How To Understand The Theory Of Hyperreals

Size: px
Start display at page:

Download "How To Understand The Theory Of Hyperreals"

Transcription

1 Ultraproducts and Applications I Brent Cody Virginia Commonwealth University September 2, 2013

2 Outline Background of the Hyperreals Filters and Ultrafilters Construction of the Hyperreals The Transfer Principal Sample Theorems

3 History Liebniz proved that d(xy) = xdx + ydy as follows. d(xy) = (x + dx)(x + dy) xy = xy + xdy + ydx + dxdy xy = xdy + ydx + dxdy = xdy + ydx Can this proof be made rigorous? Without talking about limits (or ɛ and δ)?

4 History Around 1670 Newton and Leibniz used infinitesimal quantities, but the foundations of calculus were controversial until the mid 1800 s. ɛ-δ arguments were in use in the early 1800 s. Dedekind, Cantor and others: gave an explicit construction of the reals from the rationals around The foundations of calculus were solid by the 1870 s. Robinson showed, around 1960, that...the concepts and methods of mathematical logic are capable of providing a suitable framework for the development of the Differential and Integral Calculus by means of infinitely small and infinitely large quantities.

5 The Idea of Hyperreals What is an infintesimal? Idea: A sequence of real numbers a = a 0, a 1,... satisfying lim n a n = 0 will be regarded as an infinitesimal, while if lim n a n = then the sequence a will be an infinitely large quantity. E.g. 1, 1 2, 1 3,... will be twice 1 2, 1 4, 1 6,....

6 The Idea of Hyperreals R R is a new number system containing infinitesimal and infinite elements. Q R = equivalence classes of Cauchy sequences of rationals R R = equivalence classes of sequences of reals. But these equivalence relation are very different.

7 The Idea of Hyperreals In building R, sequences of reals a = a 0, a 1,... and b = b0, b 1,... will be identified if they agree at a Large number of places. In other words, a b if {n N : a n = b n } is large. What properties should largeness satisfy?

8 Filters Largeness (These properties can be derived) N should be large and should not be large. If A and B are large subsets of N then A B should be large. If A N is large and A B N then B should be large. Definition If X is a set then F is a filter on X if F is a collection of subsets of X such that (i) / F and X F, (ii) if A, B F then A B F, and (iii) if A F and A B X then B F. Idea: A X is large if and only if A F

9 Filters Examples: The cofinite filter on N F co = {A N : N \ A is finite} {2n : n N} / F co {2, 4, 6, 7, 8, 9, 10, 11, 12, 13...} F co If x X then the following is called the principal filter generated by x. F x = F {x} = {Y X : x Y }

10 Ultrafilters A filter U on X is an ultrafilter if (iv) for every A X either A F or X \ A U. Examples: If n N then the principal filter generated by n, namely F n = {Y N : n Y } is an ultrafilter but not a very useful one. Question: Are there any nonprincipal ultrafilters on N?

11 Theorem If X is an infinite set then there is a nonprincipal ultrafilter U on X. Zorn s Lemma tells us that maximal filters exist on X, and maximal filters are ultrafilters. The ultrafilter U given by Zorn s Lemma can be assumed to be nonprinciple because we can assume F co (X ) = {A X : X \ A is finite} U.

12 Definition of Hyperreals We want to expand the domain of the structure The new domain will be R = R, 0, 1, +,,. R N = set of infinite sequences of reals For sequences a = a 0, a 1,... and b = a 0, a 1,... define 0 = 0, 0,... a b = a 0 a 1, b 0 b 1,... 1 = 1, 1,... a b iff n N (a n b n ) a b = a 0 + b 0, a 1 + b 1,...

13 This new structure is not a field R N, 0, 1,,, because 0, 1, 0, 1, 0 has no inverse and it is not linearly ordered But this can be fixed... because 0, 1, 0, 1, is not -comparable to 1, 0, 1, 0,.

14 From here on, fix U to be a nonprinciple ultrafilter on N with U F co. Define an equivalence relation on R N by a 0, a 1,... b 0, b 1,... a n equals b n for a large set of n The equivalence class {n N : a n = b n } U. [ a] U = [ a] = [ a n ] = { b R N : b a} is just the set of all sequences of reals that are almost equal to a. So for example, 3, 7, 2, 1, 1, 1, 1,... is equivalent to 1, 1, 1, 1, 1, 1, 1,...

