Evaluating Oscilloscope Bandwidths for Your Application
|
|
|
- Winfred Harris
- 10 years ago
- Views:
Transcription
1 Evaluating Oscilloscope Bandwidths for Your Application Application Note Table of Contents Introduction....1 Defining Oscilloscope Bandwidth Required Bandwidth for Digital Applications...4 Digital Clock Measurement Comparisons...6 Required Bandwidth for Analog Applications...8 Summary...9 Related Agilent Literature...10 Glossary Introduction Bandwidth is the specification that most engineers consider first when they select an oscilloscope. In this application note we will provide you with some helpful hints on how to select an oscilloscope with the appropriate bandwidth for both your digital and analog applications. But first, let s define oscilloscope bandwidth.
2 Defining Oscilloscope Bandwidth All oscilloscopes exhibit a low-pass frequency response that rolls-off at higher frequencies, as shown in Figure 1. Most scopes with bandwidth specifications of 1 GHz and below typically have what is called a Gaussian response, which exhibits a slow roll-off characteristic beginning at approximately one-third the 3 db frequency. Oscilloscopes with bandwidth specifications greater than 1 GHz typically have a maximally flat frequency response, as shown in Figure 2. This type of response usually exhibits a flatter in-band response with a sharper roll-off characteristic near the 3 db frequency. There are advantages and disadvantages to each of these types of oscilloscope frequency responses. Oscilloscopes with a maximally-flat response attenuate in-band signals less than scopes with Gaussian response, meaning that scopes with maximally-flat responses are able to make more accurate measurements on in-band signals. But a scope with Gaussian response attenuates out-ofband signals less than a scope with a maximally-flat response, meaning that scopes with Gaussian responses typically have a faster rise time than scopes with a maximally-flat response, given the same bandwidth specification. But sometimes it is advantageous to attenuate out-of-band signals to a higher degree in order to help eliminate higher-frequency components that can contribute to aliasing in order to satisfy Nyquist criteria (f S > 2 x f MAX ). For a deeper understanding of Nyquist s sampling theory, refer to Agilent's application note, Evaluating Oscilloscope Sample Rates vs. Sampling Fidelity listed at the end of this document. Figure 1: Oscilloscope Gaussian frequency response Figure 2: Oscilloscope maximally-flat frequency response 2
3 Defining Oscilloscope Bandwidth (continued) Whether your scope has a Gaussian response, maximally-flat response, or somewhere in between, the lowest frequency at which the input signal is attenuated by 3 db is considered the scope s bandwidth. Oscilloscope bandwidth and frequency response can be tested with a swept frequency using a sine wave signal generator. Signal attenuation at the 3 db frequency translates into approximately -30% amplitude error. So you can t expect to make accurate measurements on signals that have significant frequencies near your scope s bandwidth. Closely related to an oscilloscope s bandwidth specification is its rise time specification. Scopes with a Gaussian-type response will have an approximate rise time of 0.35/ f BW based on a 10% to 90% criterion. Scopes with a maximally-flat response typically have rise time specifications in the range of 0.4/f BW, depending on the sharpness of the frequency roll-off characteristic. But you need to remember that a scope s rise time is not the fastest edge speed that the oscilloscope can accurately measure. It is the fastest edge speed the scope can possibly produce if the input signal has a theoretical infinitely fast rise time (0 ps). Although this theoretical specification is impossible to test since pulse generators don t have infinitely fast edges from a practical perspective, you can test your oscilloscope s rise time by inputting a pulse that has edge speeds that are 3 to 5 times faster than the scope s rise time specification. 3
4 Required Bandwidth for Digital Applications As a rule of thumb, your scope s bandwidth should be at least five times higher than the fastest digital clock rate in your system under test. If your scope meets this criterion, it will capture up to the fifth harmonic with minimum signal attenuation. This component of the signal is very important in determining the overall shape of your digital signals. But if you need to make accurate measurements on highspeed edges, this simple formula does not take into account the actual highest-frequency components embedded in fast rising and falling edges. Rule of thumb f BW 5 x f clk A more accurate method to determine required oscilloscope bandwidth is to ascertain the maximum frequency present in your digital signals, which is not the maximum clock rate. The maximum frequency will be based on the fastest edge speeds in your designs. So the first thing you need to do is determine the rise and fall times of your fastest signals. You can usually obtain this information from published specifications for devices used in your designs. Step 1: Determine fastest edge speeds You can then use a simple formula to compute the maximum practical frequency component. Dr. Howard W. Johnson has written a book on this topic, High-speed Digital Design A Handbook of Black Magic. 