THE REINFORCED CONCRETE DESIGN MANUAL in Accordance with ACI 318-11 Anchoring to concrete Publication:
Cover. When to Specify Intermediate Precast Concrete Shear Walls. 10.10 Rev 4. White Paper WP004
Cover Introduction In regard to precast concrete systems, the addition of two new categories of Seismic Force Resisting Systems (SFRS) in IBC 2006 has created some confusion about whether to specify intermediate
ETABS. Integrated Building Design Software. Concrete Shear Wall Design Manual. Computers and Structures, Inc. Berkeley, California, USA
ETABS Integrated Building Design Software Concrete Shear Wall Design Manual Computers and Structures, Inc. Berkeley, California, USA Version 8 January 2002 Copyright The computer program ETABS and all
Detailing of Reinforcment in Concrete Structures
Chapter 8 Detailing of Reinforcment in Concrete Structures 8.1 Scope Provisions of Sec. 8.1 and 8.2 of Chapter 8 shall apply for detailing of reinforcement in reinforced concrete members, in general. For
Fire and Concrete Structures
Fire and Concrete Structures Authors: David N. Bilow, P.E., S.E., Director, Engineered Structures, Portland Cement Association 5420 Old Orchard Road, Skokie, IL 60077,Phone 847-972-9064, email: [email protected]
Eurocode 2: Design of concrete structures
Eurocode 2: Design of concrete structures Owen Brooker, The Concrete Centre Introduction The transition to using the Eurocodes is a daunting prospect for engineers, but this needn t be the case. Industry
SEISMIC DESIGN PROVISIONS FOR PRECAST CONCRETE STRUCTURES. S.K. Ghosh, Ph. D. President S.K. Ghosh Associates Inc. Northbrook, IL BACKGROUND
SEISMIC DESIGN PROVISIONS FOR PRECAST CONCRETE STRUCTURES S.K. Ghosh, Ph. D. President S.K. Ghosh Associates Inc. Northbrook, IL BACKGROUND Until recently, precast concrete structures could be built in
CSA S16-09 Design of Steel Structures Canada
CSA S16-09 Design of Steel Structures Canada Ed Whalen, P.Eng CISC President CSA S16-09 1 CSA Standard S16-09 Standard, Design of Steel Structures. Sets out minimum requirements used by engineers in the
Computer Program for the Analysis of Loads On Buildings. Using the ASCE 7-93 Standard. Stephen E. Browning. Master of Engineering.
Computer Program for the Analysis of Loads On Buildings Using the ASCE 7-93 Standard Minimum Design Loads for Buildings and Other Structures by Stephen E. Browning Report submitted to the Faculty of Virginia
Contractor s Statement of Responsibility for Seismic-Force-Resisting Systems This form is to be filled out by the contractor.
SPECIAL INSPECTION PROCEDURE IBC CHAPTER 17 2012 EDITION When Required All projects that require a SC licensed Architect or Engineer per SC Architectural and Engineering registration law. Overview The
Structural Audit of Buildings
International Journal of Civil Engineering Research. ISSN 2278-3652 Volume 5, Number 4 (2014), pp. 411-416 Research India Publications http://www.ripublication.com/ijcer.htm Structural Audit of Buildings
Page & Turnbull imagining change in historic environments through design, research, and technology
DCI+SDE STRUCTURAL EVALUATIONS OFFICE BUILDING, TOOL SHED & WATER TANK, AND BLACKSMITH & MACHINE SHOP BUILDINGS SAN FRANCISCO, CALIFORNIA [14290] PRIMARY PROJECT CONTACT: H. Ruth Todd, FAIA, AICP, LEED
Section 5A: Guide to Designing with AAC
Section 5A: Guide to Designing with AAC 5A.1 Introduction... 3 5A.3 Hebel Reinforced AAC Panels... 4 5A.4 Hebel AAC Panel Design Properties... 6 5A.5 Hebel AAC Floor and Roof Panel Spans... 6 5A.6 Deflection...