15 We now define a structure with domain the set of equivalence classes: R N /U. Adding equivalence classes: [ a] + [ b] := [ a b] = [ a n + b n : n N ] (Well-defined) If c, d R N and we have {n : a n = c n } U and {n : d n = b n } U, then {n : a n + b n } = {n : a n = c n } {n : b n = d n } U. Multiplying equivalence classes: [ a] [ b] = [ a b] = [ a n b n : n N ] (well defined) Ordering equivalence classes: [ a] [ b] : {n N : a n b n } U [ a] < [ b] : {n N : a n < b n } U This defines a new structure: R N /U, [ 0], [ 1], +,,

16 Ordered Field Theorem R N /U, [ 0], [ 1], +,, is a linearly ordered field. (Additive Inverses) [ a n : n N ] = [ a n : n N ] (Multiplicative Inverses) If [ a] = [ a n : n N ] [ 0] then {n N : a n 0} U and we can define b by { (a n ) 1 if a n 0 b n := 0 otherwise Then [ b] [ a] = [ 1]. (Linearity) this is where we need the ultra part of ultrafilter N = {n : a n < b n } {n : a n = b n } {n : b n < a n }

17 R This structure is called the hyperreals and is denoted by R = R N /U, [ 0], [ 1], +,, In Summary, elements of R are equivalence classes of sequences of reals defined using U, +,, are all defined using U, R is a linearly ordered field, and there is a copy of R sitting nicely inside of R.

18 Fitting R inside R Theorem There is a natural order-preserving field isomorphism from R into R. f :R R r r := [ r, r, r,... ] R will be identified with the copy of R sitting inside R, in the same way that Q is often identified with the copy of Q sitting inside R. In other words, if r R we sometimes mean r, r, r,... when we write r.

19 Infinitesimals and Infinities R contains infinitesimal and infinite elements! Infintesimals Let a = 1, 1 2, 1 3,.... Then [ a] R. If r R >0 we have {n N : a n < r} is cofinite and is thus in U F co. So we have [ a] < r. In other words, [ a] is less than every positive real number. Infinities Let b = 0, 1, 2, 3,.... Then [ b] R. If r R we have {n N : b n > r} is cofinite and is thus in U F co. So we have r < [ b]. In other words, [ b] is greater than every positive real number.

20 Definitions A hyperreal a R is... limited if there are real numbers r, s R such that r < a < s. infinitesimal if for all positive reals r R >0 one has r < a < r. unlimited if either for all reals r R one has r < a or for all reals r R one has a < r.

21 Definition Two hyperreals a, b R are said to be infinitely close to each other if their difference a b is infinitesimal. The halo of a hyperreal a R is the set hal(a) = {b R : a and b are infintesimaly close}

22 The -operation Extending sets If A R then A denotes the collection of hyperreals that are represented by a sequence a whose components are almost always in A i.e., {n N : a n A} U. N N contains unlimited (infinite) elements. [Draw pictures of N and R.]

23 The -operation Extending functions If f : R R is a function then f : R R denotes the function defined by f ([ a]) := [ f (a n ) : n N ]. We have f R = f.

24 The -operation Extending sequences If f : N R is a sequence then f : N R denotes the hypersequence defined as follows. If [ a] N what should f ([ a]) be? Since [ a] N we have {n N : a n N} U. Define b R N by b n := { f (a n ) if a n N 0 otherwise Then {n N : b n = f (a n )} U. Define f ([ a]) = [ b] (well-defined)

25 The -operation Example: The statement x m(x < m and m N) is true about R but false about R (b/c there are hyperreals larger than every natural number). We can apply this -operation to statements. E.g. ( x R m N(x < m)) = x R m N(x < m) Fix a natural number n N. Consider the statement: ( x N(n x n + 1 implies x = n or x = n + 1)) = x N( n x (n + 1) implies x = n or x = (n + 1))

26 The Transfer Principle The -operation preserves the truth of first-order statements. Theorem (The Transfer Principle) Suppose ϕ is a first-order statement in the language of R. Then ϕ is true about R if and only if ϕ is true about R. The statements asserting that R is a linearly ordered field ( x, y R(x + y = y + x), etc.) are true about R and so by the theorem R is a linearly ordered field.

27 Los Theorem Theorem ( Los Theorem) For any first-order formula ϕ(x 1,..., x k ) in the language of R and any r 1,..., r k R N, the sentence ϕ([r 1 ],..., [r k ]) is true if and only if ϕ(r 1 n,..., r k n ) is true for almost all n N. more about this in the next lecture.

28 Sample Theorems Theorem A real-valued sequence s n : n N converges to L R if and only if s n is infinitely close to L for all unlimited n. Recall that a sequence of reals s n : n N can be extended to a hyper sequence s n : n N = s n : n N of hyperreals s n R. Convergence to L amounts to the requirement that the extended tail of the sequence is contained in the halo of L. The role of the standard tails is taken over by the extended tail and the standard open neighborhoods (L ɛ, L + ɛ) are replaced by the infinitesimal neighborhood hal(l).

29 Sample Theorems Recall that for a, b R, we say a is infinitely close to b if and only if a b is infinitesimal. Theorem A function f : R R is continuous at the real point c R if and only if f (x) is infinitely close to f (c) for all x R such that x is infinitely close to c, i.e. if and only if f (hal(c)) hal(f (c)).

30 Sample Theorems Every hyperreal a R has a shadow in R, denoted by sh(r), defined to be the unique real that is infinitesimally close to a. Theorem (Intermediate Value Theorem) If a function f : R R is continuous on [a, b] where a, b R, then for every real d with f (a) < d < f (b) there is a real c (a, b) such that f (c) = d. Idea of proof using infintesimals: Partition [a, b] into intervals of equal infinitesimal width. Find an interval whose end points have f -values on either side of d. Then c will be the common shadow of these end-points.