1 He refers to this frequency component as the knee frequency (f knee ). All fast edges have an infinite spectrum of frequency components. However, there is an inflection (or knee ) in the frequency spectrum of fast edges where frequency components higher than f knee are insignificant in determining the shape of the signal. Step 2: Calculate f knee f knee = 0.5 / RT (10% - 90%) f knee = 0.4 / RT (20% - 80%) For signals with rise time characteristics based on 10% to 90% thresholds, f knee is equal to 0.5 divided by the rise time of the signal. For signals with rise time characteristics based on 20% to 80% thresholds, which is very common in many of today s device specifications, f knee is equal to 0.4 divided by the rise time of the signal. Now don t confuse these rise times with a scope s specified rise time. We are talking about actual signal edge speeds. The third step is to determine the oscilloscope bandwidth required to measure this signal, based on your desired degree of accuracy when measuring rise times and fall times. Table 1 shows multiplying factors for various degrees of accuracy for scopes with a Gaussian or a maximally-flat frequency response. Remember, most scopes with bandwidth specifications of 1 GHz and below typically have a Gaussiantype response, and most scopes with bandwidths greater than 1 GHz typically have a maximally-flat type response. Step 3: Calculate scope bandwidth Required Gaussian Maximally-flat accuracy response response 20% f BW = 1.0 x f knee f BW = 1.0 x f knee 10% f BW = 1.3 x f knee f BW = 1.2 x f knee 3% f BW = 1.9 x f knee f BW = 1.4 x f knee Table 1: Multiplying factors to calculate required scope bandwidth based on desired accuracy and type of scope frequency response 1. Johnson, Dr. Howard W. "High-speed Digital Design A Handbook of Black Magic." Prentice Hall,
5 Required Bandwidth for Digital Applications (continued) Let s now walk through this simple example: Determine the minimum required bandwidth of an oscilloscope with an approximate Gaussian frequency response to measure a 500-ps rise time (10-90%) If the signal has an approximate rise/ fall time of 500 ps (based on a 10% to 90% criteria), then the maximum practical frequency component (f knee ) in the signal would be approximately 1 GHz. f knee = (0.5/500ps) = 1 GHz If you are able tolerate up to 20% timing errors when making parametric rise time and fall time measurements on your signals, then you could use a 1-GHz bandwidth oscilloscope for your digital measurement applications. But if you need timing accuracy in the range of 3%, then a scope with 2-GHz bandwidth would be the better choice. 20% timing accuracy: Scope BW = 1.0 x 1 GHz = 1.0 GHz 3% timing accuracy: Scope BW = 1.9 x 1 GHz =1.9 GHz Let s now make some measurements on a digital clock signal with characteristics similar to this example, using various bandwidth scopes... 5
6 Digital Clock Measurement Comparisons Figure 3 shows the waveform results when measuring a 100 MHz digital clock signal with 500 ps edge speeds (10% to 90%) using a 100-MHz bandwidth oscilloscope. As you can see, this scope primarily just passes through the 100 MHz fundamental of this clock signal, thus representing our clock signal as an approximate sine wave. A 100 MHz scope may be a good solution for many 8 bit, MCU-based designs with clock rates in the 10 MHz to 20 MHz range, but 100 MHz bandwidth is clearly insufficient for this 100-MHz clock signal. Using a 500-MHz bandwidth oscilloscope, Figure 4 shows that this scope is able to capture up to the fifth harmonic, which was our first rule of thumb recommendation. But when we measure the rise time, we see that the scope measures approximately 800 ps. In this case, the scope is not making a very accurate measurement on the rise time of this signal. The scope is actually measuring something closer to its own rise time (700 ps), not the input signal s rise time, which is closer to 500 ps. We need a higher-bandwidth scope for this digital measurement application if timing measurements are important. Figure 3: 100-MHz clock captured on a 100-MHz bandwidth scope Figure 4: 100-MHz clock captured on a 500-MHz bandwidth scope 6
7 Digital Clock Measurement Comparisons (continued) With a 1-GHz bandwidth scope, we have a much more accurate picture of this signal, as shown in Figure 5. When we select a rise time measurement on this scope, we measure approximately 600 ps. This measurement is providing us with approximately 20% measurement accuracy and may be a very acceptable measurement solution especially if budgets are tight. However, even this measurement using a 1-GHz bandwidth scope might be considered borderline. If we want to make edge-speed measurements with greater than 3% accuracy on this signal with 500 ps edge speeds, we really need to use a scope with 2-GHz bandwidth or higher, as we determined in the walk-through example earlier. With a 2-GHz bandwidth scope, now we are seeing an accurate representation of this clock signal along with a very accurate rise time measurement of approximately 520 ps, as shown in Figure 6. One thing nice about Agilent's InfiniiVision X-Series and Infiniium Series oscilloscopes is the bandwidths of these scopes are upgradable. Figure 5: 100-MHz clock captured on a 1-GHz bandwidth scope Figure 6: 100-MHz clock captured on a 2-GHz bandwidth scope 7
8 Required Bandwidth for Analog Applications Years ago, most oscilloscope vendors recommended that your scope s bandwidth should be at least three times higher than the maximum signal frequency. Although this 3X multiplying factor would not apply to digital applications, it still applies to analog applications, such as modulated RF. To understand where this 3-to-1 multiplying factor comes from, let s look at an actual frequency response of a 1-GHz bandwidth scope. Figure 7 shows a swept response test (20-MHz to 2-GHz) on an Agilent 1-GHz bandwidth oscilloscope. As you can see, at exactly 1 GHz the input is attenuated by about 1.7 db, which is well within the 3 db limitation that defines this scope s bandwidth. However, to make accurate measurements on analog signals, you need to use the scope in the portion of the frequency band where it is still relatively flat with minimal attenuation. At approximately onethird the scope s 1-GHz bandwidth, this scope exhibits virtually no attenuation (0 db). However, not all scopes exhibit this type of response. The swept frequency response test shown in Figure 8 was performed on a 1.5-GHz bandwidth scope from another scope vendor. This is an example of a very non-flat frequency response. The characteristics of this response are neither Gaussian nor maximally-flat. It appears to be maximally bumpy and very peaked, which can result in severe waveform distortion on both analog and digital signals. Unfortunately, a scope s bandwidth specification, which is the 3 db attenuation frequency, says nothing about the attenuation or amplification at other frequencies. Even at one-fifth this scope s bandwidth, signals are attenuated by approximately 1 db (10%) on this scope. Figure 7: Swept frequency response test on Agilent s MSO7104B 1-GHz bandwidth scope Figure 8: Swept frequency response test on a non-agilent 1.5-GHz bandwidth scope So in this case, following the 3X rule of thumb would not be wise. When you are selecting a scope, it is a good idea to choose a reputable scope vendor and pay close attention to the relative flatness of the scope s frequency response MHz MHz GHz GHz 8