Review of Code Provisions on Design Seismic Forces for Liquid Storage Tanks
Document No. :: IITK-GSDMA-EQ1-V1. Final Report :: A - Earthquake Codes IITK-GSDMA Project on Building Codes Review of Code Provisions on Design Seismic Forces for Liquid Storage Tanks by Dr. O. R. Jaiswal
DESIGN OF BLAST RESISTANT BUILDINGS IN AN LNG PROCESSING PLANT
DESIGN OF BLAST RESISTANT BUILDINGS IN AN LNG PROCESSING PLANT Troy Oliver 1, Mark Rea 2 ABSTRACT: This paper provides an overview of the work undertaken in the design of multiple buildings for one of
vulcanhammer.net This document downloaded from
This document downloaded from vulcanhammer.net since 1997, your source for engineering information for the deep foundation and marine construction industries, and the historical site for Vulcan Iron Works
In-situ Load Testing to Evaluate New Repair Techniques
In-situ Load Testing to Evaluate New Repair Techniques W.J. Gold 1 and A. Nanni 2 1 Assistant Research Engineer, Univ. of Missouri Rolla, Dept. of Civil Engineering 2 V&M Jones Professor, Univ. of Missouri
Seismic Risk Evaluation of a Building Stock and Retrofit Prioritization
Seismic Risk Evaluation of a Building Stock and Retrofit Prioritization Seismic risk assessment of large building stocks can be conducted at various s depending on the objectives, size of the building
How To Model A Shallow Foundation
Finite Element Analysis of Elastic Settlement of Spreadfootings Founded in Soil Jae H. Chung, Ph.D. Bid Bridge Software Institute t University of Florida, Gainesville, FL, USA Content 1. Background 2.
How To Design A Post Tensioned Deck For A Building
SAMUEL ÁVILA STRUCTURAL OPTION FACULTY CONSULTANT: THOMAS BOOTHBY UNIVERSITY OF CENTRAL FLORIDA S ACADEMIC VILLAGES ORLANDO, FL THESIS PROPOSAL EXECUTIVE SUMMARY DECEMBER 12, 2005 Introduction: The University
Type of Force 1 Axial (tension / compression) Shear. 3 Bending 4 Torsion 5 Images 6 Symbol (+ -)
Cause: external force P Force vs. Stress Effect: internal stress f 05 Force vs. Stress Copyright G G Schierle, 2001-05 press Esc to end, for next, for previous slide 1 Type of Force 1 Axial (tension /
Introduction to LRFD, Loads and Loads Distribution
Introduction to LRFD, Loads and Loads Distribution Thomas K. Saad, P.E. Federal Highway Administration Chicago, IL Evolution of Design Methodologies SLD Methodology: (f t ) D + (f t ) L 0.55F y, or 1.82(f
Chapter 12 LOADS AND LOAD FACTORS NDOT STRUCTURES MANUAL
Chapter 12 LOADS AND LOAD FACTORS NDOT STRUCTURES MANUAL September 2008 Table of Contents Section Page 12.1 GENERAL... 12-1 12.1.1 Load Definitions... 12-1 12.1.1.1 Permanent Loads... 12-1 12.1.1.2 Transient
General Approach. Structure Components. Is all lumber the same? Lumber Grades. Rafters Girders / Beams Columns. Sketch general structural layout
General Approach Sketch general structural layout Determine roof loading Determine required lumber dimensions Transfer load down the structure Structure Components Plants Structure Components Top Side
EARTHQUAKE INDUCED AMPLIFIED LOADS IN STEEL INVERTED V- TYPE CONCENTRICALLY BRACED FRAMES
EARTHQUAKE INDUCED AMPLIFIED LOADS IN STEEL INVERTED V- TYPE CONCENTRICALLY BRACED FRAMES Bora Akşar 1, Selçuk Doğru 2, Jay Shen 3, Ferit Cakir 4, Bulent Akbas 5 1 Res.Asst,, Gebze Technical University,
1997 Uniform Administrative Code Amendment for Earthen Material and Straw Bale Structures Tucson/Pima County, Arizona
for Earthen Material and Straw Bale Structures SECTION 70 - GENERAL "APPENDIX CHAPTER 7 - EARTHEN MATERIAL STRUCTURES 70. Purpose. The purpose of this chapter is to establish minimum standards of safety