31 Next Time Ultraproducts! More about Los Theorem. Robinson s Theorem. Let ϕ be a first-order statement in the language of fields (i.e., referring only to 0, 1, + and ). Then ϕ is true about C if and only if there are arbitrarily large primes p such that the statement ϕ is true of some algebraically closed field of characteristic p. Ax-Grothendieck Theorem. Every injective polynomial map f : C n C n is bijective.

1 if 1 x 0 1 if 0 x 1

1 if 1 x 0 1 if 0 x 1 Chapter 3 Continuity In this chapter we begin by defining the fundamental notion of continuity for real valued functions of a single real variable. When trying to decide whether a given function is or

More information

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e.

CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. CHAPTER II THE LIMIT OF A SEQUENCE OF NUMBERS DEFINITION OF THE NUMBER e. This chapter contains the beginnings of the most important, and probably the most subtle, notion in mathematical analysis, i.e.,

More information

MA651 Topology. Lecture 6. Separation Axioms.

MA651 Topology. Lecture 6. Separation Axioms. MA651 Topology. Lecture 6. Separation Axioms. This text is based on the following books: Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology by Nicolas Bourbaki Counterexamples

More information

Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011

Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 Basic Concepts of Point Set Topology Notes for OU course Math 4853 Spring 2011 A. Miller 1. Introduction. The definitions of metric space and topological space were developed in the early 1900 s, largely

More information

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Mathematics Course 111: Algebra I Part IV: Vector Spaces Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are

More information

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES

FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES FUNCTIONAL ANALYSIS LECTURE NOTES: QUOTIENT SPACES CHRISTOPHER HEIL 1. Cosets and the Quotient Space Any vector space is an abelian group under the operation of vector addition. So, if you are have studied

More information

8.1 Examples, definitions, and basic properties

8.1 Examples, definitions, and basic properties 8 De Rham cohomology Last updated: May 21, 211. 8.1 Examples, definitions, and basic properties A k-form ω Ω k (M) is closed if dω =. It is exact if there is a (k 1)-form σ Ω k 1 (M) such that dσ = ω.

More information

Factorization in Polynomial Rings

Factorization in Polynomial Rings Factorization in Polynomial Rings These notes are a summary of some of the important points on divisibility in polynomial rings from 17 and 18 of Gallian s Contemporary Abstract Algebra. Most of the important

More information

LECTURE 1: DIFFERENTIAL FORMS. 1. 1-forms on R n

LECTURE 1: DIFFERENTIAL FORMS. 1. 1-forms on R n LECTURE 1: DIFFERENTIAL FORMS 1. 1-forms on R n In calculus, you may have seen the differential or exterior derivative df of a function f(x, y, z) defined to be df = f f f dx + dy + x y z dz. The expression

More information

This chapter is all about cardinality of sets. At first this looks like a

This chapter is all about cardinality of sets. At first this looks like a CHAPTER Cardinality of Sets This chapter is all about cardinality of sets At first this looks like a very simple concept To find the cardinality of a set, just count its elements If A = { a, b, c, d },

More information

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.

Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize

More information

x < y iff x < y, or x and y are incomparable and x χ(x,y) < y χ(x,y).

x < y iff x < y, or x and y are incomparable and x χ(x,y) < y χ(x,y). 12. Large cardinals The study, or use, of large cardinals is one of the most active areas of research in set theory currently. There are many provably different kinds of large cardinals whose descriptions

More information

Chapter 13: Basic ring theory

Chapter 13: Basic ring theory Chapter 3: Basic ring theory Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 42, Spring 24 M. Macauley (Clemson) Chapter 3: Basic ring

More information

First-Order Logics and Truth Degrees

First-Order Logics and Truth Degrees First-Order Logics and Truth Degrees George Metcalfe Mathematics Institute University of Bern LATD 2014, Vienna Summer of Logic, 15-19 July 2014 George Metcalfe (University of Bern) First-Order Logics

More information

Handout #1: Mathematical Reasoning

Handout #1: Mathematical Reasoning Math 101 Rumbos Spring 2010 1 Handout #1: Mathematical Reasoning 1 Propositional Logic A proposition is a mathematical statement that it is either true or false; that is, a statement whose certainty or

More information

Lectures 5-6: Taylor Series

Lectures 5-6: Taylor Series Math 1d Instructor: Padraic Bartlett Lectures 5-: Taylor Series Weeks 5- Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,

More information

Ideal Class Group and Units

Ideal Class Group and Units Chapter 4 Ideal Class Group and Units We are now interested in understanding two aspects of ring of integers of number fields: how principal they are (that is, what is the proportion of principal ideals

More information

Mathematics Review for MS Finance Students

Mathematics Review for MS Finance Students Mathematics Review for MS Finance Students Anthony M. Marino Department of Finance and Business Economics Marshall School of Business Lecture 1: Introductory Material Sets The Real Number System Functions,

