SAMPLE. Polynomial functions

Size: px
Start display at page:

Download "SAMPLE. Polynomial functions"

Transcription

1 Objectives C H A P T E R 4 Polnomial functions To be able to use the technique of equating coefficients. To introduce the functions of the form f () = a( + h) n + k and to sketch graphs of this form through the use of transformations. To divide polnomials. To use the factor theorem to solve cubic equations and quartic equations. To use the remainder theorem. To draw and use sign diagrams. To find equations for given graphs of polnomials. To appl polnomial functions to problem solving. 4.1 Polnomials In an earlier chapter, linear functions were discussed. This famil of functions is a member of a larger famil of polnomial functions. A function with rule P() = a + a 1 + a + +a n n,where a, a 1, a, a 3,...,a n are real constants and n is a positive integer, is called a polnomial in over the real numbers. The numbers a, a 1, a, a 3,...,a n are called the coefficients of the polnomial. Assuming a n =, the term a n n is called the leading term. The integer n of the leading term is the degree of the polnomial. Foreample: f () = a + a 1 is a degree one polnomial (a linear function). f () = a + a 1 + a is a degree two polnomial (a quadratic function). f () = a + a 1 + a + a 3 3 is a degree three polnomial (a cubic function). f () = a + a 1 + a + a a 4 4 is a degree four polnomial (a quartic function). The polnomials above are written with ascending powers of. The can also be written with descending powers of, for eample: f () = 3 + 1, f () = + + 3, f () = Polnomials are often written in factorised form, e.g. (3 + ),4( 1) 3 +. Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard 18

2 Chapter 4 Polnomial functions 19 Although it is fairl simple to epand such polnomials when the degree is small, sa two or three, the binomial theorem discussed in Appendi A facilitates the epansion of polnomials of larger degree. Foreample: ( + 3) 4 = ( 4 ) () 4 (3) + ( 4 1 ) () 3 (3) 1 + ( 4 ) () (3) + ( 4 3 ) () 1 (3) 3 + ( 4 4 ) () (3) 4 Equating coefficients = If P() = a + a 1 + a + +a n n and Q() = b + b 1 + b + +b m m are equal, i.e. if P() = Q() for all, then the degree of P() = degree of Q() and a = b, a 1 = b 1, a = b,...,etc. Eample 1 If = a( + 3) + b for all R, find the values of a and b. Epanding the right-hand side of the equation gives: a( + 3) + b = a( ) + b = a + 6a + 9a + b If = a + 6a + 9a + b for all R, then b equating coefficients: (coefficient of ) (coefficient of ) (coefficient of, the constant term of the polnomial) Hence a = 1 and b = 5. Eample 1 = a 6 = 6a 4 = 9a + b a If = a( + 1) 3 + b for all R, find the values of a and b. b Show that cannot be written in the form a( + c) 3 + b for real numbers a, b and c. a The epansion of the right-hand side of the equation gives: a( + 1) 3 + b = a( ) + b = a 3 + 3a + 3a + a + b Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

3 13 Essential Mathematical Methods 3&4CAS b If = a 3 + 3a + 3a + a + b for all R, equating coefficients gives: (coefficient of 3 ) (coefficient of ) (coefficient of ) (coefficient of, the constant term of the polnomial) Hence a = 1 and b = 7. The epansion of the right-hand side of the equation gives: a( + c) 3 + b = a( 3 + 3c + 3c + c 3 ) + b = a 3 + 3ca + 3c a + c 3 a + b 1 = a 3 = 3a 3 = 3a 8 = a + b If = a 3 + 3ca + 3c a + c 3 a + b for all R: (coefficient of 3 ) 1 = a (1) (coefficient of ) 6 = 3ca () (coefficient of ) 6 = 3c a (3) (coefficient of, the constant term of the polnomial) 8 = c 3 a + b (4) From (1), a = 1 From (), c = For (3), the right-hand side 3c a equals 1, which is a contradiction. Division of polnomials The division of polnomials was introduced in Essential Mathematical Methods 1&CAS. The general result for polnomial division is: For non-zero polnomials, P() and D(), if P() (the dividend) is divided b D() (the divisor), then there are unique polnomials, Q() (the quotient) and R() (the remainder), such that P() = D()Q() + R() Either the degree of R() < D(), or R() = When R() =, then D() iscalled a divisor of P() and P() = D()Q() The following eample illustrates the process of dividing. Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

4 Chapter 4 Polnomial functions 131 Eample 3 Divide b. ) Thus = ( )( ) + 58 or, equivalentl, = In this eample isthe dividend, isthe divisor and the remainder is 58. Using the TI-Nspire Use propfrac (b 371)asshown. Using the Casio ClassPad Enter and highlight ( )/( ) and tap Interactive > Transformation > propfrac. Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

5 13 Essential Mathematical Methods 3&4CAS The remainder theorem and factor theorem The following two results are recalled from Essential Mathematical Methods 1&CAS. The remainder theorem ( ) b If a polnomial P()isdivided b a + b the remainder is P. a This is easil proved b observing if P() = D()(a + b) + R() and = b ( ) ( )( a b b P = D a b ) ( ) b a a a + b + R a and thus ( ) ( ) b b P = R a a The factor theorem An immediate consequence of the remainder theorem is the factor theorem. ( ) b a + b is a factor of the polnomial P() ifandonl if P =. a Eample 4 Find the remainder when P() = isdivided b + 1. B the remainder theorem the remainder is: ( P 1 ) ( = ( + ) 1 ( + ) 1 ) + 1 Eample 5 = = = 5 8 Given that + 1 and are factors of a 6 + b, find the values of a and b. Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

6 Let P() = a 6 + b. B the factor theorem, P( 1) = and P() =. Hence, a b = (1) and a 1 + b = () Rearranging gives: a + b = 13 (1 ) 4a + b = 76 ( ) Subtract (1 ) from ( ): 3a = 63 Therefore a = 1 and, from (1 ), b = 8. Solving polnomial equations The factor theorem ma be used in the solution of equations. Eample 6 Factorise P() = and hence solve the equation = P(1) = = P( 1) = = P() = = isafactor. Dividing b reveals that: P() = ( )( 15) = ( )( 5)( + 3) Therefore = or 5 = or + 3 = = or = 5 or or = 3 Using the TI-Nspire Use factor( ) (b 3) and solve( ) (b 31)asshown. Chapter 4 Polnomial functions 133 Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

7 134 Essential Mathematical Methods 3&4CAS Using the Casio ClassPad Enter and highlight then tap Interactive > Transformation > factor. Cop and paste the answer to the net entr line and tap Interactive > Equation/inequalit > solve and ensure the variable set is. Eercise 4A 1 Find the values of A and B such that A( + 3) + B( + ) = for all real numbers. Find the values of A, B and C in each of the following if: a = A( + B) + C for all R b = A( + B) + C for all R c = A( + B) 3 + C for all R 3 For each of the following, divide the first term b the second: a , 3 b , + 1 c , 4 a Find the remainder when isdivided b +. b Find the value of a for which (1 a) + 5a + (a 1)(a 8) is divisible b ( ) but not b ( 1). 5 Given that f () = : a Find the remainder when f () isdivided b. b Find the remainder when f () isdivided b +. c Factorise f () completel. 6 a Prove that the epression 3 + (k 1) + (k 9) 7isdivisible b + 1 for all values of k. b Find the value of k for which the epression has a remainder of 1 when divided b. 7 The function f () = 3 + a b + 3 has a factor ( + 3). When f () isdivided b ( ), the remainder is 15. a Calculate the values of a and b. b Find the other two factors of f (). Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

8 Chapter 4 Polnomial functions The epression a 5 + b leaves remainders of 8 and 1 when divided b ( 3) and ( 3) respectivel. Calculate the values of a and b. 9 Find the remainder when ( + 1) 4 is divided b 1 Let P() = a Show that neither ( 1) nor ( + 1) is a factor of P() b Given that P() can be written in the form ( 1)Q() + a + b where Q() isa polnomial and a and b are constants, hence or otherwise, find the remainder when P()isdivided b 1 11 a Show that both ( 3) and ( + 3) are factors of b Hence write down one quadratic factor of , and find a second quadratic factor. 1 Solve each of the following equations for : a ( )( + 4)( )( 3) = b 3 ( ) = c ( 1) 3 ( ) = d ( + ) 3 ( ) = e 4 4 = f 4 9 = g = h = i = 13 Find the -ais intercepts and the -ais intercepts of the graphs of each of the following: a = 3 b = c = d = e = 3 + f = g = h = i = The epressions p q and 4 3 p q 8have acommon factor. Find the values of p and q. 15 Find the remainder when f () = is divided b Factorise each of the following polnomials using a calculator to help find at least one linear factor: a b c d Factorise each of the following: a b Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

9 136 Essential Mathematical Methods 3&4CAS 18 Factorise each of the following polnomials, using a calculator to help find at least one linear factor: a b c d Quadratic functions The following is a summar of material assumed to have been covered in Essential Mathematical Methods1&CAS. The general epression of a quadratic function is = a + b + c, R. To sketch the graph of a quadratic function (called a parabola) use the following: If a >, the function has a minimum value. If a <, the function has a maimum value. The value of c gives the -ais intercept. b The equation of the ais of smmetr is = a The -ais intercepts are determined b solving the equation a + b + c = A quadratic equation ma be solved b: factorising e.g., = ( 3)( + 4) = = 3 or 4 completing the square e.g., + 4 = ( ) b Add and subtract to complete the square = ( + 1) 5 = ( + 1) = =± 5 = 1 ± 5 b ± b 4ac using the general quadratic formula = a e.g., = = ( 1) ± ( 1) 4( 3)( 7) ( 3) = 6 ± 15 3 Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