9 Summary For digital applications, you should select a scope that has a bandwidth that is at least five times higher than the fastest clock rate in your design. But if you need to make accurate edge-speed measurements on your signals, you will need to determine the maximum practical frequency present in your signal. And when you are considering a scope for today s applications, don t forget about tomorrow s applications. If your budget is flexible, buying a little extra margin today may save you money in the future. But, if you need higher bandwidth in the future, the bandwidth of most Agilent oscilloscopes can be upgraded. For analog applications, select a scope that has a bandwidth that is at least three times higher than the highest analog frequency of your designs. But this rule-of-thumb recommendation only applies to scopes that have a relatively flat response in their lower frequency band. This is something you won t need to worry about with Agilent oscilloscopes. 9
10 Related Agilent Literature Publication title Publication type Publication number InfiniiVision 2000 X-Series Oscilloscopes Data Sheet EN InfiniiVision 3000 X-Series Oscilloscopes Data Sheet EN InfiniiVision 4000 X-Series Oscilloscopes Data Sheet EN InfiniiVision 6000 X-Series Oscilloscopes Data Sheet EN Infiniium S-Series Oscilloscopes Data Sheet EN Infiniium X-Series Oscilloscopes Data Sheet EN InfiniiVision Series Oscilloscope Probes and Accessories Data Sheet EN Oscilloscope Sample Rates vs. Sampling Fidelity Application Note EN Advantages and Disadvantages of Using DSP Filtering on Oscilloscope Waveforms Application Note EN Understanding Oscilloscope Frequency Response and Its Effect on Rise-Time Accuracy Application Note EN Evaluating Oscilloscope Vertical Noise Characteristics Application Note EN Oscilloscope Waveform Update Rate Determines Probability of Capturing Elusive Events Application note EN To download these documents, insert the publication number in the URL: Product Web site For the most up-to-date and complete application and product information, please visit our product Web site at: 10
11 Glossary Gaussian frequency response A low-pass frequency response that has a slow roll-off characteristic that begins at approximately 1/3 the -3 db frequency (bandwidth). Oscilloscopes with bandwidth specifications of 1 GHz and below typically exhibit an approximate Gaussian response. In-band Frequency components below the -3 db (bandwidth) frequency. Knee frequency The maximum practical frequency (f knee ) that determines the shape of a digital pulse, which can be computed if the approximate input signal s rise time is known (usually obtained from device specification data books). Maximally-flat response A low-pass frequency response that is relatively flat below the -3 db frequency and then rolls off sharply near the -3 db frequency (bandwidth). Oscilloscopes with bandwidth specifications greater than 1 GHz typically exhibit a maximally flat response. Nyquist sampling theorem States that for a limited bandwidth (band-limited) signal with maximum frequency f MAX, the equally spaced sampling frequency f S must be greater than twice the maximum frequency f MAX, in order to have the signal be uniquely reconstructed without aliasing. Oscilloscope bandwidth The lowest frequency at which input signal sine waves are attenuated by 3 db (-30% amplitude error). Oscilloscope rise time The fastest edge an oscilloscope can produce if the input signal has an infinitely fast edge speed. For scopes with an approximate Gaussian frequency response, the scope rise time can be computed as 0.35/f BW. Scopes with a maximally-flat frequency response typically have a rise time in the range of 0.4/f BW. Out-of-band Frequency components above the -3 db frequency (bandwidth). Swept frequency response A test using a signal generator where an output sine wave s frequency is repetitively swept from a user-defined lower frequency to a user-defined upper frequency to test the frequency response of an instrument or device. 11
12 myagilent myagilent A personalized view into the information most relevant to you. LAN extensions for Instruments puts the power of Ethernet and the Web inside your test systems. Agilent is a founding member of the LXI consortium. Three-Year Warranty Beyond product specification, changing the ownership experience. Agilent is the only test and measurement company that offers three-year warranty on all instruments, worldwide. Agilent Assurance Plans Five years of protection and no budgetary surprises to ensure your instruments are operating to specifications and you can continually rely on accurate measurements. Agilent Electronic Measurement Group DEKRA Certified ISO 9001:2008 Quality Management System Agilent Channel Partners Get the best of both worlds: Agilent s measurement expertise and product breadth, combined with channel partner convenience. For more information on Agilent Technologies products, applications or services, please contact your local Agilent office. The complete list is available at: Americas Canada (877) Brazil (11) Mexico United States (800) Asia Pacific Australia China Hong Kong India Japan 0120 (421) 345 Korea Malaysia Singapore Taiwan Other AP Countries (65) Europe & Middle East Belgium 32 (0) Denmark Finland 358 (0) France * *0.125 /minute Germany 49 (0) Ireland Israel /544 Italy Netherlands 31 (0) Spain 34 (91) Sweden United Kingdom 44 (0) For other unlisted countries: (BP ) Product specifications and descriptions in this document subject to change without notice. Agilent Technologies, Inc. 2011, 2012, 2014 Published in USA, April 23, EN
What is the difference between an equivalent time sampling oscilloscope and a real-time oscilloscope?