More information

DIVISORS IN A DEDEKIND DOMAIN. Javier Cilleruelo and Jorge Jiménez-Urroz. 1 Introduction

DIVISORS IN A DEDEKIND DOMAIN. Javier Cilleruelo and Jorge Jiménez-Urroz. 1 Introduction DIVISORS IN A DEDEKIND DOMAIN Javier Cilleruelo and Jorge Jiménez-Urroz 1 Introduction Let A be a Dedekind domain in which we can define a notion of distance. We are interested in the number of divisors

More information

Unique Factorization

Unique Factorization Unique Factorization Waffle Mathcamp 2010 Throughout these notes, all rings will be assumed to be commutative. 1 Factorization in domains: definitions and examples In this class, we will study the phenomenon

More information

it is easy to see that α = a

it is easy to see that α = a 21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore

More information

Radboud Universiteit Nijmegen

Radboud Universiteit Nijmegen Radboud Universiteit Nijmegen Faculteit der Natuurwetenschappen, Wiskunde en Informatica Uniqueness of the Hyperreal Field Noud Aldenhoven (0620874) Supervisor: dr. W.H.M. Veldman Second reader: prof.

More information

You know from calculus that functions play a fundamental role in mathematics.

You know from calculus that functions play a fundamental role in mathematics. CHPTER 12 Functions You know from calculus that functions play a fundamental role in mathematics. You likely view a function as a kind of formula that describes a relationship between two (or more) quantities.

More information

Metric Spaces Joseph Muscat 2003 (Last revised May 2009)

Metric Spaces Joseph Muscat 2003 (Last revised May 2009) 1 Distance J Muscat 1 Metric Spaces Joseph Muscat 2003 (Last revised May 2009) (A revised and expanded version of these notes are now published by Springer.) 1 Distance A metric space can be thought of

More information

Taylor and Maclaurin Series

Taylor and Maclaurin Series Taylor and Maclaurin Series In the preceding section we were able to find power series representations for a certain restricted class of functions. Here we investigate more general problems: Which functions

More information

God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886)

God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886) Chapter 2 Numbers God created the integers and the rest is the work of man. (Leopold Kronecker, in an after-dinner speech at a conference, Berlin, 1886) God created the integers and the rest is the work

More information

INTERPOLATION. Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y).

INTERPOLATION. Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y). INTERPOLATION Interpolation is a process of finding a formula (often a polynomial) whose graph will pass through a given set of points (x, y). As an example, consider defining and x 0 =0, x 1 = π 4, x

More information

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties

SOLUTIONS TO EXERCISES FOR. MATHEMATICS 205A Part 3. Spaces with special properties SOLUTIONS TO EXERCISES FOR MATHEMATICS 205A Part 3 Fall 2008 III. Spaces with special properties III.1 : Compact spaces I Problems from Munkres, 26, pp. 170 172 3. Show that a finite union of compact subspaces

More information

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)!

HOMEWORK 5 SOLUTIONS. n!f n (1) lim. ln x n! + xn x. 1 = G n 1 (x). (2) k + 1 n. (n 1)! Math 7 Fall 205 HOMEWORK 5 SOLUTIONS Problem. 2008 B2 Let F 0 x = ln x. For n 0 and x > 0, let F n+ x = 0 F ntdt. Evaluate n!f n lim n ln n. By directly computing F n x for small n s, we obtain the following

More information

Practice with Proofs

Practice with Proofs Practice with Proofs October 6, 2014 Recall the following Definition 0.1. A function f is increasing if for every x, y in the domain of f, x < y = f(x) < f(y) 1. Prove that h(x) = x 3 is increasing, using

More information

Mathematics 31 Pre-calculus and Limits

Mathematics 31 Pre-calculus and Limits Mathematics 31 Pre-calculus and Limits Overview After completing this section, students will be epected to have acquired reliability and fluency in the algebraic skills of factoring, operations with radicals

More information

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5.

PUTNAM TRAINING POLYNOMIALS. Exercises 1. Find a polynomial with integral coefficients whose zeros include 2 + 5. PUTNAM TRAINING POLYNOMIALS (Last updated: November 17, 2015) Remark. This is a list of exercises on polynomials. Miguel A. Lerma Exercises 1. Find a polynomial with integral coefficients whose zeros include

More information

How To Prove The Dirichlet Unit Theorem

How To Prove The Dirichlet Unit Theorem Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if

More information

INTRODUCTORY SET THEORY

INTRODUCTORY SET THEORY M.Sc. program in mathematics INTRODUCTORY SET THEORY Katalin Károlyi Department of Applied Analysis, Eötvös Loránd University H-1088 Budapest, Múzeum krt. 6-8. CONTENTS 1. SETS Set, equal sets, subset,

More information

Introduction to Modern Algebra

Introduction to Modern Algebra Introduction to Modern Algebra David Joyce Clark University Version 0.0.6, 3 Oct 2008 1 1 Copyright (C) 2008. ii I dedicate this book to my friend and colleague Arthur Chou. Arthur encouraged me to write

More information

Understanding Basic Calculus

Understanding Basic Calculus Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other

More information

(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9

(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9 Homework #01, due 1/20/10 = 9.1.2, 9.1.4, 9.1.6, 9.1.8, 9.2.3 Additional problems for study: 9.1.1, 9.1.3, 9.1.5, 9.1.13, 9.2.1, 9.2.2, 9.2.4, 9.2.5, 9.2.6, 9.3.2, 9.3.3 9.1.1 (This problem was not assigned

More information

Notes on metric spaces

Notes on metric spaces Notes on metric spaces 1 Introduction The purpose of these notes is to quickly review some of the basic concepts from Real Analysis, Metric Spaces and some related results that will be used in this course.

