Power-Aware High-Performance Scientific Computing

Size: px
Start display at page:

Download "Power-Aware High-Performance Scientific Computing"

Transcription

1 Power-Aware High-Performance Scientific Computing Padma Raghavan Scalable Computing Laboratory Department of Computer Science Engineering The Pennsylvania State University Supported by NSF STHEC: PxP:Co-Managing PerformancexPower

2 Trends Microprocessor Design & HPC Microprocessor design Gordon Moore, 1966: 2 X # transistors in 18 months= Focus on peak rates, LAPACK benchmarks with dense codes Patrick Gelsinger, 2004: power is the only real limiter DAC Keynote HPC and science through simulation High costs of installation, cooling Petascale system is infeasible without new low-power designs (Simon, Boku ) Gap between peak (TOP500) and sustained rates on real workloads Petascale instrument vs. desktop supercomputing CMPs/multicores and performance, power and productivity issues

3 Why Sparse Scientific Codes Sparse codes (irregular meshes, matrices, graphs), unlike tuned dense codes, do not operate at peak rates (despite tuning) Sparse codes represent scalable formulations for many applications but Limited data locality and data re-use Memory and network latency bound Load imbalances despite partitioning/re-partitioning Multiple algorithms, implementations with different quality/performance trade-offs Present many opportunities for adaptive Q(uality)xP(erformance)xP(power) tuning

4 Sparse Codes and Data Example: Sparse y= Ax Used in many PDE simulations in explicit codes, in implicit codes with linear system solution, data clustering with K-means Ordering (RCM) to get locality of access in x Data locality and data reuse for elements of x

5 This Presentation Microprocessor/network architectural optimizations X Application features PxP results for sparse scientific computing Optimizing CPU + Memory for sparse PxP PxP models for adaptive feature selection PxP trends on MPPs with CPU+Link scaling Summary and conclusions

6 PxP Results - I Characterizing power reductions and performance improvements for a single node, i.e., CPU +Memory There is locality of data access in many sparse codes when matrices are reordered, right data structures are used etc. Konrad Malkowski (lead)

7 Power-Aware+ High Performance Computing Power of CMOS chips: P = C * V dd 2 * f + V dd * I leak Typically higher performance = higher f with higher transistor counts thermal limits Tuning Power DVS: Dynamic voltage and frequency scaling for CPUs Drowsy/low-power modes of caches, DRAM memory banks ABB: Adaptive body biasing, reduces I leak If these low-power knobs are exposed in the ISA, they can be used to control power in applications If some of the power savings are directed for memory/network optimizations, we can increase performance while lowering power for PxP reductions in energy

8 Methodology Cycle accurate architectural emulations using Simplescalar, Wattch and Cacti Emulate CPU with caches + off chip DRAM memory starting with a PowerPC-like core (like a BGL processor) Emulate low power modes Model DVS by scaling frequency and supply voltage Model low power modes of caches by emulating smaller caches Emulate memory subsystem optimizations Extend Simplescalar/Wattch to add structures for optimizations to reduce memory latency

9 Base (B) Architecture Power PC-like, 1 GHz core 4 MB SRAM L3 (26 cycle latency) 2 KB SRAM L2 ( 7 cycle latency) 32 KB SRAM L1 instruction and data caches (1 cycle latency) Memory bus: 64 bits Memory size 256 MB (9 x 256Mbit x 8 pins DRAM)

10 Architectural Extensions Wider memory bus: 128 bits, original 64 (W) Memory page policy: Open or Closed (MO) Prefetcher (stride 1) in memory controller (MP) Prefetcher (stride 1) in L2 cache (LP) Load Miss Predictor in L1 cache (LMP) Prefetchers can reduce latency if there is locality of access If sparse matrix is highly irregular (inherent or from implementation) an LMP can avoid latency of cache hierarchy Developed LMP similar to a branch prediction structure

11 Memory Prefetcher (MP) Added a prefetch buffer to the memory controller 16 element table with 128 byte cache line LRU replacement

12 L2 Cache Prefetcher (LP) Benefits codes with locality of data access but poor data re-use

13 Memory Page Policy: Open / Closed (MO) Accesses to open rows have lower latency Memory control is more complex Access latencies are not as predictable