What is the difference between an equivalent time sampling oscilloscope and a real-time oscilloscope? Application Note In the past, deciding between an equivalent time sampling oscilloscope and a real
U7248A High Speed Inter-Chip (HSIC) Electrical Test Software Infiniium Oscilloscopes
U7248A High Speed Inter-Chip (HSIC) Electrical Test Software Infiniium Oscilloscopes Data Sheet This application is available in the following license variations Order N7248A for user-installed license
Evaluating Oscilloscope Sample Rates vs. Sampling Fidelity
Evaluating Oscilloscope Sample Rates vs. Sampling Fidelity Application Note How to Make the Most Accurate Digital Measurements Introduction Digital storage oscilloscopes (DSO) are the primary tools used
Make Better RMS Measurements with Your DMM
Make Better RMS Measurements with Your DMM Application Note Introduction If you use a digital multimeter (DMM) for AC voltage measurements, it is important to know if your meter is giving you peak value,
Agilent E5063A ENA Series Network Analyzer
Agilent E5063A ENA Series Network Analyzer 100 khz to 4.5/ 8.5/18 GHz Configuration Guide Ordering Guide The following steps will guide you through configuring your E5063A. Standard furnished item Description
Agilent MATLAB Data Analysis Software Packages for Agilent Oscilloscopes
Agilent MATLAB Data Analysis Software Packages for Agilent Oscilloscopes Data Sheet Enhance your InfiniiVision or Infiniium oscilloscope with the analysis power of MATLAB software Develop custom analysis
How to Measure 5 ns Rise/Fall Time on an RF Pulsed Power Amplifier Using the 8990B Peak Power Analyzer
How to Measure 5 ns Rise/Fall Time on an RF Pulsed Power Amplifier Using the 8990B Peak Power Analyzer Application Note Introduction In a pulsed radar system, one of the key transmitter-side components
DDR Memory Overview, Development Cycle, and Challenges
DDR Memory Overview, Development Cycle, and Challenges Tutorial DDR Overview Memory is everywhere not just in servers, workstations and desktops, but also embedded in consumer electronics, automobiles
Agilent FieldFox Remote Viewer
Agilent FieldFox Remote Viewer Application Brief Agilent Remote Viewer setup instructions The FieldFox remove viewer is a FREE ios application which allows you to view an Agilent FieldFox analyzer from
N5416A and N5417A USB Compliance Test Software for Infiniium Oscilloscopes
N546A and N547A USB Compliance Test Software for Infiniium Oscilloscopes Data Sheet The N546A USB compliance test software for Infiniium oscilloscopes gives you a fast and reliable way to verify USB electrical
Agilent BenchVue Software (34840B) Data capture simplified. Click, capture, done. Data Sheet
Agilent BenchVue Software (34840B) Data capture simplified. Click, capture, done. Data Sheet Use BenchVue software to: Visualize multiple measurements simultaneously Easily capture data, screen shots and
Real-Time Spectrum Analysis for Troubleshooting 802.11n/ac WLAN Devices
Real-Time Spectrum Analysis for Troubleshooting 802.11n/ac WLAN Devices Application Brief 802.11 WLAN devices operate in the license-exempt 2.4 GHz ISM and 5 GHz UNII bands, where they must share spectrum
X-Series Signal Analysis. Future-ready instruments Consistent measurement framework Broadest set of applications and software
X-Series Signal Analysis Future-ready instruments Consistent measurement framework Broadest set of applications and software Arrive Ahead with X-Series We can t predict the future, but Agilent can help
Keysight Technologies Using Fine Resolution to Improve Thermal Images. Application Note
Keysight Technologies Using Fine Resolution to Improve Thermal Images Application Note Introduction Digital imaging opened up new possibilities and has been very much part of our lives since social media
802.11ac Power Measurement and Timing Analysis
802.11ac Power Measurement and Timing Analysis Using the 8990B Peak Power Analyzer Application Note Introduction There are a number of challenges to anticipate when testing WLAN 802.11ac [1] power amplifier
Keysight Technologies N1918A Power Analysis Manager and U2000 Series USB Power Sensors. Demo Guide
Keysight Technologies N1918A Power Analysis Manager and U2000 Series USB Power Sensors Demo Guide Introduction This demonstration guide helps you to get familiar with the basic setup and coniguration requirements
Agilent E363xA Series Programmable DC Power Supplies. Data Sheet
Agilent E363xA Series Programmable DC Power Supplies Data Sheet Reliable Power, Repeatable Results Single and triple output 80 W to 200 W output power Dual range output Low noise and excellent regulation
Keysight M9485A PXIe Multiport Vector Network Analyzer. Configuration Guide
Keysight M9485A PXIe Multiport Vector Network Analyzer Configuration Guide 02 Keysight M9485A PXIe Multiport Vector Network Analyzer - Configuration Guide Ordering Guide The following steps will guide
The Next Generation in Automated Oscilloscope Test
The Next Generation in Automated Oscilloscope Test Spanning 100 MHz to 13 GHz, and varying in height from 1U to 8U, Agilent s family of LXI compliant oscilloscopes can accommodate virtually any automated
N6171A MATLAB Data Analysis Software for Agilent Instruments
N6171A MATLAB Data Analysis Software for Agilent Instruments Technical Overview MATLAB is available directly from Agilent or its authorized sales partners with your instrument purchase Use MATLAB to create
Agilent U2000 Series USB Power Sensors