More information

Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson

Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement

More information

Continued Fractions and the Euclidean Algorithm

Continued Fractions and the Euclidean Algorithm Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction

More information

1 Homework 1. [p 0 q i+j +... + p i 1 q j+1 ] + [p i q j ] + [p i+1 q j 1 +... + p i+j q 0 ]

1 Homework 1. [p 0 q i+j +... + p i 1 q j+1 ] + [p i q j ] + [p i+1 q j 1 +... + p i+j q 0 ] 1 Homework 1 (1) Prove the ideal (3,x) is a maximal ideal in Z[x]. SOLUTION: Suppose we expand this ideal by including another generator polynomial, P / (3, x). Write P = n + x Q with n an integer not

More information

MA4001 Engineering Mathematics 1 Lecture 10 Limits and Continuity

MA4001 Engineering Mathematics 1 Lecture 10 Limits and Continuity MA4001 Engineering Mathematics 1 Lecture 10 Limits and Dr. Sarah Mitchell Autumn 2014 Infinite limits If f(x) grows arbitrarily large as x a we say that f(x) has an infinite limit. Example: f(x) = 1 x

More information

Columbia University in the City of New York New York, N.Y. 10027

Columbia University in the City of New York New York, N.Y. 10027 Columbia University in the City of New York New York, N.Y. 10027 DEPARTMENT OF MATHEMATICS 508 Mathematics Building 2990 Broadway Fall Semester 2005 Professor Ioannis Karatzas W4061: MODERN ANALYSIS Description

More information

Reference: Introduction to Partial Differential Equations by G. Folland, 1995, Chap. 3.

Reference: Introduction to Partial Differential Equations by G. Folland, 1995, Chap. 3. 5 Potential Theory Reference: Introduction to Partial Differential Equations by G. Folland, 995, Chap. 3. 5. Problems of Interest. In what follows, we consider Ω an open, bounded subset of R n with C 2

More information

1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain

1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain Notes on real-closed fields These notes develop the algebraic background needed to understand the model theory of real-closed fields. To understand these notes, a standard graduate course in algebra is

More information

(0, 0) : order 1; (0, 1) : order 4; (0, 2) : order 2; (0, 3) : order 4; (1, 0) : order 2; (1, 1) : order 4; (1, 2) : order 2; (1, 3) : order 4.

(0, 0) : order 1; (0, 1) : order 4; (0, 2) : order 2; (0, 3) : order 4; (1, 0) : order 2; (1, 1) : order 4; (1, 2) : order 2; (1, 3) : order 4. 11.01 List the elements of Z 2 Z 4. Find the order of each of the elements is this group cyclic? Solution: The elements of Z 2 Z 4 are: (0, 0) : order 1; (0, 1) : order 4; (0, 2) : order 2; (0, 3) : order

More information

Degrees that are not degrees of categoricity

Degrees that are not degrees of categoricity Degrees that are not degrees of categoricity Bernard A. Anderson Department of Mathematics and Physical Sciences Gordon State College banderson@gordonstate.edu www.gordonstate.edu/faculty/banderson Barbara

More information

GENERIC COMPUTABILITY, TURING DEGREES, AND ASYMPTOTIC DENSITY

GENERIC COMPUTABILITY, TURING DEGREES, AND ASYMPTOTIC DENSITY GENERIC COMPUTABILITY, TURING DEGREES, AND ASYMPTOTIC DENSITY CARL G. JOCKUSCH, JR. AND PAUL E. SCHUPP Abstract. Generic decidability has been extensively studied in group theory, and we now study it in

More information

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics

Undergraduate Notes in Mathematics. Arkansas Tech University Department of Mathematics Undergraduate Notes in Mathematics Arkansas Tech University Department of Mathematics An Introductory Single Variable Real Analysis: A Learning Approach through Problem Solving Marcel B. Finan c All Rights

More information

A number field is a field of finite degree over Q. By the Primitive Element Theorem, any number

A number field is a field of finite degree over Q. By the Primitive Element Theorem, any number Number Fields Introduction A number field is a field of finite degree over Q. By the Primitive Element Theorem, any number field K = Q(α) for some α K. The minimal polynomial Let K be a number field and

More information

H/wk 13, Solutions to selected problems

H/wk 13, Solutions to selected problems H/wk 13, Solutions to selected problems Ch. 4.1, Problem 5 (a) Find the number of roots of x x in Z 4, Z Z, any integral domain, Z 6. (b) Find a commutative ring in which x x has infinitely many roots.