10 Chapter 4 Polnomial functions 137 Using the discriminant of the quadratic function f () = a + b + c If b 4ac >, the graph of the function has two -ais intercepts. If b 4ac =, the graph of the function touches the -ais. If b 4ac <, the graph of the function does not intersect the -ais. Eample 7 Sketch the graph of f () = 3 1 7busing the quadratic formula to calculate the -ais intercepts. Since c = 7 the -ais intercept is (, 7). Find the turning point coordinates. Ais of smmetr, = b a = ( 1) 3 = and f ( ) = 3( ) 1( ) 7 = 5 turning point coordinates are (, 5). Calculate the -ais intercepts = 6 = b ± b 4ac a 4 = ( 1) ± ( 1) 4( 3)( 7) ( 3) = 1 ± = 1 ± = = 6 ± ± 3.87 (to nd decimal place) 8 3 = 3.9 or.71 Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

11 138 Essential Mathematical Methods 3&4CAS Use of completing the square to sketch quadratics For a >, the graph of the function f () = a is obtained from the graph of f () = badilation of factor a from the -ais. The graphs on the right are those of =, = and = 1, i.e. a = 1, and 1. For h >, the graph of f () = ( + h) is obtained from the graph of f () = batranslation of h units in the negative direction of the -ais. For h <, the graph of f () = ( + h) is obtained from the graph of f () = batranslation of h units in the positive direction of the -ais. The graphs of = ( + ) and = ( ) are shown: For k >, the graph of f () = + k is obtained from the graph of f () = b atranslation of k units in the positive direction of the -ais. For k <, the translation is in the negative direction of the -ais. Foreample, the graph of the function f () = ( 3) + is obtained b translating the graph of the function f () = b 3units in the positive direction of the -ais and units in the positive direction of the -ais. Note that the verte is at (3, ). 1 = = 1 = (1, ) 1 (, 4) (1, 1) (1,.5) = ( + ) = ( ) = + = (, 11) = ( 3) + The graph of the function f () = ( ) + 3 is obtained from the graph of f () = b the following transformations: dilation of factor from the -ais translation of units in the positive direction of the -ais translation of 3 units in the positive direction of the -ais. Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard (, 11) (, 3) (3, )

12 Chapter 4 Polnomial functions 139 B completing the square, an quadratic function can be written in the form: = a( + h) + k Eample 8 Solve 4 5 = bepressing 4 5inthe form = a( + h) + k Use this to help ou sketch the graph of f () = 4 5 f () = ( 4 5 = 5 ) ( = ) ( ) (adding b and subtracting to complete [ = ( + 1) 7 ] the square ) [ = ( 1) 7 ] = ( 1) 7 Therefore, the graph of f () = 4 5ma be obtained from the graph of = b the following transformations: dilation of factor from the -ais translation of 1 unit in the positive direction of the -ais translation of 7 units in the negative direction of the -ais. The -ais intercepts can also be determined b this process. To solve = 4 5 = ( 1) 7 ( 1) = =± 7 = 1 ± 7 7 = 1 + or = 1.87 or.87 This information can now be used to sketch = 4 5 the graph. Since c = 5 the -ais intercept is (, 5) Turning point coordinates are (1, 7). 4 -ais intercepts are (.87, ) and 5 (.87, ) to two decimal places. 6 7 Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

13 14 Essential Mathematical Methods 3&4CAS Eercise 4B 1 Without sketching the graphs of the following functions, determine whether the cross, touch or do not intersect the -ais: a f () = 5 + b f () = c f () = d f () = 8 3 e f () = f f () = 1 Sketch the graphs of the following functions: a f () = ( 1) b f () = ( 1) c f () = ( 1) ( d f () = 4 ( + 1) e f () = f f () = ( + 1) ) 1 g f () = 3( ) 4 h f () = ( + 1) 1 i f () = 5 1 j f () = ( + 1) 4 3 Epress each of the following functions in the form = a( + h) + k and hence find the maimum or minimum value and the range in each case: a f () = + 3 b f () = c f () = d f () = e f () = 5 f f () = 7 3 g f () = Sketch the graphs of the following functions, clearl labelling the intercepts and turning points: a = + b = c = d = 5 6 e f () = + 3 f f () = g f () = h f () = i = j = a Which of the graphs shown could represent the graph of the equation = ( 4) 3? b Which graph could represent = 3 ( 4)? A B 13 C D Which of the curves shown could be defined b each of the following? a = 1 3 ( + 4)(8 ) b = + 1 c = 1 + ( 1) d = 1 (9 ) Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

14 Chapter 4 Polnomial functions 141 A B C D = Forwhich values of m does the equation m m + 3 = have: a two solutions for? b one solution for? 8 Show that the equation (k + 1) k = has a solution for all values of k. 9 Forwhich values of k does the equation k k = 5have: a two solutions for? b one solution for? 1 Show that the equation a (a + b) + b = has a solution for all values of a and b. 4.3 Determining the rule for a parabola Given sufficient information about a curve, a rule for the function of the graph ma be determined. Foreample, if the coordinates of three points on a parabola of the form = a + b + c are known, the rule for the parabola ma be found, i.e. the values of a, b and c ma be found. Sometimes a more specific rule is known. For eample, the curve ma be a dilation of =. It is then known to be of the = a famil, and the coordinates of one point (with the eception of the origin) will be enough to determine the value for a. In the following it is assumed that each of the graphs is that of a parabola, and each rule is that of a quadratic function in. 1 This is of the form = a (since the graph has its verte at the origin). When =, = 5 5 = a() a = 5 4 The rule is = 5 4 (, 5) Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

15 14 Essential Mathematical Methods 3&4CAS This is of the form = a + c (since the graph is smmetric about the -ais). For (, 3) 3 = a() + c implies c = For ( 3, 1) 1 = a( 3) = 9a + 3 a = 9 the rule is = This is of the form = a( 3) As the point ( 1, 8) is on the parabola: 8 = a( 1 3) And hence 4a = 8 Therefore a = The rule is = ( 3) This is of the form = a + b + c As the point with coordinates ( 1, ) is on the parabola: = a b + c (1) The -ais intercept is and therefore c = () As the point with coordinates (1, ) is on the parabola: = a + b + c (3) Substitute c = in(1) and (3) = a b + From (1) = a b (1a) From (3) = a + b (3a) Subtract (3a) from (1a) = b b = 1 Substitute b = 1 and c = in(1). ( 1, 8) 1 ( 3, 1) (, 3) 3 1 = a 1 + = a + 1 a = 1 the quadratic rule is = + + Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

16 Chapter 4 Polnomial functions 143 Eercise 4C 1 Determine the equation of each of the following parabolas: a c e g ( 1, ) (3, ) (1, ) (1, 3) b d f h ( 1, 3) (, ) 4 Find quadratic epressions representing the two curves shown in the diagram, given that the coefficient of in each case is 1. A is (4, 3), B is (4, 1), C is (, 5) and D is (, 1). 4 A 3 1 D B 4 5 C 5 3 The graph of the quadratic function f () = A( + b) + B has a verte at (, 4) and passes through the point (, 8). Find the values of A, b and B. Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

17 144 Essential Mathematical Methods 3&4CAS 4.4 Functions of the form f: R R, f() = a( + h) n + k, where n is a natural number In the previous section it was shown that ever quadratic polnomial can be written in the form a( + h) + k. This is not true for polnomials of higher degree. This was shown in Eample of this chapter. However, there are man polnomials that can be written in this form. In Chapter 3 the famil of power functions was introduced. In this section the sub-famil of power functions with rules of the form f () = n where n is a natural number are considered. f() = n where n is an odd positive integer The diagrams below shows the graphs of = 3 and = 5 ( 3, 7) = 3 (3, 7) ( 3, 43) = 5 (3, 43) The diagram on the right shows both functions graphed on the one set of aes for a smaller domain. The following properties can be observed for a = 3 (1, 1) function f () = n where n is an odd integer: f () = = 5 f (1) = 1 and f ( 1) = 1 ( 1, 1) f () = f ( ), i.e. f is an odd function. f ( ) = ( ) n = ( 1) n () n = f () asn is odd. As, f () As, f () From Essential Mathematical Methods 1&CASou will recall that the gradient function of f () = n has rule n n 1. Hence the gradient is when =. As n 1isevenforn odd, n n 1 > for all non-zero. That is, the gradient of the graph of = f () ispositive for all non-zero and zero when =. Recall that the stationar point at =, for functions of this form, is called a stationar point of infleion. Comparing the graphs of = n and = m where n and m are odd and n > m n < m when < < 1 ( n m = m ( n m 1) < ) n = m when = n > m when 1 < < ( n m = m ( n m 1) > asn m is even, m is odd and is negative and greater than 1) Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