Agilent U2000 Series USB Power Sensors GSM Timeslot Burst Power Measurement Product Note Table of Content Introduction 2 Measuring GSM Timeslot 4 Signal Overview of Agilent U2000 5 Series USB Power Sensors
Agilent Infoline Web Services. Quick Reference Guide. Scan and use your phone to go to Infoline at www.agilent.com/find/service
Agilent Infoline Web Services Quick Reference Guide Scan and use your phone to go to Infoline at www.agilent.com/find/service One location for all information This quick reference guide reviews the powerful
Agilent E5063A ENA Series Network Analyzer. 100 khz to 4.5/ 8.5/18 GHz
Agilent E5063A ENA Series Network Analyzer 100 khz to 4.5/ 8.5/18 GHz The Best Balance Between Price and Performance The E5063A is a low cost network analyzer for simple passive component testing up to
Variable Frequency Drive Troubleshooting with U1610A/U1620A
Variable Frequency Drive Troubleshooting with U1610A/U1620A Application Note Electric motors form the backbone of most industrial and manufacturing environments. Variable frequency drives (VFDs) (also
TDS5000B, TDS6000B, TDS/CSA7000B Series Acquisition Modes
TDS5000B, TDS6000B, TDS/CSA7000B Series Acquisition Modes Tektronix oscilloscopes provide several different acquisition modes. While this gives the user great flexibility and choice, each mode is optimized
Time-Correlated Multi-domain RF Analysis with the MSO70000 Series Oscilloscope and SignalVu Software
Time-Correlated Multi-domain RF Analysis with the MSO70000 Series Oscilloscope and SignalVu Software Technical Brief Introduction The MSO70000 Series Mixed Oscilloscope, when coupled with SignalVu Spectrum
Keysight Technologies Understanding and Improving Network Analyzer Dynamic Range. Application Note
Keysight Technologies Understanding and Improving Network Analyzer Dynamic Range Application Note Introduction Achieving the highest possible network analyzer dynamic range is extremely important when
Keysight Technologies 8 Hints for Better Spectrum Analysis. Application Note
Keysight Technologies 8 Hints for Better Spectrum Analysis Application Note The Spectrum Analyzer The spectrum analyzer, like an oscilloscope, is a basic tool used for observing signals. Where the oscilloscope
Testing WiMAX receiver performance in a multipath propagation environment using Agilent s E6651A with an EB Propsim C8 radio channel emulator
Testing WiMAX receiver performance in a multipath propagation environment using Agilent s E6651A with an EB Propsim C8 radio channel emulator Application Note 1 Summary Introduction As a part of the certification
PXI and AXIe Modular Instrumentation
PXI and AXIe Modular Instrumentation M9018A PXIe Chassis M9502A AXIe Chassis M9505A AXIe Chassis Tested Computer List Technical Note DISCOVER the Alternatives...... Agilent MODULAR Products OVERVIEW This
An Overview of the Electrical Validation of 10BASE-T, 100BASE-TX, and 1000BASE-T Devices
An Overview of the Electrical Validation of 10BASE-T, 100BASE-TX, and 1000BASE-T Devices Application Note The number of devices that come with a built-in network interface card has risen steadily and will
TekConnect Adapters. TCA75 TCA-BNC TCA-SMA TCA-N TCA-292MM Data Sheet. Applications. Features & Benefits
TekConnect Adapters TCA75 TCA-BNC TCA-SMA TCA-N TCA-292MM Data Sheet TCA-N TekConnect-to-N DC to 11 GHz (Instrument Dependent) 50 Ω Input (Only) TCA-SMA TekConnect-to-SMA DC to 18 GHz (Instrument Dependent)
PXI and AXIe Modular Instrumentation
PXI and AXIe Modular Instrumentation M9018A PXIe Chassis M9502A AXIe Chassis M9505A AXIe Chassis U4002A Digital Test Console Chassis Tested Computer List Technical Note DISCOVER the Alternatives......
Agilent U2000 Series USB Power Sensors
Agilent U2000 Series USB Power Sensors Configuration Guide U2000 Series USB Power Sensors U2000A (10 MHz to 18 GHz) U2001A (10 MHz to 6 GHz) U2002A (50 MHz to 24 GHz) U2004A (9 khz to 6 GHz) U2000H (10
Agilent 87421A/87422A Power Supply
Agilent 87421A/87422A Power Supply Technical Overview Designed specifically for Agilent Technologies microwave system amplifiers Bias cable permits remote placement Compact size for easy system integration
Keysight Technologies Connecting Data Acquisition Systems to a Wireless Network
Keysight Technologies Connecting Data Acquisition Systems to a Wireless Network Application Brief Test Challenges: Designing heating and air conditioning (HVAC) systems Collecting data on a remotely located
Loop Bandwidth and Clock Data Recovery (CDR) in Oscilloscope Measurements. Application Note 1304-6
Loop Bandwidth and Clock Data Recovery (CDR) in Oscilloscope Measurements Application Note 1304-6 Abstract Time domain measurements are only as accurate as the trigger signal used to acquire them. Often
High-Speed Inter Connect (HSIC) Solution
High-Speed Inter Connect (HSIC) Solution HSIC Essentials Datasheet Protocol Decode Protocol decode Saves test time and resource costs. Designed for use with the MSO/DPO5000, DPO7000C, DPO/DSA/MSO70000C,
Agilent E6832A W-CDMA Calibration Application
Agilent E6832A W-CDMA Calibration Application For the E6601A Wireless Communications Test Set Data Sheet The next generation of mobile phone manufacturing test. E6601A is the newest test set from Agilent
Agilent Creating Multi-tone Signals With the N7509A Waveform Generation Toolbox. Application Note
Agilent Creating Multi-tone Signals With the N7509A Waveform Generation Toolbox Application Note Introduction Of all the signal engines in the N7509A, the most complex is the multi-tone engine. This application