More information

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS

THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear

More information

1 Sets and Set Notation.

1 Sets and Set Notation. LINEAR ALGEBRA MATH 27.6 SPRING 23 (COHEN) LECTURE NOTES Sets and Set Notation. Definition (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most

More information

Factoring of Prime Ideals in Extensions

Factoring of Prime Ideals in Extensions Chapter 4 Factoring of Prime Ideals in Extensions 4. Lifting of Prime Ideals Recall the basic AKLB setup: A is a Dedekind domain with fraction field K, L is a finite, separable extension of K of degree

More information

THE CENTRAL LIMIT THEOREM TORONTO

THE CENTRAL LIMIT THEOREM TORONTO THE CENTRAL LIMIT THEOREM DANIEL RÜDT UNIVERSITY OF TORONTO MARCH, 2010 Contents 1 Introduction 1 2 Mathematical Background 3 3 The Central Limit Theorem 4 4 Examples 4 4.1 Roulette......................................

More information

Slope and Rate of Change

Slope and Rate of Change Chapter 1 Slope and Rate of Change Chapter Summary and Goal This chapter will start with a discussion of slopes and the tangent line. This will rapidly lead to heuristic developments of limits and the

More information

Mathematical Induction

Mathematical Induction Mathematical Induction (Handout March 8, 01) The Principle of Mathematical Induction provides a means to prove infinitely many statements all at once The principle is logical rather than strictly mathematical,

More information

11 Ideals. 11.1 Revisiting Z

11 Ideals. 11.1 Revisiting Z 11 Ideals The presentation here is somewhat different than the text. In particular, the sections do not match up. We have seen issues with the failure of unique factorization already, e.g., Z[ 5] = O Q(

More information

CHAPTER 1 BASIC TOPOLOGY

CHAPTER 1 BASIC TOPOLOGY CHAPTER 1 BASIC TOPOLOGY Topology, sometimes referred to as the mathematics of continuity, or rubber sheet geometry, or the theory of abstract topological spaces, is all of these, but, above all, it is

More information

The Ideal Class Group

The Ideal Class Group Chapter 5 The Ideal Class Group We will use Minkowski theory, which belongs to the general area of geometry of numbers, to gain insight into the ideal class group of a number field. We have already mentioned

More information

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2

Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 CS 70 Discrete Mathematics and Probability Theory Fall 2009 Satish Rao, David Tse Note 2 Proofs Intuitively, the concept of proof should already be familiar We all like to assert things, and few of us

More information

DEGREES OF ORDERS ON TORSION-FREE ABELIAN GROUPS

DEGREES OF ORDERS ON TORSION-FREE ABELIAN GROUPS DEGREES OF ORDERS ON TORSION-FREE ABELIAN GROUPS ASHER M. KACH, KAREN LANGE, AND REED SOLOMON Abstract. We construct two computable presentations of computable torsion-free abelian groups, one of isomorphism

More information

Convex analysis and profit/cost/support functions

Convex analysis and profit/cost/support functions CALIFORNIA INSTITUTE OF TECHNOLOGY Division of the Humanities and Social Sciences Convex analysis and profit/cost/support functions KC Border October 2004 Revised January 2009 Let A be a subset of R m

More information

Georg Cantor (1845-1918):

Georg Cantor (1845-1918): Georg Cantor (845-98): The man who tamed infinity lecture by Eric Schechter Associate Professor of Mathematics Vanderbilt University http://www.math.vanderbilt.edu/ schectex/ In papers of 873 and 874,

More information

Differentiation and Integration

Differentiation and Integration This material is a supplement to Appendix G of Stewart. You should read the appendix, except the last section on complex exponentials, before this material. Differentiation and Integration Suppose we have

More information

How to Differentiate a Number

How to Differentiate a Number 1 3 7 6 3 11 Journal of Integer Sequences, Vol. 6 (003), Article 03.3. How to Differentiate a Number Victor Ufnarovski Centre for Mathematical Sciences Lund Institute of Technology P.O. Box 118 SE-1 00

More information

Doug Ravenel. October 15, 2008

Doug Ravenel. October 15, 2008 Doug Ravenel University of Rochester October 15, 2008 s about Euclid s Some s about primes that every mathematician should know (Euclid, 300 BC) There are infinitely numbers. is very elementary, and we

More information

EXERCISES FOR THE COURSE MATH 570, FALL 2010

EXERCISES FOR THE COURSE MATH 570, FALL 2010 EXERCISES FOR THE COURSE MATH 570, FALL 2010 EYAL Z. GOREN (1) Let G be a group and H Z(G) a subgroup such that G/H is cyclic. Prove that G is abelian. Conclude that every group of order p 2 (p a prime

More information

3. Mathematical Induction

3. Mathematical Induction 3. MATHEMATICAL INDUCTION 83 3. Mathematical Induction 3.1. First Principle of Mathematical Induction. Let P (n) be a predicate with domain of discourse (over) the natural numbers N = {0, 1,,...}. If (1)