14 Load Miss Predictor

15 Experiments Base (B), Wider path (W), Memory page policy (MO), Memory prefetcher (MP), L2-prefetcher (LP), Load Miss Prediction (LMP) Base (B) at 1000 MHz Sparse codes SMV-U: no blocking, RCM ordering, 4 matrices SMV-O: Sparsity SMV, 2x2 blocking, RCM ordering, 4 matrices NAS MG Benchmark Full scale application: Driven Cavity Flow Metrics: Time, Power, Energy, Ops/J (shown relative to code at B, 1000 MHz, 4 MB L3 cache)

16 Relative Time: All features, 300 Mhz 1 GHz, 256 K L3 Values < 1 are faster than at base

17 Relative Time at 600 MHz, Smaller L3 B +W +MO +MP +LP +LMP X-axis: features added incrementally to include all Time for each code at B set to 1 Base at 3 Over 40% performance improvements Without optimizations 40 % performance degradation

18 Relative Power at 600 MHz, Smaller L3 +W +MO +MP +LP +LMP X-axis: features added incrementally to include all Power for each code at B set to 1 Base at 3 Over 66% power saved from DVS (600 Mhz), smallest cache with no performance penalty

19 Relative Energy at 600 MHz, Smaller L3 X-axis: features added incrementally to include all Energy for each code at B set to 1 Base at 3 Over 80% improvements with all features Without optimizations 40 % savings but with performance penalty

20 Ops/J at 600 MHz, Smaller L3 X-axis: features added incrementally to include all Ops/J for each code at B set to 1 Base at 3 Factor 5 improvement in energy efficiency

21 PxP Results - II PxP for a `real driven cavity flow application with typical complex code/algorithm features Sayaka Akioka (lead)

22 Driven Cavity :Relative Time, Energy Time +MP +LP Energy +w +MO +LMP Al l Al l With all features, code is faster by 20% even at 400MHz, with 60% less power, energy

23 PxP Results - III Models to select optimal sets of features subject to performance/power constraints Detecting phases in application Adaptively selecting feature set for each application phase: Reduce power subject to performance constraint Reduce time subject to power constraint Konrad Malkowski (lead)

24 Optimal Feature Sets Least squares fit to derive models of power or time (F feature set combination) per code T a N i i F i i Errors of less than 5% Define workload, select optimal configuration with power constraints, Example: Best time 2-feature set, even workload, < 50% base power At 600 MHz :W+ LP; At 800 MHz: MO +MP

25 S/W Phases & Their H/W Detection Different S/W phases can benefit from different H/W features Challenges: How do known s/w phases correspond to h/w detectable phases? What H/W metric can be used to detect phase change? (lightweight)

26 NAS MG: LSQ and 10M cycle window

27 NAS MG: LSQ and 100K cycle window

28 MG: Min P, T constraint Phase Time Freq. L3 size Page LP MP LMP T P Constraint (MHz) policy Restriction MB MO Interp MB MO - p Interp MB MO p p Remainder MB MO p Restriction MB MO p p p Interp MB MO p Interp MB MC p Remainder MB MC p Restriction MB MO - p p I MB MO p I MB MO - p

29 All Vs Adaptive (Using LSQ) Min Power, T constraint Min Time, P constraint All features on

30 PxP Results: MPPs+ MPI codes Utilizing load imbalance in tree-structured parallel sparse computations for energy savings Apps run for days/weeks % of ideal load/processors ~ hours/days Mahmut Kandemir, F. Li, G. Chen

31 Tree-Based Parallel Sparse Computation Tree node =dense/ sparse data-parallel operations Tree structure dictates data-dependencies A node depends only on subtree rooted at the node Computation in disjoint subtrees can proceed independently Imbalance (despite best data-mapping) can be 10% of ideal load/processor Exploit task-parallelism at lower levels and dataparallelism at higher levels Represents Barnes-Hut, FMM N-body tree-codes, sparse solvers,..