Steel Bridge Design Handbook
U.S. Department of Transportation Federal Highway Administration Steel Bridge Design Handbook Loads and Load Combinations Publication No. FHWA-IF-12-052 - Vol. 7 November 2012 Notice This document is disseminated
EN 1991-1-6 DK NA:2007
EN 1991-1-6 DK NA:2007 National Annex to Eurocode 1: Actions on structures - Part 1-6: General actions Actions during execution Foreword In connection with the incorporation of Eurocodes into Danish building
Strength Evaluation by Load Testing
Strength Evaluation by Load Testing Recommendations for test load magnitude and acceptance criteria By Thomas E. Nehil, Antonio Nanni, and Filippo Masetti In this article, we ll summarize recent work by
Pole Data Sheets (CDN) INFRASTRUCTURE FOR LIFE
Data Sheets (CDN) INFRASTRUCTURE FOR LIFE RS Technologies www.rstandard.com Email Toll Free Phone Fax [email protected] +1 877 219 8002 +1 403 219 8000 +1 403 219 8001 2421 37th Avenue NE, Suite 400 Calgary,
Reinforced Concrete Design Project Five Story Office Building
Reinforced Concrete Design Project Five Story Office Building Andrew Bartolini December 7, 2012 Designer 1 Partner: Shannon Warchol CE 40270: Reinforced Concrete Design Bartolini 2 Table of Contents Abstract...3
A transverse strip of the deck is assumed to support the truck axle loads. Shear and fatigue of the reinforcement need not be investigated.
Design Step 4 Design Step 4.1 DECK SLAB DESIGN In addition to designing the deck for dead and live loads at the strength limit state, the AASHTO-LRFD specifications require checking the deck for vehicular
Progressive Collapse Analysis and Design Guidelines
Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects June 2003 TABLE OF CONTENTS TABLE OF CONTENTS Section Page Preface... iii Section 1.
SEISMIC APPROACH DESIGN COMPARISON BETWEEN
IABSE ANNUAL MEETING, LONDON, 19 TH SEPTEMBER 2011 SEISMIC APPROACH DESIGN COMPARISON BETWEEN IBC AND ITALIAN DM2008 Ing. Luca Zanaica Senior Structural Engineer Ing. Francesco Caobianco Senior Structural
Design for Nonstructural Components
14 Design for Nonstructural Components Robert Bachman, S.E., John Gillengerten, S.E. and Susan Dowty, S.E. Contents 14.1 DEVELOPMENT AND BACKGROUND OF THE REQUIREMENTS FOR NONSTRUCTURAL COMPONENTS... 3
A 38-story design-build steel structure features a staggered-truss frame
ALADDIN HOTEL A 38-story design-build steel structure features a staggered-truss frame Robert J. McNamara is president of McNamara/Salvia, Inc., in Boston. Among his more notable projects during his more
1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures
Prof. Oral Buyukozturk Massachusetts Institute of Technology Outline 1 1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures
SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE
SECTION 3 DESIGN OF POST TENSIONED COMPONENTS FOR FLEXURE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE LEAD AUTHOR: TREY HAMILTON, UNIVERSITY OF FLORIDA NOTE: MOMENT DIAGRAM CONVENTION In PT design,
STRUCTURAL DESIGN CHAPTER 16
CHAPTER 16 STRUCTURAL DESIGN SECTION 1601 GENERAL 1601.1 Scope. The provisions of this chapter shall govern the structural design of buildings, structures and portions thereof regulated by this code. SECTION
Rehabilitation of Existing Foundation Building to Resist Lateral and Vertical Loads
International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 3 Number 12 (2014) pp. 950-961 http://www.ijcmas.com Original Research Article Rehabilitation of Existing Foundation