More information

CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs

CHAPTER 3. Methods of Proofs. 1. Logical Arguments and Formal Proofs CHAPTER 3 Methods of Proofs 1. Logical Arguments and Formal Proofs 1.1. Basic Terminology. An axiom is a statement that is given to be true. A rule of inference is a logical rule that is used to deduce

More information

Metric Spaces. Chapter 1

Metric Spaces. Chapter 1 Chapter 1 Metric Spaces Many of the arguments you have seen in several variable calculus are almost identical to the corresponding arguments in one variable calculus, especially arguments concerning convergence

More information

ISU Department of Mathematics. Graduate Examination Policies and Procedures

ISU Department of Mathematics. Graduate Examination Policies and Procedures ISU Department of Mathematics Graduate Examination Policies and Procedures There are four primary criteria to be used in evaluating competence on written or oral exams. 1. Knowledge Has the student demonstrated

More information

Fixed-Point Logics and Computation

Fixed-Point Logics and Computation 1 Fixed-Point Logics and Computation Symposium on the Unusual Effectiveness of Logic in Computer Science University of Cambridge 2 Mathematical Logic Mathematical logic seeks to formalise the process of

More information

Orthogonal Projections

Orthogonal Projections Orthogonal Projections and Reflections (with exercises) by D. Klain Version.. Corrections and comments are welcome! Orthogonal Projections Let X,..., X k be a family of linearly independent (column) vectors

More information

PYTHAGOREAN TRIPLES KEITH CONRAD

PYTHAGOREAN TRIPLES KEITH CONRAD PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

More information

CONTINUED FRACTIONS AND FACTORING. Niels Lauritzen

CONTINUED FRACTIONS AND FACTORING. Niels Lauritzen CONTINUED FRACTIONS AND FACTORING Niels Lauritzen ii NIELS LAURITZEN DEPARTMENT OF MATHEMATICAL SCIENCES UNIVERSITY OF AARHUS, DENMARK EMAIL: niels@imf.au.dk URL: http://home.imf.au.dk/niels/ Contents

More information

How many numbers there are?

How many numbers there are? How many numbers there are? RADEK HONZIK Radek Honzik: Charles University, Department of Logic, Celetná 20, Praha 1, 116 42, Czech Republic radek.honzik@ff.cuni.cz Contents 1 What are numbers 2 1.1 Natural

More information

Integer roots of quadratic and cubic polynomials with integer coefficients

Integer roots of quadratic and cubic polynomials with integer coefficients Integer roots of quadratic and cubic polynomials with integer coefficients Konstantine Zelator Mathematics, Computer Science and Statistics 212 Ben Franklin Hall Bloomsburg University 400 East Second Street

More information

FACTORIZATION OF TROPICAL POLYNOMIALS IN ONE AND SEVERAL VARIABLES. Nathan B. Grigg. Submitted to Brigham Young University in partial fulfillment

FACTORIZATION OF TROPICAL POLYNOMIALS IN ONE AND SEVERAL VARIABLES. Nathan B. Grigg. Submitted to Brigham Young University in partial fulfillment FACTORIZATION OF TROPICAL POLYNOMIALS IN ONE AND SEVERAL VARIABLES by Nathan B. Grigg Submitted to Brigham Young University in partial fulfillment of graduation requirements for University Honors Department

More information

This asserts two sets are equal iff they have the same elements, that is, a set is determined by its elements.

This asserts two sets are equal iff they have the same elements, that is, a set is determined by its elements. 3. Axioms of Set theory Before presenting the axioms of set theory, we first make a few basic comments about the relevant first order logic. We will give a somewhat more detailed discussion later, but

More information

Hilberts Entscheidungsproblem, the 10th Problem and Turing Machines

Hilberts Entscheidungsproblem, the 10th Problem and Turing Machines Hilberts Entscheidungsproblem, the 10th Problem and Turing Machines Nitin Saxena (Hausdorff Center for Mathematics, Bonn) [Happy] [100 th ] [Alan] [Mathison] [Turing!][][][]... **all pictures are works

More information

Summary Last Lecture. Automated Reasoning. Outline of the Lecture. Definition sequent calculus. Theorem (Normalisation and Strong Normalisation)

Summary Last Lecture. Automated Reasoning. Outline of the Lecture. Definition sequent calculus. Theorem (Normalisation and Strong Normalisation) Summary Summary Last Lecture sequent calculus Automated Reasoning Georg Moser Institute of Computer Science @ UIBK Winter 013 (Normalisation and Strong Normalisation) let Π be a proof in minimal logic

More information

1. Prove that the empty set is a subset of every set.

1. Prove that the empty set is a subset of every set. 1. Prove that the empty set is a subset of every set. Basic Topology Written by Men-Gen Tsai email: b89902089@ntu.edu.tw Proof: For any element x of the empty set, x is also an element of every set since

More information

Some Research Problems in Uncertainty Theory

Some Research Problems in Uncertainty Theory Journal of Uncertain Systems Vol.3, No.1, pp.3-10, 2009 Online at: www.jus.org.uk Some Research Problems in Uncertainty Theory aoding Liu Uncertainty Theory Laboratory, Department of Mathematical Sciences

More information

16.3 Fredholm Operators

16.3 Fredholm Operators Lectures 16 and 17 16.3 Fredholm Operators A nice way to think about compact operators is to show that set of compact operators is the closure of the set of finite rank operator in operator norm. In this

More information

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1].