18 n = m for = 1 and n = m for = 1 n > m for > 1 n < m for < 1 It should be noted that the appearance of graphs is dependent on the scales on the - and -aes. Odd power functions are often depicted as shown. Chapter 4 Polnomial functions 145 Transformations of graphs of functions with rule f() = n where n is an odd positive integer Transformations of these graphs result in graphs with rules of the form = a( + h) n + k where a, h and k are real constants. Eample 9 Sketch the graph of f () = ( ) This can be done b noting that a translation (, ) ( +, + 1) maps the graph of = 3 to = ( ) Note: The point with coordinates (, 1) is a point of zero gradient. For the aes intercepts, consider this: When =, = ( ) = 7 When =, = ( ) = ( ) 3 1 = and hence = 1 The reflection in the -ais described b the transformation rule (, ) (, ) and applied to = 3 results in the graph of = 3 (, 1) (1, ) (, 7) = f() Eample 1 = 3 Sketch the graph of = ( 1) 3 + Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

19 146 Essential Mathematical Methods 3&4CAS A reflection in the -ais followed b a translation with rule (, ) ( + 1, + ) applied to the graph of = 3 results in the graph = ( 1) 3 + Note: (1, ) is a point of zero gradient. For the aes intercepts consider this: When =, = ( 1) 3 + = 3 When =, = ( 1) 3 (, 3) + (1, ) ( 1) 3 = 1 = 1 (.6, ) 3 and hence = Eample 11 Sketch the graph of = ( + 1) 3 + A dilation of factor from the -ais followed b the translation with rule (, ) ( 1, + ) maps the graph of = 3 to the graph of = ( + 1) 3 + Note: ( 1, ) is a point of zero gradient. For the aes intercepts consider this: When =, = + = 4 When =, = ( + 1) = ( + 1) 3 1 = + 1 and hence = ( 1, ) (, ) Eample 1 The graph of = a( + h) 3 + k has a point of zero gradient at (1, 1) and passes through the point (, 4). Find the values of a, h and k. h = 1 and k = 1 Therefore as the graph passes through (, 4): 4 = a + 1 a = 3 (, 4) Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

20 Chapter 4 Polnomial functions 147 a b Eample 13 Find the rule for the image of the graph of = 5 under the following sequence of transformations: reflection in the -ais dilation of factor from the -ais translation of units in the positive direction of the -ais and 3 units in the positive direction of the -ais Find a sequence of transformations which takes the graph of = 5 to the graph of = 6 ( + 5) 5 a (, ) (, ) (, ) ( +, + 3) Let (, )bethe image of (, ) under this transformation. Hence = + and = + 3 Thus =, which implies = and = 3 ( ) Therefore, the graph of = 5 maps to the graph of 5 3 =, i.e., to the graph of = 1 3 ( )5 + 3 b Rearrange = 6 ( + 5) 5 to 6 = ( + 5) 5 Therefore, = 6 and = + 5 and = + 6 and = 5 The sequence of transformations is: reflection in the -ais dilation of factor from the -ais translation of 5 units in the negative direction of the -ais and 6 units in the positive direction of the -ais. f() = n where n is an even positive integer The graphs of = and = 4 are shown on the one set of aes. ( 1, 1) = 4 (1, 1) = The following properties can be observed for a function f () = n where n is an even integer: Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

21 148 Essential Mathematical Methods 3&4CAS f () = f (1) = 1 and f ( 1) = 1 f () = f ( ), i.e. f is an even function, f ( ) = ( ) n = ( 1) n () n = f () asn is even As, f () As, f () From Essential Mathematical Methods 1&CASou will recall that the gradient function of f () = n has rule n n 1. Hence the gradient is when =. As n 1isodd for n even, n n 1 > for > and n n 1 < for <. That is, the gradient of the graph of = f () is positive for positive, negative for negative and zero when =. Comparing the graphs of = n and = m where n and m are even and n > m n < m when < < 1 ( n m = m ( n m 1) < ) n = m when = n < m when 1 < < ( n m = m ( n m 1) < asn m is even, m is even and is negative and greater than 1) n = m for = 1 and n = m for = 1 n > m for > 1 n > m for < 1 It should be noted that the appearance of graphs is dependent on the scales on the - and -aes. Power functions of even degree are often depicted as shown. Eample 14 The graph of = a( + h) 4 + k has a turning point at (, ) and passes through the point (, 4). Find the values of a and h and k. h = and k = Therefore as the graph passes through (, 4): 4 = 16a + a = 1 8 Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

22 Chapter 4 Polnomial functions 149 Eercise 4D 1 Sketch the graphs of each of the following. State the coordinates of the point of zero gradient and the aes intercepts. a f () = 3 b g() = 3 c h() = d f () = 3 4 e f () = ( + 1) 3 8 f f () = ( 1) 3 g g() = ( 1) 3 + h h() = 3( ) 3 4 i f () = ( 1) 3 + j h() = ( 1) 3 4 k f () = ( + 1) 5 3 l f () = ( 1) 5 The graph of = a( + h) 3 + k has a point of zero gradient at (, 4) and passes through the point (1, 1). Find the values of a, h and k. 3 The graph of = a( + h) 4 + k has a turning point at (1, 7) and passes through the point (, 3). Find the values of a, h and k. 4 Find the equation of the image of = 3 under each of the following transformations: a a dilation of factor 3 from the -ais b a translation with rule (, ) ( 1, + 1) c a reflection in the -ais followed b a translation with rule d e (, ) ( +, 3) a dilation of factor from the -ais followed b a translation with rule (, ) ( 1, ) a dilation of factor 3 from the -ais. 5 B appling suitable transformations to = 4,sketch the graph of each of the following: a = 3( 1) 4 b = ( + ) 4 c = ( ) 4 6 d = ( 3) 4 1 e = 1 ( + 4) 4 f = 3( ) The general cubic function Not all cubic functions are of the form f () = a( + h) 3 + k. In this section the general cubic function is considered. The form of a general cubic function is: f () = a 3 + b + c + d It is impossible to full investigate cubic functions without the use of calculus. Cubic functions will be revisited in Chapter 9. The shapes of cubic graphs var. Below is a galler of cubic graphs demonstrating the variet of shapes that are possible. Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

23 15 Essential Mathematical Methods 3&4CAS 1 f () = 3 + Note: (, ) is not a point of zero gradient. There is one root,. f () = 3 Note: The turning points do not occur smmetricall between consecutive -ais intercepts as the do for quadratics. Differential calculus must be used to determine them. There are three roots: 1, and 1. 3 f () = 3 3 Note: There are two roots: 1 and f () = The graphs of f () = 3 and f () = are shown. The are the reflection in the -ais of the graphs of 1 and 4 respectivel. = Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

24 Chapter 4 Polnomial functions 151 Sign diagrams A sign diagram is a number line diagram that shows when an epression is positive or negative. For a cubic function with rule f () = ( )( )( ) when > >, the sign diagram is as shown: Eample 15 + α β γ Draw a sign diagram for the epression From Eample 6, f () = ( )( 5)( + 3) We note: f () > for > 5 f () < for < < 5 f () > for 3 < < f () < for < 3 Also, f () = f (5) = f ( 3) = Hence the sign diagram ma be drawn. Eample For the cubic function with rule f () = : a Sketch the graph of = f () using a calculator to find the values of the coordinates of the turning points, correct to two decimal places. b Sketch the graph of = 1 f ( 1) a f () = = (3 )( )( + 5) = ( + 5)( )( 3) We note: f () < for > 3 f () > for < < 3 f () < for 5 < < f () > for < 5 Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

25 15 Essential Mathematical Methods 3&4CAS b Also, f ( 5) = f () = f (3) = Hence the sign diagram ma be drawn The -ais intercepts are at = 5, = and = 3 and the -ais intercept is at = 3. The window has to be adjusted carefull to see the -ais intercepts and the turning points. The local minimum turning point ma be found b selecting 3:Minimum from the F5 menu and then entering the lower bound 5 and the upper bound and pressing ENTER. The local minimum is found to occur at the point with coordinates (.5, 61.88) with values given correct to two decimal places. The local maimum turning point ma be found b selecting 4:Maimum from the F5 menu and then entering the lower bound and the upper bound 3 and pressing ENTER. The local maimum is found to occur at the point with coordinates (.5, 1.88) with values given correct to two decimal places. The rule for the transformation is (, ) ( + 1, 1 ) B the transformation ( 5, ) ( 4, ), (, ) (3, ), (3, ) (4, ), (, 3) (1, 15), (.5, 1.88) (3.5,.94) and (.5, 61.88) ( 1.5, 3.94) 5 3 (.5, 61.88) (.5, 1.88) (3.51,.94) ( 1.5, 3.94) 3 Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

26 Chapter 4 Polnomial functions 153 Eercise 4E 1 Draw sign diagrams for each of the following epressions: a (3 )( 1)( 6) b (3 + )( 1)( + 6) c ( 5)( + 1)( 6) d (4 )(5 )(1 ) a Use a calculator to plot the graph of = f () where f () = b On the same screen plot the graphs of: i = f ( ) ii = f ( + ) iii = 3 f () 4.6 Polnomials of higher degree The techniques that have been developed for cubic functions ma now be applied to quartic functions and in general to functions of higher degree. It is clear that a polnomial P() of degree n has at most n solutions for the equation P() =. It is possible for the graphs of polnomials of even degree to have no -ais intercepts, for eample P() = + 1, but graphs of polnomials of odd degree have at least one -ais intercept. The general form for a quartic function is: f () = a 4 + b 3 + c + d + e Agaller of quartic functions produced with a graphing package is shown below. 1 f () = 4 f () = f () = f () = ( 1) ( + ) Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