Agilent Mobile WiMAX R&D Test Set Solutions: Software and Technical Support Contract
Agilent Mobile WiMAX R&D Test Set Solutions: Software and Technical Support Contract Product Overview Maximize the potential of the E6651A Mobile WiMAX test set and related software with the latest software
Agilent Television Power Consumption Testing. Application Note
Agilent Television Power Consumption Testing Application Note Introduction Today, there are many types of televisions (TVs) on the market: the cathode ray tube (CRT) TV, liquid crystal display (LCD) TV,
Agilent U2000 Series USB Power Sensors
Agilent U2000 Series USB Power Sensors Single/Multi-Channel Power Measurement Simple Setup Affordable Demo Guide Table of Contents Introduction 2 The Agilent N1918A Power 3 Analysis Manager Demonstration
Keysight E2688A, N5384A High-Speed Serial Data Analysis and Clock Recovery Software
Keysight E2688A, N5384A High-Speed Serial Data Analysis and Clock Recovery Software For Infiniium Oscilloscopes Data Sheet 02 Keysight E2688A, N5384A High-Speed Serial Data Analysis and Clock Recovery
Keysight N6854A Geolocation System. Configuration Guide
Keysight N6854A Geolocation System Configuration Guide 02 Keysight N6854A Geolocation System - Configuration Guide This guide will help you configure a geolocation system that meets your needs and includes
Keysight E5063A ENA Series PCB Analyzer
Keysight E5063A ENA Series PCB Analyzer Technical Overview The Best Solution for PCB Manufacturing Test More accuracy and R&R More languages supported More ESD robustness Why choose the E5063A PCB Analyzer
Selecting RJ Bandwidth in EZJIT Plus Software
Selecting RJ Bandwidth in EZJIT Plus Software Application Note 1577 Introduction Separating jitter into its random and deterministic components (called RJ/DJ separation ) is a relatively new technique
Agilent E5061B Network Analyzer. 100 khz to 1.5 GHz/3 GHz 5 Hz to 3 GHz
Agilent E5061B Network Analyzer 100 khz to 1.5 GHz/3 GHz 5 Hz to 3 GHz E5061B responds to various measurement needs, from LF to RF The Agilent E5061B is a member of the industry standard ENA Series network
81110A Pulse Pattern Generator Simulating Distorted Signals for Tolerance Testing
81110A Pulse Pattern Generator Simulating Distorted Signals for Tolerance Testing Application Note Introduction Industry sectors including computer and components, aerospace defense and education all require
APPLICATION NOTE. Easily Create Custom Waveform Plug-Ins With Waveform Creator Application Software
APPLICATION NOTE Easily Create Custom Waveform Plug-Ins With Waveform Creator Application Software Challenge the Boundaries of Test Agilent Modular Products Enable higher productivity through a simple,
Foreign Taxes Paid and Foreign Source Income INTECH Global Income Managed Volatility Fund
Income INTECH Global Income Managed Volatility Fund Australia 0.0066 0.0375 Austria 0.0045 0.0014 Belgium 0.0461 0.0138 Bermuda 0.0000 0.0059 Canada 0.0919 0.0275 Cayman Islands 0.0000 0.0044 China 0.0000
ANALYZER BASICS WHAT IS AN FFT SPECTRUM ANALYZER? 2-1
WHAT IS AN FFT SPECTRUM ANALYZER? ANALYZER BASICS The SR760 FFT Spectrum Analyzer takes a time varying input signal, like you would see on an oscilloscope trace, and computes its frequency spectrum. Fourier's
The Real Total Cost of Ownership of Your Test Equipment
The Real Total Cost of Ownership of Your Test Equipment White Paper Authors: Bill Lycette Corporate Quality Agilent Technologies Duane Lowenstein Test Process Analysis Mgr. Agilent Technologies Introduction
PCI Express Probes for Agilent E2960B PCI Express Analysis Systems
PCI Express for Agilent E2960B PCI Express Analysis Systems Version: 1.2 Superior Signal Probing options to address diverse designs and form factors As an industry leader in the innovation of non-intrusive,
Keysight Technologies How to Choose your MAC Lever. Technical Overview
Keysight Technologies How to Choose your MAC Lever Technical Overview Introduction Atomic force microscopy (AFM) is a sub-nanometer scale imaging and measurement tool that can be used to determine a sample
Agilent 4339B/4349B High Resistance Meters
Agilent 4339B/4349B High Resistance Meters Technical Overview Within Budget Without Compromise Introducing the Agilent Technologies 4339B and 4349B High Resistance Meters Used for Making Ultra- High Resistance
Agilent 4338B Milliohm Meter
Agilent 4338B Milliohm Meter 10 µω to 100 kω Technical Overview Introduction Ideal for precise measurements of extremely low resistances using an ac test signal, the Agilent Technologies 4338B suits bench-top
Agilent VEE Pro 9.32. Data Sheet
Agilent VEE Pro 9.32 Data Sheet Agilent VEE 9.32 Features New sample programs for Agilent 33500 series function/arbitrary waveform generator, 34411A digital multimeter and DSO/MSO oscilloscopes. General
Agilent E3830 Series Wide-bandwidth Signal Analyzer Custom Systems 100 MHz Bandwidth Microwave Vector Signal Analysis
Agilent E3830 Series Wide-bandwidth Signal Analyzer Custom Systems 100 MHz Bandwidth Microwave Vector Signal Analysis The measurement challenge 2 Many advanced microwave applications involve complex wideband
Agilent Technologies. Troubleshooting Three-Phase AC Motors with U1210 Series Handheld Clamp Meters. Application Note
Agilent Technologies Troubleshooting Three-Phase AC Motors with U1210 Series Handheld Clamp Meters Application Note INTRODUCTION In today s world, the three-phase AC induction motors are widely used in