The sample space for a pair of die rolls is the set. The sample space for a random number between 0 and 1 is the interval [0, 1]. Probability Theory Probability Spaces and Events Consider a random experiment with several possible outcomes. For example, we might roll a pair of dice, flip a coin three times, or choose a random real

More information

Introduction to Topology

Introduction to Topology Introduction to Topology Tomoo Matsumura November 30, 2010 Contents 1 Topological spaces 3 1.1 Basis of a Topology......................................... 3 1.2 Comparing Topologies.......................................

More information

O-MINIMALISM HANS SCHOUTENS

O-MINIMALISM HANS SCHOUTENS THE JOURNAL OF SYMBOLIC LOGIC Volume 00, Number 0, XXX 0000 O-MINIMALISM HANS SCHOUTENS Abstract. An ordered structure is called o-minimalistic if it has all the first-order features of an o-minimal structure.

More information

SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by

SUBGROUPS OF CYCLIC GROUPS. 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by SUBGROUPS OF CYCLIC GROUPS KEITH CONRAD 1. Introduction In a group G, we denote the (cyclic) group of powers of some g G by g = {g k : k Z}. If G = g, then G itself is cyclic, with g as a generator. Examples

More information

Critical points of once continuously differentiable functions are important because they are the only points that can be local maxima or minima.

Critical points of once continuously differentiable functions are important because they are the only points that can be local maxima or minima. Lecture 0: Convexity and Optimization We say that if f is a once continuously differentiable function on an interval I, and x is a point in the interior of I that x is a critical point of f if f (x) =

More information

4.5 Linear Dependence and Linear Independence

4.5 Linear Dependence and Linear Independence 4.5 Linear Dependence and Linear Independence 267 32. {v 1, v 2 }, where v 1, v 2 are collinear vectors in R 3. 33. Prove that if S and S are subsets of a vector space V such that S is a subset of S, then

More information

ECG590I Asset Pricing. Lecture 2: Present Value 1

ECG590I Asset Pricing. Lecture 2: Present Value 1 ECG59I Asset Pricing. Lecture 2: Present Value 1 2 Present Value If you have to decide between receiving 1$ now or 1$ one year from now, then you would rather have your money now. If you have to decide

More information

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August

More information

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12

CONTINUED FRACTIONS AND PELL S EQUATION. Contents 1. Continued Fractions 1 2. Solution to Pell s Equation 9 References 12 CONTINUED FRACTIONS AND PELL S EQUATION SEUNG HYUN YANG Abstract. In this REU paper, I will use some important characteristics of continued fractions to give the complete set of solutions to Pell s equation.

More information

Sequence of Mathematics Courses

Sequence of Mathematics Courses Sequence of ematics Courses Where do I begin? Associates Degree and Non-transferable Courses (For math course below pre-algebra, see the Learning Skills section of the catalog) MATH M09 PRE-ALGEBRA 3 UNITS

More information

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES

I. GROUPS: BASIC DEFINITIONS AND EXAMPLES I GROUPS: BASIC DEFINITIONS AND EXAMPLES Definition 1: An operation on a set G is a function : G G G Definition 2: A group is a set G which is equipped with an operation and a special element e G, called

More information

SOME PROPERTIES OF FIBER PRODUCT PRESERVING BUNDLE FUNCTORS

SOME PROPERTIES OF FIBER PRODUCT PRESERVING BUNDLE FUNCTORS SOME PROPERTIES OF FIBER PRODUCT PRESERVING BUNDLE FUNCTORS Ivan Kolář Abstract. Let F be a fiber product preserving bundle functor on the category FM m of the proper base order r. We deduce that the r-th

More information

Boolean Algebra Part 1

Boolean Algebra Part 1 Boolean Algebra Part 1 Page 1 Boolean Algebra Objectives Understand Basic Boolean Algebra Relate Boolean Algebra to Logic Networks Prove Laws using Truth Tables Understand and Use First Basic Theorems

More information

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain

Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain Lectures notes on orthogonal matrices (with exercises) 92.222 - Linear Algebra II - Spring 2004 by D. Klain 1. Orthogonal matrices and orthonormal sets An n n real-valued matrix A is said to be an orthogonal

More information

Metric Spaces. Chapter 7. 7.1. Metrics

Metric Spaces. Chapter 7. 7.1. Metrics Chapter 7 Metric Spaces A metric space is a set X that has a notion of the distance d(x, y) between every pair of points x, y X. The purpose of this chapter is to introduce metric spaces and give some

More information