27 154 Essential Mathematical Methods 3&4CAS 5 f () = ( 1) 3 ( + ) Eample 17 Draw a sign diagram for the quartic epressions: a ( )( + )( 3)( 5) b 4 + a b Let P() = 4 + P(1) = = 1isafactor. ) P() = ( 1)( ) = ( 1)[ ( + 1) + ( + 1)] = ( 1)( + 1)( + ) Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

28 Chapter 4 Polnomial functions 155 Eample 18 Find the coordinates of the points where the graph of = p(), p() = 4 + 1, crosses the - and -aes, and hence sketch the graph. 1isafactor. p(1) = = p() = ( 1)( 3 + 1) = ( 1)[ ( + 1) ( + 1)] = ( 1)( + 1)( 1) = ( 1) ( + 1) Alternativel, note that: p() = ( 1) = [( 1)( + 1)] = ( 1) ( + 1) Therefore, the -ais intercepts are (1, ) and ( 1, ). When =, = 1. Eercise 4F (, 1) ( 1, ) (1, ) 1 a Use a calculator to plot the graph of = f () where f () = b On the same screen plot the graphs of: ( ) i = f ( ) ii = f () iii = f The graph of = 9 4 is as shown. Sketch the graph of each of the following b appling suitable transformations. a = 9( 1) ( 1) 4 b = 18 4 c = 18( + 1) ( + 1) 4 d = e = (Do not find the -ais intercepts for e.) 9 81, , 4 3 Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

29 156 Essential Mathematical Methods 3&4CAS 4.7 Determining rules for the graphs of polnomials It is first worth noting that the graph of a polnomial function of degree n is completel determined b an n + 1 points on the curve. Foreample, for a cubic function with rule = f (), if it is known that f (a 1 ) = b 1, f (a ) = b, f (a 3 ) = b 3, f (a 4 ) = b 4, then the rule can be determined. Finding the rule for a parabola has been discussed in Section 4.3 of this chapter. Eample 19 For the cubic function with rule f () = a 3 + b + c + d, itisknown that the points with coordinates ( 1, 18), (, 5), (1, 4) and (, 9) lie on the graph of the cubic. Find the values of a, b, c and d. The following equations can be formed. a + b c + d = 18 (1) d = 5 () a + b + c + d = 4 (3) 8a + 4b + c + d = 9 (4) Adding (1) and (3) gives b + d = and as d = 5, b = 6. There are now onl two unknowns. (3) becomes a + c = 7 (3 ) and (4) becomes 8a + c = (4 ) Multipl (3 )band subtract from (4 ). 6a = 6which gives a = 1 and c = 6 Using the TI-Nspire Enter solve( a + b c + d = 18 and d = 5 and a + b + c + d = 4 and 8a + 4b + c + d = 9, {a, b, c, d}). Alternativel, Define f () = a 3 + b + c + d and then solve( f ( 1) = 18 and f () = 5 and f (1) = 4 and f () = 9, {a, b, c, d}). Both methods are shown on the screen to the right. Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

30 Chapter 4 Polnomial functions 157 Using the Casio ClassPad Press and select menu (if necessar tap ). Tap three times to produce the template to enter four simultaneous equations. Enter the equations and set the variables in the variable bo to a,b,c,d then tap. An alternative method is to define f () = a 3 + b + c + d then enter f ( 1) = 18, f () = 5, f (1) = 4 and f () = 9asthe simultaneous equations to be solved with variables a,b,c,d as above. The following eamples provide further procedures for finding the rules of cubic functions. It should be noted that a similar facilit is available for quartics. Eample The graph shown is that of a cubic function. Find the rule for this cubic function. From the graph the function can be seen to be of the form = a( 4) ( 1) ( + 3). 3 (, 4) It remains to find the value of a. The point with coordinates (, 4) is on the graph. Hence: 4 = a( 4)( 1)3 a = 1 3 and = 1 ( 4)( 1)( + 3) Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

31 158 Essential Mathematical Methods 3&4CAS Eample 1 The graph shown is that of a cubic function. Find the rule for this cubic function. From the graph it can be seen to be of the form = k( 1)( + 3).Itremains to find the value of k.asthe value (, 9) is on the graph: 9 = k( 1)(9) k = 1 and = ( 1)( + 3) (, 9) 3 1 Note: Because the graph reveals that there are two factors, ( + 3) and ( 1), there must be a third linear factor (a + b), but this implies that there is an intercept b a. Thus a + b = k 1 ( + 3) or k ( 1). A consideration of the signs reveals that ( + 3) is a repeated factor. Eample The graph of a cubic function passes through the point with coordinates (, 1), (1, 4), (, 17) and ( 1, ). Find the rule for this cubic function. The cubic function will have a rule of the form: = a 3 + b + c + d The values of a, b, c and d have to be determined. As the point (, 1) is on the graph, d = 1. B using the points (1, 4), (, 17) and ( 1, ), three simultaneous equations are produced: 4 = a + b + c = 8a + 4b + c + 1 = a + b c + 1 These become: 3 = a + b + c (1) 16 = 8a + 4b + c () 1 = a + b c (3) Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

32 Chapter 4 Polnomial functions 159 Add (1) and (3) to find: b = 4 i.e., b = Substitute in (1) and (): 1 = a + c (4) 8 = 8a + c (5) Multipl (4) b and subtract from (5). Hence 6 = 6a and a = 1 From (4) c = Thus = Eercise 4G 1 Determine the rule for the cubic function with graph as shown: Determine the rule for the cubic function with graph as shown: 5 (, 11) (, 5) ( 1, ) 3 Find the rule for the cubic function that passes through the following points: a (, 1), (1, 3), ( 1, 1) and (, 11) b (, 1), (1, 1), ( 1, 1) and (, 7) c (, ), (1, ), ( 1, 6) and (, 1) 6 3 Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

33 16 Essential Mathematical Methods 3&4CAS 4 Find epressions which define the following cubic curves: a b d e 1 (, 3) (, 3) (1,.75) 5 Find the equation of the cubic function for which the graph passes through the points with coordinates: a (, 135), (1, 156), (, 115), (3, ) b (, 3), (, 13), (1, 5), (, 11) 6 Find the equation of the quartic function for which the graph passes through the points with coordinates: a ( 1, 43), (, 4), (, 7), (6, 1618), (1, 67) b ( 3, 119), (, 3), ( 1, 9), (, 8), (1, 11) c ( 3, 6), ( 1, ), (1, ), (3, 66), (6, 17) 4.8 of literal equations and sstems of equations Literal equations Solving literal linear equations and simultaneous equations was undertaken in Section.. In this section other non-linear epressions are considered. The certainl can be solved with a CAS calculator but full setting out is shown here. Eample 3 Solve each of the following literal equations for : a + k + k = b 3 3a + a = c ( a) = 3 c 1 1 Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

34 Chapter 4 Polnomial functions 161 a Completing the square gives + k + k 4 + k k ( 4 = + k ) = k 4 k + k =± k 4k 4 = k ± k 4k A real solution eists onl for k 4k ; that is for k 4ork b 3 3a + a = ( 3a + a ) = ( a)( a) = = or = a or = a c ( a) = implies = or = a or = a In the following, the propert that for suitable values of a, b and an odd natural number n, b n = a is equivalent to b = a 1 n and also b = n a. Also b p q q = a is equivalent to b = a p suitable values of a and b and integers q and p. Care must be taken with the application of these. For eample = isequivalent to =± and 3 = 4isequivalent to = 8or = 8. Eample 4 Solve each of the following equations for : a a 3 b = c b 3 5 = a c 1 n = a where n is a natural number and is a positive real number d a ( + b) 3 = c e a 1 5 = b f 5 c = d a a 3 b = c a 3 = b + c 3 = b + c a b + c = 3 a ( ) 1 b + c 3 or = a b 3 5 = a is equivalent to = a 5 3 c 1 n = a is equivalent to = a n d a ( + b) 3 = c for ( + b) 3 = c ( a c ) b = a ( c ) 1 3 = b a Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

35 16 Essential Mathematical Methods 3&4CAS e a 1 5 = b f 1 5 = b ( a b = a ) 5 5 c = d 5 = c + d = (c + d) 1 5 Simultaneous equations In this section, methods for finding the coordinates of the points of intersection of different graphs are discussed. Eample 5 Find the coordinates of the points of intersection of the parabola with equation = with the straight line with equation = + 4 Consider + 4 = Then = 3 6 = 3 ± = 3 ± 33 The points of intersection have coordinates ( 3 33 A, 11 ) ( and B, 11 + ) 33 Using the TI-Nspire Use solve( ) from the Algebra menu (b 31)asshown. The word and can be tped directl or found in the catalog (b 31). Use the up arrow ( )tomoveuptothe answer and use the right arrow ( )to displa the remaining part of the answer. 4 A 4 = + 4 B = Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