PCI Express Transmitter PLL Testing A Comparison of Methods. Primer
PCI Express Transmitter PLL Testing A Comparison of Methods Primer Primer Table of Contents Abstract...3 Spectrum Analyzer Method...4 Oscilloscope Method...6 Bit Error Rate Tester (BERT) Method...6 Clock
Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy
Agilent AN 1316 Optimizing Spectrum Analyzer Amplitude Accuracy Application Note RF & Microwave Spectrum Analyzers Table of Contents 3 3 4 4 5 7 8 8 13 13 14 16 16 Introduction Absolute versus relative
PCI Express Transmitter Electrical Validation and Compliance Testing with Agilent Infiniium Oscilloscopes
PCI Express Transmitter Electrical Validation and Compliance Testing with Agilent Infiniium Oscilloscopes Application Note 1496 Who should read this application note? This application note is intended
Keysight N9320B RF Spectrum Analyzer
Keysight N9320B RF Spectrum Analyzer 9 khz to 3.0 GHz Data Sheet 02 Keysight N9320B RF Spectrum Analyzer - Data Sheet Definitions and Conditions Specifications describe the performance of parameters covered
Department of Electrical and Computer Engineering Ben-Gurion University of the Negev. LAB 1 - Introduction to USRP
Department of Electrical and Computer Engineering Ben-Gurion University of the Negev LAB 1 - Introduction to USRP - 1-1 Introduction In this lab you will use software reconfigurable RF hardware from National
How does a venture capitalist appraise investment opportunities?
1 How does a venture capitalist appraise investment opportunities? Michael Queen - Finance Director, 3i Group plc A presentation to: 23 Pensions Convention 2 June 23 A How presentation does a venture to:
Agilent 8762/3/4A,B,C Coaxial Switches
Agilent 8762/3/4A,B,C Coaxial Switches Technical Overview High performance switches for microwave and RF instrumentation and systems Agilent Technologies offers a ver satile line of multiport coaxial switches.
High-voltage Differential Probes TMDP0200 - THDP0200 - THDP0100 - P5200A - P5202A - P5205A - P5210A
High-voltage Differential Probes TMDP0200 - THDP0200 - THDP0100 - P5200A - P5202A - P5205A - P5210A BNC interface (P5200A probes) TekVPI interface (TMDP and THDP Series probes) TekProbe interface (P5202A,
Keysight Technologies N9320B RF Spectrum Analyzer
Keysight Technologies N9320B RF Spectrum Analyzer 9 khz to 3.0 GHz Data Sheet Definitions and Conditions The spectrum analyzer will meet its specifications when: It is within its calibration cycle It has
Measuring ACLR Performance in LTE Transmitters. Application Note
Measuring ACLR Performance in LTE Transmitters Application Note Introduction As wireless service providers push for more bandwidth to deliver IP services to more users, LTE has emerged as a next-generation
Agilent OSS access7 Signaling Meter
Agilent OSS access7 Signaling Meter access7 Signaling Meter - extracting the maximum revenue potential from your network Agilent access7 Signaling Meter helps you to measure SS7 traffic volumes and network
The Effect of Network Cabling on Bit Error Rate Performance. By Paul Kish NORDX/CDT
The Effect of Network Cabling on Bit Error Rate Performance By Paul Kish NORDX/CDT Table of Contents Introduction... 2 Probability of Causing Errors... 3 Noise Sources Contributing to Errors... 4 Bit Error
TekSmartLab TBX3000A, TSL3000B Datasheet
TekSmartLab TBX3000A, TSL3000B Datasheet TekSmartLab is the industry's first network-based instrument management solution for teaching labs that brings a more efficient lab experience. With the TekSmartLab,
Agilent Model Quality Assurance (MQA) Industry Standard SPICE Model Signoff and Acceptance Software
Agilent Model Quality Assurance (MQA) Industry Standard SPICE Model Signoff and Acceptance Software Model Quality Assurance (MQA) is a collection of comprehensive SPICE model validation procedures, interfaces
Agilent N5970A Interactive Functional Test Software: Installation and Getting Started
Agilent N5970A Interactive Functional Test Software: Installation and Getting Started Application Note The N5970A Interactive Functional Test Software along with the 8960 Series 10 (E5515C) wireless communications
OCTOBER 2010. Russell-Parametric Cross-Sectional Volatility (CrossVol ) Indexes Construction and Methodology
OCTOBER 2010 Russell-Parametric Cross-Sectional Volatility (CrossVol ) Indexes Construction and Methodology SEPTEMBER 2010 Russell-Parametric Cross-Sectional Volatility (CrossVol) Indexes Construction
Agilent Compatibility of the U2000 Series USB Power Sensors with Agilent Instruments. Application Note
Agilent Compatibility of the U2000 Series USB Power Sensors with Agilent Instruments Application Note Table of Contents Introduction 2 U2000 Series USB Power 3 Sensor s Compatibility with Agilent Instruments
1.5 GHz Active Probe TAP1500 Datasheet
1.5 GHz Active Probe TAP1500 Datasheet Easy to use Connects directly to oscilloscopes with the TekVPI probe interface Provides automatic units scaling and readout on the oscilloscope display Easy access
Installation Guide. 85070E Dielectric Probe Kit 85071E Materials Measurement Software
Installation Guide This guide provides instructions for installing and configuring the following software products: 85070E Dielectric Probe Kit 85071E Materials Measurement Software Agilent Part Number:
Sampling Theorem Notes. Recall: That a time sampled signal is like taking a snap shot or picture of signal periodically.