32 Example Participating Processors 0,1,2,3 N 0 70/35 [0,6] N 1 50/25 [0,3] N 2 40/25[4,6] Weight (Computation/Communication) Routing requirements cause conflicts p 0 p 1 p 2 p 3 p 4 p 5 N 3 90/10 [0,1] N 4 85/10 [2,3] N 5 80/10[4,5] p 6 p 7 p 8 N 6 N 7 N 8 N 9 N 10 N 11 N /0 95/0 100/0 100/0 100/0 100/0 120/0 P 0 P 1 P 2 P 3 P 4 P 5 P 6 Critical Path Integrated Link/CPU Voltage Scaling to convert imbalance to energy savings without performance penalties (recursive scheme, multiple passes) Network topology constrains link scaling

33 Energy Consumption Average Savings: CPU-VS (27%), LINK-VS (23%), CPU-LINK-VS (40%)

34 Other Results Non-uniform cache architectures (NUCA) and CMPs NUCA configurations for scientific computing Utilizing network on chip (NOC) with NUCA Sayaka Akioka (in progress) Modeling network PxP TorusSim Tool by Sarah Conner A single collective communication: link shutdown possible for 55%-97% of time No performance penalty + energy savings

35 Summary Substantial single processor PxP improvements For kernels, codes and full applications Time 30% 50% faster Power/energy 50%--80% lower Further savings from LSQ-based H/Q adaptivity Multiprocessor (MPP) PxP scaling trends from CPU-link scaling are promising Near ideal conversion of slack to savings Link shutdown possible 60-97% /collective communication

Multicore Parallel Computing with OpenMP

Multicore Parallel Computing with OpenMP Multicore Parallel Computing with OpenMP Tan Chee Chiang (SVU/Academic Computing, Computer Centre) 1. OpenMP Programming The death of OpenMP was anticipated when cluster systems rapidly replaced large

More information

1. Memory technology & Hierarchy

1. Memory technology & Hierarchy 1. Memory technology & Hierarchy RAM types Advances in Computer Architecture Andy D. Pimentel Memory wall Memory wall = divergence between CPU and RAM speed We can increase bandwidth by introducing concurrency

More information

Optimizing Configuration and Application Mapping for MPSoC Architectures

Optimizing Configuration and Application Mapping for MPSoC Architectures Optimizing Configuration and Application Mapping for MPSoC Architectures École Polytechnique de Montréal, Canada Email : [email protected] 1 Multi-Processor Systems on Chip (MPSoC) Design Trends

More information

DEPLOYING AND MONITORING HADOOP MAP-REDUCE ANALYTICS ON SINGLE-CHIP CLOUD COMPUTER

DEPLOYING AND MONITORING HADOOP MAP-REDUCE ANALYTICS ON SINGLE-CHIP CLOUD COMPUTER DEPLOYING AND MONITORING HADOOP MAP-REDUCE ANALYTICS ON SINGLE-CHIP CLOUD COMPUTER ANDREAS-LAZAROS GEORGIADIS, SOTIRIOS XYDIS, DIMITRIOS SOUDRIS MICROPROCESSOR AND MICROSYSTEMS LABORATORY ELECTRICAL AND

More information

LS DYNA Performance Benchmarks and Profiling. January 2009

LS DYNA Performance Benchmarks and Profiling. January 2009 LS DYNA Performance Benchmarks and Profiling January 2009 Note The following research was performed under the HPC Advisory Council activities AMD, Dell, Mellanox HPC Advisory Council Cluster Center The

More information

In-Memory Databases Algorithms and Data Structures on Modern Hardware. Martin Faust David Schwalb Jens Krüger Jürgen Müller

In-Memory Databases Algorithms and Data Structures on Modern Hardware. Martin Faust David Schwalb Jens Krüger Jürgen Müller In-Memory Databases Algorithms and Data Structures on Modern Hardware Martin Faust David Schwalb Jens Krüger Jürgen Müller The Free Lunch Is Over 2 Number of transistors per CPU increases Clock frequency

More information

Network Architecture and Topology

Network Architecture and Topology 1. Introduction 2. Fundamentals and design principles 3. Network architecture and topology 4. Network control and signalling 5. Network components 5.1 links 5.2 switches and routers 6. End systems 7. End-to-end

More information

COMP 422, Lecture 3: Physical Organization & Communication Costs in Parallel Machines (Sections 2.4 & 2.5 of textbook)

COMP 422, Lecture 3: Physical Organization & Communication Costs in Parallel Machines (Sections 2.4 & 2.5 of textbook) COMP 422, Lecture 3: Physical Organization & Communication Costs in Parallel Machines (Sections 2.4 & 2.5 of textbook) Vivek Sarkar Department of Computer Science Rice University [email protected] COMP