36 Chapter 4 Polnomial functions 163 Using the Casio ClassPad In the simultaneous equation entr screen, enter the equations = and = + 4 and set the variables as,. Note the at the end of the answer line indicates that ou must scroll to the right to see all the solutions. Eample 6 Find the coordinates of the points of intersection of the circle with equation ( 4) + = 16 and the line with equation = Rearrange = tomake the subject. Substitute = into the equation of the circle. i.e., ( 4) + = = 16 i.e., 8 = ( 4) = = or = 4 The points of intersection are (, ) and (4, 4). Eample 7 Find the point of contact of the line with equation = and the curve with equation 3 = 1 Rewrite the equations as = and = 1 Consider = = 9 and + 6 = 9 Therefore = and ( 3) = i.e. = 3 The point of intersection is ( 3, 1 3 ). = (4, ) = (4, 4) 1 Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

37 164 Essential Mathematical Methods 3&4CAS Using the TI-Nspire Use solve( ) from the Algebra menu (b 3 1)asshown. Note that the multiplication sign is required between and. Using the Casio ClassPad In the simultaneous equation entr screen, enter the equations 9 + = 3 and = 1 and set the variables as,. Note that for this eample, since the fraction entr is on the same screen as the simultaneous equation in the keboard menu, the fractions can be entered using the fraction entr ke. Eercise 4H 1 Solve each of the following literal equations for : a k + + k = b 3 7a + 1a = c ( 3 a) = d k + k = e 3 a = f 4 a 4 = g ( a) 5 ( b) = h (a ) 4 (a 3 )( a) = Solve each of the following equations for : a a 3 b = c b 3 7 = a c 1 n + c = a where n is a natural number and is a positive real number d a ( + b) 3 = c e a 1 3 = b f 3 c = d 3 Find the coordinates of the points of intersection for each of the following: a = = b = = c = = + 1 Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

38 Chapter 4 Polnomial functions Find the coordinates of the points of intersection for each of the following: a + = = 16 d + = 97 + = 13 b + = 15 + = 15 e + = 16 = 4 c + = 185 = 3 5 Find the coordinates of the points of intersection for each of the following: a + = 8 = 187 b + = 51 = 518 c = 5 = 16 6 Find the coordinates of the points of intersection of the straight line with equation = and the circle with equation ( 5) + = 5 7 Find the coordinates of the points of intersection of the curves with equation = and = 8 Find the coordinates of the points of intersection of the line with equation 4 5 = 1 and the circle with equation = 1 9 Find the coordinates of the points of intersection of the curve with equation = 1 3 and the line with equation = + 1 Find the coordinates of the point where the line 4 = touches the parabola with equation = 9 11 Find the coordinates of the point where the line with equation = touches the circle + = 9 1 Find the coordinates of the point where the straight line with equation = touches the curve with equation = 1 13 Find the coordinates of the points of intersection of the curve with equation = and the line = 1 14 Solve the simultaneous equations: a 5 4 = 7 and = 6 b + 3 = 37 and = 45 c 5 3 = 18 and = 4 Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

39 166 Essential Mathematical Methods 3&4CAS 15 What is the condition for + a + b to be divisible b + c? 16 Solve the simultaneous equations = + and = a Solve the simultaneous equations = m and = for in terms of m. b Find the value of m for which the graphs of = m and = touch and give the coordinates of this point. c Forwhich values of m do the graphs not meet? Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

40 Chapter 4 Polnomial functions 167 Chapter summar A function P() = a + a 1 + +a n n,where a, a 1,...,a n are constants, is called a polnomial in. The numbers a, a 1,...a n are the coefficients. Assuming a n =,the term a n n is the leading term. The integer n is the degree of the polnomial. Degree one polnomials are called linear functions. Degree two polnomials are called quadratic functions. Degree three polnomials are called cubic functions. Degree four polnomials are called quartic functions. The ( remainder theorem:ifthe polnomial P() isdivided b a + b, the remainder is P b ) a ( The factor theorem:(a + b)isafactor of P() ifandonl if P b ) = a To sketch the graph of a quadratic function f () = a + b + c (called a parabola), use the following: If a >, the function has a minimum value. If a <, the function has a maimum value. The value of c gives the -ais intercept. b The equation of the ais of smmetr is = a The -ais intercepts are determined b solving the equation a + b + c = A quadratic equation ma be solved b: factorising completing the square b ± b 4ac using the general quadratic formula = a Using the discriminant of the quadratic function f () = a + b + c: If b 4ac >, the graph of the function has two -ais intercepts. If b 4ac =, the graph of the function touches the -ais. If b 4ac <, the graph of the function does not intercept the -ais. B completing the square, an quadratic function can be written in the form = A( + b) + B From this it can be seen that the graph of an quadratic function ma be obtained b a composition of transformations applied to the graph of =. Multiple-choice questions 1 The equation 5 1 inturning point form a( + h) + k b completing the square is: A (5 + 1) + 5 B (5 1) 5 C 5( 1) 5 D 5( + 1) E 5( 1) 7 Review Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

41 168 Essential Mathematical Methods 3&4CAS Review The value(s) of m that will give the equation m = two real roots is/are: A m = 3 B m = 3 C m = D m > 3 E m < factorised over R is equal to: A ( + 3) 3 B ( 3) 3 C ( + 3)( 6 + 9) D ( 3)( ) E ( + 3)( 3 + 9) 4 The equation of the graph shown is: A = ( )( + 4) B = ( + )( 4) C = ( + ) ( 4) D = ( + )( 4) E = ( + ) ( 4) 5 1isafactor of a + 1. The value of a is: A B 5 C 5 D 5 E is equal to: A (3 + )( 4) B (3 )(6 + 4) C (6 4)( + ) D (3 )( + 4) E (6 + )( 8) 7 A part of the graph of the third-degree polnomial function f (), near the point (1, ), is shown below. 1 Which of the following could be the rule for f ()? A f () = ( 1) B f () = ( 1) 3 C f () = ( 1) D f () = ( 1) E f () = ( + 1) 8 The coordinates of the turning point of the graph of the function p() = 3(( ) + 4) are: A (, 1) B (, 4) C (, 1) D (, 4) E (, 1) 9 The diagram below shows part of the graph of a polnomial function. c b Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

42 Chapter 4 Polnomial functions 169 A possible equation for the rule of the function is: A = ( + c)( b) B = ( b)( c) C = ( c)(b ) D = ( c)(b ) E = ( + b) ( c) 1 The number of roots to the equation ( + a)( b)( + c) =, where a, b and c R +, is: A B 1 C D 3 E 4 Short-answer questions (technolog-free) 1 Sketch the graphs of each of the following quadratic functions. Clearl indicate coordinates of the verte and aes intercepts. a h() = 3( 1) + b h() = ( 1) 9 c f () = + 6 d f () = 6 e f () = + 5 f h() = 1 The points with coordinates (1, 1) and (, 5) lie on a parabola with equation of the form = a + b.find the values of a and b. 3 Solve the equation 3 1 = busing the quadratic formula. 4 Sketch the graphs of each of the following. State the coordinates of the point of zero gradient and the aes intercepts: a f () = ( 1) 3 16 b g() = ( + 1) c h() = ( + ) 3 1 d f () = ( + 3) 3 1 e f () = 1 ( 1) 3 5 Draw a sign diagram for each of the following: a = ( + )( )( + 1) b = ( 3)( + 1)( 1) c = d = Without actuall dividing, find the remainder when the first polnomial is divided b the second: a , + 1 b , c , + 7 Determine the rule for the cubic function shown in the graphs: 3 (, 4) 7 Review Cambridge Universit Press Uncorrected Sample Pages 8 Evans, Lipson, Jones, Aver, TI-Nspire & Casio ClassPad material prepared in collaboration with Jan Honnens & David Hibbard

Higher. Polynomials and Quadratics 64

Higher. Polynomials and Quadratics 64 hsn.uk.net Higher Mathematics UNIT OUTCOME 1 Polnomials and Quadratics Contents Polnomials and Quadratics 64 1 Quadratics 64 The Discriminant 66 3 Completing the Square 67 4 Sketching Parabolas 70 5 Determining

More information

Core Maths C2. Revision Notes

Core Maths C2. Revision Notes Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...

More information

Polynomials. Jackie Nicholas Jacquie Hargreaves Janet Hunter

Polynomials. Jackie Nicholas Jacquie Hargreaves Janet Hunter Mathematics Learning Centre Polnomials Jackie Nicholas Jacquie Hargreaves Janet Hunter c 26 Universit of Sdne Mathematics Learning Centre, Universit of Sdne 1 1 Polnomials Man of the functions we will

More information

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1

INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4. Example 1 Chapter 1 INVESTIGATIONS AND FUNCTIONS 1.1.1 1.1.4 This opening section introduces the students to man of the big ideas of Algebra 2, as well as different was of thinking and various problem solving strategies.