Sampling Theorem We will show that a band limited signal can be reconstructed exactly from its discrete time samples. Recall: That a time sampled signal is like taking a snap shot or picture of signal
Get the benefits of Norgren s unique range of Online services
Get the benefits of Norgren s unique range of Online services Make your job easier and save time - everything you need to select, design and purchase Norgren pneumatics is in one convenient location, available
Basics of RF Amplifier Measurements with the E5072A ENA Series Network Analyzer
Basics of RF Amplifier Measurements with the E5072A ENA Series Network Analyzer Application Note Introduction The RF power amplifier is a key component used in a wide variety of industries such as wireless
Agilent P940xA/C Solid State PIN Diode Switches
Agilent P940xA/C Solid State PIN Diode Switches Operating and Service Manual Agilent Technologies Notices Agilent Technologies, Inc. 2007 No part of this manual may be reproduced in any form or by any
Agilent Compatibility of USB Power Sensors with Agilent Instruments. Application Note
Agilent Compatibility of USB Power Sensors with Agilent Instruments Application Note Use USB Power Sensors as an Agilent Instruments Accessory Table of Contents Agilent USB Power Sensors 2 USB Power Sensor
Agilent U1230 Series Handheld Digital Multimeters (DMMs)
Agilent U1230 Series Handheld Digital Multimeters (DMMs) Data Sheet Retool your expectations with the new Agilent U1230 Series Handheld DMMsthe first to combine a built-in LED flashlight, both audible
Q Factor: The Wrong Answer for Service Providers and NEMs White Paper
Q Factor: The Wrong Answer for Service Providers and NEMs White Paper By Keith Willox Business Development Engineer Transmission Test Group Agilent Technologies Current market conditions throughout the
Keysight Technologies Long-Term, Remote Monitoring of Satellite Performance
Keysight Technologies Long-Term, Remote Monitoring of Satellite Performance Using a Keysight High-Frequency USB Power Sensor Application Note 1.0 Introduction Satellite communication systems are driven
RF Measurements Using a Modular Digitizer
RF Measurements Using a Modular Digitizer Modern modular digitizers, like the Spectrum M4i series PCIe digitizers, offer greater bandwidth and higher resolution at any given bandwidth than ever before.
Report on Government Information Requests
Report on Government Information July 1 - December 31, 2014 apple Apple takes our commitment to protecting your data very seriously and we work incredibly hard to deliver the most secure hardware, software
AN3353 Application note
Application note IEC 61000-4-2 standard testing Introduction This Application note is addressed to technical engineers and designers to explain how STMicroelectronics protection devices are tested according
WD Hard Drive Interface Guide
Hard Drive Interface Guide WD Hard Drive Interface Guide WD Service and Support Should you encounter any problem, please give us an opportunity to address it before returning this product. Most technical
Agilent N8973A, N8974A, N8975A NFA Series Noise Figure Analyzers. Data Sheet
Agilent N8973A, N8974A, N8975A NFA Series Noise Figure Analyzers Data Sheet Specifications Specifications are only valid for the stated operating frequency, and apply over 0 C to +55 C unless otherwise
Agilent GSM/EDGE Base Station Test with the E4406A VSA and ESG-D Series RF Signal Generators Product Overview
Agilent GSM/EDGE Base Station Test with the E4406A VSA and ESG-D Series RF Signal Generators Product Overview The flexible GSM/EDGE base station test solution with a 3G future... Designed for manufacturing
Global Investing 2013 Morningstar. All Rights Reserved. 3/1/2013
Global Investing 2013 Morningstar. All Rights Reserved. 3/1/2013 World Stock Market Capitalization Year-end 2012 18.5% 9.6% United States International: Other Europe United Kingdom Japan Other Pacific
Agilent 34405A Multimeter 5.5 Digit Dual Display, Benchtop DMM More Capabilities at a Value Price. Data Sheet
Agilent 34405A Multimeter 5.5 Digit Dual Display, Benchtop DMM More Capabilities at a Value Price Data Sheet Features 120000 counts resolution 16 built-in measurement functions including temperature and
Evaluating Oscilloscope Fundamentals
Evaluating Application Note This application note provides an overview of oscilloscope fundamentals. You will learn what an oscilloscope is and how it operates. We will discuss oscilloscope applications
BT Premium Event Call and Web Rate Card
BT Managed Event and BT Self-Managed Event (also referred to as Express, Plus and Premium) Conference Bridge and Call for Booked Audio Conferencing Services will comprise the following for each phone-conference:
Agilent OSS Customer-Centric Service Manager
Agilent OSS Customer-Centric Service Manager Deliver the high-quality wireless experience your high-value customers demand Agilent OSS Customer-Centric Service Manager (CCSM) provides the end-toend, real-time
The Role of Banks in Global Mergers and Acquisitions by James R. Barth, Triphon Phumiwasana, and Keven Yost *
The Role of Banks in Global Mergers and Acquisitions by James R. Barth, Triphon Phumiwasana, and Keven Yost * There has been substantial consolidation among firms in many industries in countries around
Customer Support. Superior Service Solutions for Your Laser and Laser Accessories. Superior Reliability & Performance
Customer Support Superior Service Solutions for Your Laser and Laser Accessories Superior Reliability & Performance Optimizing Service Support for our Customers. Increased up-time Focus on core business