CE591 Lecture 8: Shear Walls
CE591 Lecture 8: Shear Walls Introduction History, examples Benefits Disadvantages Plate Girder Analogy Behavior of Special Plate Shear Walls (SPSW) Design of SPSW Important considerations Special Plate
Structural Analysis. EUROCODE 2 Background and Applications
Dissemination of information for training Brussels, 20-21 October 2011 1 Prof. Dr.-Ing. Manfred Curbach TU Dresden, Institute for Concrete Structures M.Sc. Martin Just TU Dresden, Institute for Concrete
Untopped Precast Concrete Diaphragms in High-Seismic Applications. Ned M. Cleland, Ph.D., P.E. President Blue Ridge Design, Inc. Winchester, Virginia
Untopped Precast Concrete Diaphragms in High-Seismic Applications Ned M. Cleland, Ph.D., P.E. President Blue Ridge Design, Inc. Winchester, Virginia S. K. Ghosh, Ph.D. President S. K. Ghosh Associates,
SLAB DESIGN EXAMPLE. Deck Design (AASHTO LRFD 9.7.1) TYPICAL SECTION. County: Any Hwy: Any Design: BRG Date: 7/2010
County: Any Hwy: Any Design: BRG Date: 7/2010 SLAB DESIGN EXAMPLE Design example is in accordance with the AASHTO LRFD Bridge Design Specifications, 5th Ed. (2010) as prescribed by TxDOT Bridge Design
Prestressed Concrete I-Beam and TxGirder Haunch Design Guide
Prestressed Concrete I-Beam and TxGirder Haunch Design Guide Components of the Haunch Camber: Camber is the upward deflection in the beam after release of the prestressing strands due to the eccentricity
Safe & Sound Bridge Terminology
Safe & Sound Bridge Terminology Abutment A retaining wall supporting the ends of a bridge, and, in general, retaining or supporting the approach embankment. Approach The part of the bridge that carries
The following sketches show the plans of the two cases of one-way slabs. The spanning direction in each case is shown by the double headed arrow.
9.2 One-way Slabs This section covers the following topics. Introduction Analysis and Design 9.2.1 Introduction Slabs are an important structural component where prestressing is applied. With increase
PDCA Driven-Pile Terms and Definitions
PDCA Driven-Pile Terms and Definitions This document is available for free download at piledrivers.org. Preferred terms are descriptively defined. Potentially synonymous (but not preferred) terms are identified
bi directional loading). Prototype ten story
NEESR SG: Behavior, Analysis and Design of Complex Wall Systems The laboratory testing presented here was conducted as part of a larger effort that employed laboratory testing and numerical simulation
Expected Performance Rating System
Expected Performance Rating System In researching seismic rating systems to determine how to best classify the facilities within the Portland Public School system, we searched out what was used by other
Introduction. Eurocodes. Specification. Cost
Introduction Eurocodes Specification Cost Structural Eurocodes BS EN 1990 (EC0): BS EN 1991 (EC1): Basis of structural design Actions on Structures BS EN 1992 (EC2): BS EN 1993 (EC3): BS EN 1994 (EC4):
Retrofitting By Means Of Post Tensioning. Khaled Nahlawi 1
Retrofitting By Means Of Post Tensioning Khaled Nahlawi 1 Abstract An analytical program was prepared to retrofit the Holy Cross Church in Santa Cruz, California. An inelastic analysis was perfonned on
780 CMR: MASSACHUSETTS AMENDMENTS TO THE INTERNATIONAL EXISTING BUILDING CODE 2009
780 CMR: MASSACHUSETTS AMENDMENTS TO THE INTERNATIONAL EXISTING BUILDING CODE 2009 CHAPTER 34: EXISTING STRUCTURES 3401.1 Replace as follows: 3401.1 Scope. Chapter 34 of the International Building Code