More information

C3: Functions. Learning objectives

C3: Functions. Learning objectives CHAPTER C3: Functions Learning objectives After studing this chapter ou should: be familiar with the terms one-one and man-one mappings understand the terms domain and range for a mapping understand the

More information

y intercept Gradient Facts Lines that have the same gradient are PARALLEL

y intercept Gradient Facts Lines that have the same gradient are PARALLEL CORE Summar Notes Linear Graphs and Equations = m + c gradient = increase in increase in intercept Gradient Facts Lines that have the same gradient are PARALLEL If lines are PERPENDICULAR then m m = or

More information

Polynomials Past Papers Unit 2 Outcome 1

Polynomials Past Papers Unit 2 Outcome 1 PSf Polnomials Past Papers Unit 2 utcome 1 Multiple Choice Questions Each correct answer in this section is worth two marks. 1. Given p() = 2 + 6, which of the following are true? I. ( + 3) is a factor

More information

Graphing Quadratic Equations

Graphing Quadratic Equations .4 Graphing Quadratic Equations.4 OBJECTIVE. Graph a quadratic equation b plotting points In Section 6.3 ou learned to graph first-degree equations. Similar methods will allow ou to graph quadratic equations

More information

When I was 3.1 POLYNOMIAL FUNCTIONS

When I was 3.1 POLYNOMIAL FUNCTIONS 146 Chapter 3 Polnomial and Rational Functions Section 3.1 begins with basic definitions and graphical concepts and gives an overview of ke properties of polnomial functions. In Sections 3.2 and 3.3 we

More information

Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form

Solving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form SECTION 11.3 Solving Quadratic Equations b Graphing 11.3 OBJECTIVES 1. Find an ais of smmetr 2. Find a verte 3. Graph a parabola 4. Solve quadratic equations b graphing 5. Solve an application involving

More information

Downloaded from www.heinemann.co.uk/ib. equations. 2.4 The reciprocal function x 1 x

Downloaded from www.heinemann.co.uk/ib. equations. 2.4 The reciprocal function x 1 x Functions and equations Assessment statements. Concept of function f : f (); domain, range, image (value). Composite functions (f g); identit function. Inverse function f.. The graph of a function; its

More information

Polynomial and Synthetic Division. Long Division of Polynomials. Example 1. 6x 2 7x 2 x 2) 19x 2 16x 4 6x3 12x 2 7x 2 16x 7x 2 14x. 2x 4.

Polynomial and Synthetic Division. Long Division of Polynomials. Example 1. 6x 2 7x 2 x 2) 19x 2 16x 4 6x3 12x 2 7x 2 16x 7x 2 14x. 2x 4. _.qd /7/5 9: AM Page 5 Section.. Polynomial and Synthetic Division 5 Polynomial and Synthetic Division What you should learn Use long division to divide polynomials by other polynomials. Use synthetic

More information

Polynomial Degree and Finite Differences

Polynomial Degree and Finite Differences CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson you will learn the terminology associated with polynomials use the finite differences method to determine the degree of a polynomial

More information

POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

More information

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations

More information

1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered

1. a. standard form of a parabola with. 2 b 1 2 horizontal axis of symmetry 2. x 2 y 2 r 2 o. standard form of an ellipse centered Conic Sections. Distance Formula and Circles. More on the Parabola. The Ellipse and Hperbola. Nonlinear Sstems of Equations in Two Variables. Nonlinear Inequalities and Sstems of Inequalities In Chapter,

More information

DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS

DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS a p p e n d i g DISTANCE, CIRCLES, AND QUADRATIC EQUATIONS DISTANCE BETWEEN TWO POINTS IN THE PLANE Suppose that we are interested in finding the distance d between two points P (, ) and P (, ) in the

More information

I think that starting

I think that starting . Graphs of Functions 69. GRAPHS OF FUNCTIONS One can envisage that mathematical theor will go on being elaborated and etended indefinitel. How strange that the results of just the first few centuries

More information

5.2 Inverse Functions

5.2 Inverse Functions 78 Further Topics in Functions. Inverse Functions Thinking of a function as a process like we did in Section., in this section we seek another function which might reverse that process. As in real life,

More information

STRAND: ALGEBRA Unit 3 Solving Equations

STRAND: ALGEBRA Unit 3 Solving Equations CMM Subject Support Strand: ALGEBRA Unit Solving Equations: Tet STRAND: ALGEBRA Unit Solving Equations TEXT Contents Section. Algebraic Fractions. Algebraic Fractions and Quadratic Equations. Algebraic

More information

3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes

3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general

More information

ax 2 by 2 cxy dx ey f 0 The Distance Formula The distance d between two points (x 1, y 1 ) and (x 2, y 2 ) is given by d (x 2 x 1 )

ax 2 by 2 cxy dx ey f 0 The Distance Formula The distance d between two points (x 1, y 1 ) and (x 2, y 2 ) is given by d (x 2 x 1 ) SECTION 1. The Circle 1. OBJECTIVES The second conic section we look at is the circle. The circle can be described b using the standard form for a conic section, 1. Identif the graph of an equation as

More information

Lesson 9.1 Solving Quadratic Equations

Lesson 9.1 Solving Quadratic Equations Lesson 9.1 Solving Quadratic Equations 1. Sketch the graph of a quadratic equation with a. One -intercept and all nonnegative y-values. b. The verte in the third quadrant and no -intercepts. c. The verte

More information

Quadratic Equations and Functions

Quadratic Equations and Functions Quadratic Equations and Functions. Square Root Propert and Completing the Square. Quadratic Formula. Equations in Quadratic Form. Graphs of Quadratic Functions. Verte of a Parabola and Applications In

More information

Chapter 6 Quadratic Functions

Chapter 6 Quadratic Functions Chapter 6 Quadratic Functions Determine the characteristics of quadratic functions Sketch Quadratics Solve problems modelled b Quadratics 6.1Quadratic Functions A quadratic function is of the form where

More information

The Distance Formula and the Circle

The Distance Formula and the Circle 10.2 The Distance Formula and the Circle 10.2 OBJECTIVES 1. Given a center and radius, find the equation of a circle 2. Given an equation for a circle, find the center and radius 3. Given an equation,

More information

THE POWER RULES. Raising an Exponential Expression to a Power

THE POWER RULES. Raising an Exponential Expression to a Power 8 (5-) Chapter 5 Eponents and Polnomials 5. THE POWER RULES In this section Raising an Eponential Epression to a Power Raising a Product to a Power Raising a Quotient to a Power Variable Eponents Summar

More information

Year 9 set 1 Mathematics notes, to accompany the 9H book.

Year 9 set 1 Mathematics notes, to accompany the 9H book. Part 1: Year 9 set 1 Mathematics notes, to accompany the 9H book. equations 1. (p.1), 1.6 (p. 44), 4.6 (p.196) sequences 3. (p.115) Pupils use the Elmwood Press Essential Maths book by David Raymer (9H

More information

More Equations and Inequalities

More Equations and Inequalities Section. Sets of Numbers and Interval Notation 9 More Equations and Inequalities 9 9. Compound Inequalities 9. Polnomial and Rational Inequalities 9. Absolute Value Equations 9. Absolute Value Inequalities

More information

Colegio del mundo IB. Programa Diploma REPASO 2. 1. The mass m kg of a radio-active substance at time t hours is given by. m = 4e 0.2t.

Colegio del mundo IB. Programa Diploma REPASO 2. 1. The mass m kg of a radio-active substance at time t hours is given by. m = 4e 0.2t. REPASO. The mass m kg of a radio-active substance at time t hours is given b m = 4e 0.t. Write down the initial mass. The mass is reduced to.5 kg. How long does this take?. The function f is given b f()

More information

LESSON EIII.E EXPONENTS AND LOGARITHMS

LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS OVERVIEW Here s what ou ll learn in this lesson: Eponential Functions a. Graphing eponential functions b. Applications of eponential

More information

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson

JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials

More information

Zeros of Polynomial Functions. The Fundamental Theorem of Algebra. The Fundamental Theorem of Algebra. zero in the complex number system.

Zeros of Polynomial Functions. The Fundamental Theorem of Algebra. The Fundamental Theorem of Algebra. zero in the complex number system. _.qd /7/ 9:6 AM Page 69 Section. Zeros of Polnomial Functions 69. Zeros of Polnomial Functions What ou should learn Use the Fundamental Theorem of Algebra to determine the number of zeros of polnomial

More information

SECTION 2.2. Distance and Midpoint Formulas; Circles

SECTION 2.2. Distance and Midpoint Formulas; Circles SECTION. Objectives. Find the distance between two points.. Find the midpoint of a line segment.. Write the standard form of a circle s equation.. Give the center and radius of a circle whose equation

More information

Graphing Linear Equations

Graphing Linear Equations 6.3 Graphing Linear Equations 6.3 OBJECTIVES 1. Graph a linear equation b plotting points 2. Graph a linear equation b the intercept method 3. Graph a linear equation b solving the equation for We are

More information

2.5 Library of Functions; Piecewise-defined Functions

2.5 Library of Functions; Piecewise-defined Functions SECTION.5 Librar of Functions; Piecewise-defined Functions 07.5 Librar of Functions; Piecewise-defined Functions PREPARING FOR THIS SECTION Before getting started, review the following: Intercepts (Section.,

More information

Chapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs

Chapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs Chapter 4. Polynomial and Rational Functions 4.1 Polynomial Functions and Their Graphs A polynomial function of degree n is a function of the form P = a n n + a n 1 n 1 + + a 2 2 + a 1 + a 0 Where a s

More information

LINEAR FUNCTIONS OF 2 VARIABLES

LINEAR FUNCTIONS OF 2 VARIABLES CHAPTER 4: LINEAR FUNCTIONS OF 2 VARIABLES 4.1 RATES OF CHANGES IN DIFFERENT DIRECTIONS From Precalculus, we know that is a linear function if the rate of change of the function is constant. I.e., for

More information

To Be or Not To Be a Linear Equation: That Is the Question

To Be or Not To Be a Linear Equation: That Is the Question To Be or Not To Be a Linear Equation: That Is the Question Linear Equation in Two Variables A linear equation in two variables is an equation that can be written in the form A + B C where A and B are not

More information

135 Final Review. Determine whether the graph is symmetric with respect to the x-axis, the y-axis, and/or the origin.

135 Final Review. Determine whether the graph is symmetric with respect to the x-axis, the y-axis, and/or the origin. 13 Final Review Find the distance d(p1, P2) between the points P1 and P2. 1) P1 = (, -6); P2 = (7, -2) 2 12 2 12 3 Determine whether the graph is smmetric with respect to the -ais, the -ais, and/or the

More information

Identifying second degree equations

Identifying second degree equations Chapter 7 Identifing second degree equations 7.1 The eigenvalue method In this section we appl eigenvalue methods to determine the geometrical nature of the second degree equation a 2 + 2h + b 2 + 2g +

More information

Indiana State Core Curriculum Standards updated 2009 Algebra I

Indiana State Core Curriculum Standards updated 2009 Algebra I Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and

More information

North Carolina Community College System Diagnostic and Placement Test Sample Questions

North Carolina Community College System Diagnostic and Placement Test Sample Questions North Carolina Communit College Sstem Diagnostic and Placement Test Sample Questions 0 The College Board. College Board, ACCUPLACER, WritePlacer and the acorn logo are registered trademarks of the College

More information

PROPERTIES OF ELLIPTIC CURVES AND THEIR USE IN FACTORING LARGE NUMBERS

PROPERTIES OF ELLIPTIC CURVES AND THEIR USE IN FACTORING LARGE NUMBERS PROPERTIES OF ELLIPTIC CURVES AND THEIR USE IN FACTORING LARGE NUMBERS A ver important set of curves which has received considerabl attention in recent ears in connection with the factoring of large numbers

More information

FINAL EXAM REVIEW MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

FINAL EXAM REVIEW MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. FINAL EXAM REVIEW MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine whether or not the relationship shown in the table is a function. 1) -

More information

Section 7.2 Linear Programming: The Graphical Method

Section 7.2 Linear Programming: The Graphical Method Section 7.2 Linear Programming: The Graphical Method Man problems in business, science, and economics involve finding the optimal value of a function (for instance, the maimum value of the profit function

More information

2.6. The Circle. Introduction. Prerequisites. Learning Outcomes

2.6. The Circle. Introduction. Prerequisites. Learning Outcomes The Circle 2.6 Introduction A circle is one of the most familiar geometrical figures. In this brief Section we discuss the basic coordinate geometr of a circle - in particular the basic equation representing

More information

Click here for answers.

Click here for answers. CHALLENGE PROBLEMS: CHALLENGE PROBLEMS 1 CHAPTER A Click here for answers S Click here for solutions A 1 Find points P and Q on the parabola 1 so that the triangle ABC formed b the -ais and the tangent

More information

2.6. The Circle. Introduction. Prerequisites. Learning Outcomes

2.6. The Circle. Introduction. Prerequisites. Learning Outcomes The Circle 2.6 Introduction A circle is one of the most familiar geometrical figures and has been around a long time! In this brief Section we discuss the basic coordinate geometr of a circle - in particular

More information

Core Maths C1. Revision Notes

Core Maths C1. Revision Notes Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the

More information

SECTION 5-1 Exponential Functions

SECTION 5-1 Exponential Functions 354 5 Eponential and Logarithmic Functions Most of the functions we have considered so far have been polnomial and rational functions, with a few others involving roots or powers of polnomial or rational

More information

Polynomials. Dr. philippe B. laval Kennesaw State University. April 3, 2005

Polynomials. Dr. philippe B. laval Kennesaw State University. April 3, 2005 Polynomials Dr. philippe B. laval Kennesaw State University April 3, 2005 Abstract Handout on polynomials. The following topics are covered: Polynomial Functions End behavior Extrema Polynomial Division

More information

Systems of Equations Involving Circles and Lines

Systems of Equations Involving Circles and Lines Name: Systems of Equations Involving Circles and Lines Date: In this lesson, we will be solving two new types of Systems of Equations. Systems of Equations Involving a Circle and a Line Solving a system

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Chapter 6 Eponential and Logarithmic Functions Section summaries Section 6.1 Composite Functions Some functions are constructed in several steps, where each of the individual steps is a function. For eample,

More information

Imagine a cube with any side length. Imagine increasing the height by 2 cm, the. Imagine a cube. x x

Imagine a cube with any side length. Imagine increasing the height by 2 cm, the. Imagine a cube. x x OBJECTIVES Eplore functions defined b rddegree polnomials (cubic functions) Use graphs of polnomial equations to find the roots and write the equations in factored form Relate the graphs of polnomial equations

More information

7.7 Solving Rational Equations

7.7 Solving Rational Equations Section 7.7 Solving Rational Equations 7 7.7 Solving Rational Equations When simplifying comple fractions in the previous section, we saw that multiplying both numerator and denominator by the appropriate

More information

6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives

6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives 6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise

More information

Section 5.0A Factoring Part 1

Section 5.0A Factoring Part 1 Section 5.0A Factoring Part 1 I. Work Together A. Multiply the following binomials into trinomials. (Write the final result in descending order, i.e., a + b + c ). ( 7)( + 5) ( + 7)( + ) ( + 7)( + 5) (

More information

Equation of a Line. Chapter H2. The Gradient of a Line. m AB = Exercise H2 1

Equation of a Line. Chapter H2. The Gradient of a Line. m AB = Exercise H2 1 Chapter H2 Equation of a Line The Gradient of a Line The gradient of a line is simpl a measure of how steep the line is. It is defined as follows :- gradient = vertical horizontal horizontal A B vertical

More information

5.3 Graphing Cubic Functions

5.3 Graphing Cubic Functions Name Class Date 5.3 Graphing Cubic Functions Essential Question: How are the graphs of f () = a ( - h) 3 + k and f () = ( 1_ related to the graph of f () = 3? b ( - h) 3 ) + k Resource Locker Eplore 1

More information

1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model

1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model . Piecewise Functions YOU WILL NEED graph paper graphing calculator GOAL Understand, interpret, and graph situations that are described b piecewise functions. LEARN ABOUT the Math A cit parking lot uses

More information

ACT Math Vocabulary. Altitude The height of a triangle that makes a 90-degree angle with the base of the triangle. Altitude

ACT Math Vocabulary. Altitude The height of a triangle that makes a 90-degree angle with the base of the triangle. Altitude ACT Math Vocabular Acute When referring to an angle acute means less than 90 degrees. When referring to a triangle, acute means that all angles are less than 90 degrees. For eample: Altitude The height

More information

Polynomials. Teachers Teaching with Technology. Scotland T 3. Teachers Teaching with Technology (Scotland)

Polynomials. Teachers Teaching with Technology. Scotland T 3. Teachers Teaching with Technology (Scotland) Teachers Teaching with Technology (Scotland) Teachers Teaching with Technology T Scotland Polynomials Teachers Teaching with Technology (Scotland) POLYNOMIALS Aim To demonstrate how the TI-8 can be used

More information

A Quick Algebra Review

A Quick Algebra Review 1. Simplifying Epressions. Solving Equations 3. Problem Solving 4. Inequalities 5. Absolute Values 6. Linear Equations 7. Systems of Equations 8. Laws of Eponents 9. Quadratics 10. Rationals 11. Radicals

More information

Roots, Linear Factors, and Sign Charts review of background material for Math 163A (Barsamian)

Roots, Linear Factors, and Sign Charts review of background material for Math 163A (Barsamian) Roots, Linear Factors, and Sign Charts review of background material for Math 16A (Barsamian) Contents 1. Introduction 1. Roots 1. Linear Factors 4. Sign Charts 5 5. Eercises 8 1. Introduction The sign

More information

Assessment Schedule 2013

Assessment Schedule 2013 NCEA Level Mathematics (9161) 013 page 1 of 5 Assessment Schedule 013 Mathematics with Statistics: Apply algebraic methods in solving problems (9161) Evidence Statement ONE Expected Coverage Merit Excellence

More information

BookTOC.txt. 1. Functions, Graphs, and Models. Algebra Toolbox. Sets. The Real Numbers. Inequalities and Intervals on the Real Number Line

BookTOC.txt. 1. Functions, Graphs, and Models. Algebra Toolbox. Sets. The Real Numbers. Inequalities and Intervals on the Real Number Line College Algebra in Context with Applications for the Managerial, Life, and Social Sciences, 3rd Edition Ronald J. Harshbarger, University of South Carolina - Beaufort Lisa S. Yocco, Georgia Southern University

More information

Unit 6: Polynomials. 1 Polynomial Functions and End Behavior. 2 Polynomials and Linear Factors. 3 Dividing Polynomials

Unit 6: Polynomials. 1 Polynomial Functions and End Behavior. 2 Polynomials and Linear Factors. 3 Dividing Polynomials Date Period Unit 6: Polynomials DAY TOPIC 1 Polynomial Functions and End Behavior Polynomials and Linear Factors 3 Dividing Polynomials 4 Synthetic Division and the Remainder Theorem 5 Solving Polynomial

More information

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P. MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called

More information

2.3 Quadratic Functions

2.3 Quadratic Functions 88 Linear and Quadratic Functions. Quadratic Functions You ma recall studing quadratic equations in Intermediate Algebra. In this section, we review those equations in the contet of our net famil of functions:

More information

Florida Algebra I EOC Online Practice Test

Florida Algebra I EOC Online Practice Test Florida Algebra I EOC Online Practice Test Directions: This practice test contains 65 multiple-choice questions. Choose the best answer for each question. Detailed answer eplanations appear at the end

More information

We start with the basic operations on polynomials, that is adding, subtracting, and multiplying.

We start with the basic operations on polynomials, that is adding, subtracting, and multiplying. R. Polnomials In this section we want to review all that we know about polnomials. We start with the basic operations on polnomials, that is adding, subtracting, and multipling. Recall, to add subtract

More information

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION COURSE I. Thursday, August 16, 2001 8:30 to 11:30 a.m.

The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION COURSE I. Thursday, August 16, 2001 8:30 to 11:30 a.m. The Universit of the State of New York REGENTS HIGH SCHOOL EXAMINATION THREE-YEAR SEQUENCE FOR HIGH SCHOOL MATHEMATICS COURSE I Thursda, August 16, 2001 8:30 to 11:30 a.m., onl Notice... Scientific calculators

More information

Some Tools for Teaching Mathematical Literacy

Some Tools for Teaching Mathematical Literacy Some Tools for Teaching Mathematical Literac Julie Learned, Universit of Michigan Januar 200. Reading Mathematical Word Problems 2. Fraer Model of Concept Development 3. Building Mathematical Vocabular

More information

2.3 TRANSFORMATIONS OF GRAPHS

2.3 TRANSFORMATIONS OF GRAPHS 78 Chapter Functions 7. Overtime Pa A carpenter earns $0 per hour when he works 0 hours or fewer per week, and time-and-ahalf for the number of hours he works above 0. Let denote the number of hours he

More information

Core Maths C3. Revision Notes

Core Maths C3. Revision Notes Core Maths C Revision Notes October 0 Core Maths C Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions...

More information

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson

More information

SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS

SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS (Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic

More information

FACTORING QUADRATICS 8.1.1 and 8.1.2

FACTORING QUADRATICS 8.1.1 and 8.1.2 FACTORING QUADRATICS 8.1.1 and 8.1.2 Chapter 8 introduces students to quadratic equations. These equations can be written in the form of y = ax 2 + bx + c and, when graphed, produce a curve called a parabola.

More information

SOLVING POLYNOMIAL EQUATIONS

SOLVING POLYNOMIAL EQUATIONS C SOLVING POLYNOMIAL EQUATIONS We will assume in this appendix that you know how to divide polynomials using long division and synthetic division. If you need to review those techniques, refer to an algebra

More information

Mathematics 31 Pre-calculus and Limits

Mathematics 31 Pre-calculus and Limits Mathematics 31 Pre-calculus and Limits Overview After completing this section, students will be epected to have acquired reliability and fluency in the algebraic skills of factoring, operations with radicals

More information

MATH 185 CHAPTER 2 REVIEW

MATH 185 CHAPTER 2 REVIEW NAME MATH 18 CHAPTER REVIEW Use the slope and -intercept to graph the linear function. 1. F() = 4 - - Objective: (.1) Graph a Linear Function Determine whether the given function is linear or nonlinear..

More information

Chapter 8. Lines and Planes. By the end of this chapter, you will

Chapter 8. Lines and Planes. By the end of this chapter, you will Chapter 8 Lines and Planes In this chapter, ou will revisit our knowledge of intersecting lines in two dimensions and etend those ideas into three dimensions. You will investigate the nature of planes

More information

For each learner you will need: mini-whiteboard. For each small group of learners you will need: Card set A Factors; Card set B True/false.

For each learner you will need: mini-whiteboard. For each small group of learners you will need: Card set A Factors; Card set B True/false. Level A11 of challenge: D A11 Mathematical goals Starting points Materials required Time needed Factorising cubics To enable learners to: associate x-intercepts with finding values of x such that f (x)

More information

7.3 Solving Systems by Elimination

7.3 Solving Systems by Elimination 7. Solving Sstems b Elimination In the last section we saw the Substitution Method. It turns out there is another method for solving a sstem of linear equations that is also ver good. First, we will need

More information

Algebra 2 Unit 10 Tentative Syllabus Cubics & Factoring

Algebra 2 Unit 10 Tentative Syllabus Cubics & Factoring Name Algebra Unit 10 Tentative Sllabus Cubics & Factoring DATE CLASS ASSIGNMENT Tuesda Da 1: S.1 Eponent s P: -1, -7 Jan Wednesda Da : S.1 More Eponent s P: 9- Jan Thursda Da : Graphing the cubic parent

More information

THE PARABOLA 13.2. section

THE PARABOLA 13.2. section 698 (3 0) Chapter 3 Nonlinear Sstems and the Conic Sections 49. Fencing a rectangle. If 34 ft of fencing are used to enclose a rectangular area of 72 ft 2, then what are the dimensions of the area? 50.

More information

UNCORRECTED PAGE PROOFS

UNCORRECTED PAGE PROOFS number and and algebra TopIC 17 Polynomials 17.1 Overview Why learn this? Just as number is learned in stages, so too are graphs. You have been building your knowledge of graphs and functions over time.

More information

Five 5. Rational Expressions and Equations C H A P T E R

Five 5. Rational Expressions and Equations C H A P T E R Five C H A P T E R Rational Epressions and Equations. Rational Epressions and Functions. Multiplication and Division of Rational Epressions. Addition and Subtraction of Rational Epressions.4 Comple Fractions.

More information

Classifying Solutions to Systems of Equations

Classifying Solutions to Systems of Equations CONCEPT DEVELOPMENT Mathematics Assessment Project CLASSROOM CHALLENGES A Formative Assessment Lesson Classifing Solutions to Sstems of Equations Mathematics Assessment Resource Service Universit of Nottingham

More information

Algebra II. Administered May 2013 RELEASED

Algebra II. Administered May 2013 RELEASED STAAR State of Teas Assessments of Academic Readiness Algebra II Administered Ma 0 RELEASED Copright 0, Teas Education Agenc. All rights reserved. Reproduction of all or portions of this work is prohibited

More information

HIBBING COMMUNITY COLLEGE COURSE OUTLINE

HIBBING COMMUNITY COLLEGE COURSE OUTLINE HIBBING COMMUNITY COLLEGE COURSE OUTLINE COURSE NUMBER & TITLE: - Beginning Algebra CREDITS: 4 (Lec 4 / Lab 0) PREREQUISITES: MATH 0920: Fundamental Mathematics with a grade of C or better, Placement Exam,

More information

MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60

MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60 MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60 A Summar of Concepts Needed to be Successful in Mathematics The following sheets list the ke concepts which are taught in the specified math course. The sheets

More information

Integrating algebraic fractions

Integrating algebraic fractions Integrating algebraic fractions Sometimes the integral of an algebraic fraction can be found by first epressing the algebraic fraction as the sum of its partial fractions. In this unit we will illustrate

More information

Rotated Ellipses. And Their Intersections With Lines. Mark C. Hendricks, Ph.D. Copyright March 8, 2012

Rotated Ellipses. And Their Intersections With Lines. Mark C. Hendricks, Ph.D. Copyright March 8, 2012 Rotated Ellipses And Their Intersections With Lines b Mark C. Hendricks, Ph.D. Copright March 8, 0 Abstract: This paper addresses the mathematical equations for ellipses rotated at an angle and how to

More information

15.1. Exact Differential Equations. Exact First-Order Equations. Exact Differential Equations Integrating Factors

15.1. Exact Differential Equations. Exact First-Order Equations. Exact Differential Equations Integrating Factors SECTION 5. Eact First-Order Equations 09 SECTION 5. Eact First-Order Equations Eact Differential Equations Integrating Factors Eact Differential Equations In Section 5.6, ou studied applications of differential

More information

The Big Picture. Correlation. Scatter Plots. Data

The Big Picture. Correlation. Scatter Plots. Data The Big Picture Correlation Bret Hanlon and Bret Larget Department of Statistics Universit of Wisconsin Madison December 6, We have just completed a length series of lectures on ANOVA where we considered

More information

Ax 2 Cy 2 Dx Ey F 0. Here we show that the general second-degree equation. Ax 2 Bxy Cy 2 Dx Ey F 0. y X sin Y cos P(X, Y) X

Ax 2 Cy 2 Dx Ey F 0. Here we show that the general second-degree equation. Ax 2 Bxy Cy 2 Dx Ey F 0. y X sin Y cos P(X, Y) X Rotation of Aes ROTATION OF AES Rotation of Aes For a discussion of conic sections, see Calculus, Fourth Edition, Section 11.6 Calculus, Earl Transcendentals, Fourth Edition, Section 1.6 In precalculus

More information

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress

Biggar High School Mathematics Department. National 5 Learning Intentions & Success Criteria: Assessing My Progress Biggar High School Mathematics Department National 5 Learning Intentions & Success Criteria: Assessing My Progress Expressions & Formulae Topic Learning Intention Success Criteria I understand this Approximation

More information

2-5 Rational Functions

2-5 Rational Functions -5 Rational Functions Find the domain of each function and the equations of the vertical or horizontal asymptotes, if any 1 f () = The function is undefined at the real zeros of the denominator b() = 4

More information