More information

High Performance Computing. Course Notes 2007-2008. HPC Fundamentals

High Performance Computing. Course Notes 2007-2008. HPC Fundamentals High Performance Computing Course Notes 2007-2008 2008 HPC Fundamentals Introduction What is High Performance Computing (HPC)? Difficult to define - it s a moving target. Later 1980s, a supercomputer performs

More information

Overlapping Data Transfer With Application Execution on Clusters

Overlapping Data Transfer With Application Execution on Clusters Overlapping Data Transfer With Application Execution on Clusters Karen L. Reid and Michael Stumm [email protected] [email protected] Department of Computer Science Department of Electrical and Computer

More information

Principles and characteristics of distributed systems and environments

Principles and characteristics of distributed systems and environments Principles and characteristics of distributed systems and environments Definition of a distributed system Distributed system is a collection of independent computers that appears to its users as a single

More information

18-742 Lecture 4. Parallel Programming II. Homework & Reading. Page 1. Projects handout On Friday Form teams, groups of two

18-742 Lecture 4. Parallel Programming II. Homework & Reading. Page 1. Projects handout On Friday Form teams, groups of two age 1 18-742 Lecture 4 arallel rogramming II Spring 2005 rof. Babak Falsafi http://www.ece.cmu.edu/~ece742 write X Memory send X Memory read X Memory Slides developed in part by rofs. Adve, Falsafi, Hill,

More information

Dell High-Performance Computing Clusters and Reservoir Simulation Research at UT Austin. http://www.dell.com/clustering

Dell High-Performance Computing Clusters and Reservoir Simulation Research at UT Austin. http://www.dell.com/clustering Dell High-Performance Computing Clusters and Reservoir Simulation Research at UT Austin Reza Rooholamini, Ph.D. Director Enterprise Solutions Dell Computer Corp. [email protected] http://www.dell.com/clustering

More information

ECLIPSE Performance Benchmarks and Profiling. January 2009

ECLIPSE Performance Benchmarks and Profiling. January 2009 ECLIPSE Performance Benchmarks and Profiling January 2009 Note The following research was performed under the HPC Advisory Council activities AMD, Dell, Mellanox, Schlumberger HPC Advisory Council Cluster

More information

Energy-aware job scheduler for highperformance

Energy-aware job scheduler for highperformance Energy-aware job scheduler for highperformance computing 7.9.2011 Olli Mämmelä (VTT), Mikko Majanen (VTT), Robert Basmadjian (University of Passau), Hermann De Meer (University of Passau), André Giesler

More information

Chapter 1 Computer System Overview

Chapter 1 Computer System Overview Operating Systems: Internals and Design Principles Chapter 1 Computer System Overview Eighth Edition By William Stallings Operating System Exploits the hardware resources of one or more processors Provides

More information

Measuring Cache and Memory Latency and CPU to Memory Bandwidth

Measuring Cache and Memory Latency and CPU to Memory Bandwidth White Paper Joshua Ruggiero Computer Systems Engineer Intel Corporation Measuring Cache and Memory Latency and CPU to Memory Bandwidth For use with Intel Architecture December 2008 1 321074 Executive Summary

More information

Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Intel Xeon Processor E7 v2 Family-Based Platforms

Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Intel Xeon Processor E7 v2 Family-Based Platforms Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Family-Based Platforms Executive Summary Complex simulations of structural and systems performance, such as car crash simulations,

More information

AMD Opteron Quad-Core

AMD Opteron Quad-Core AMD Opteron Quad-Core a brief overview Daniele Magliozzi Politecnico di Milano Opteron Memory Architecture native quad-core design (four cores on a single die for more efficient data sharing) enhanced

More information

Performance Monitoring of Parallel Scientific Applications

Performance Monitoring of Parallel Scientific Applications Performance Monitoring of Parallel Scientific Applications Abstract. David Skinner National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory This paper introduces an infrastructure

More information

Analysis of Memory Sensitive SPEC CPU2006 Integer Benchmarks for Big Data Benchmarking

Analysis of Memory Sensitive SPEC CPU2006 Integer Benchmarks for Big Data Benchmarking Analysis of Memory Sensitive SPEC CPU2006 Integer Benchmarks for Big Data Benchmarking Kathlene Hurt and Eugene John Department of Electrical and Computer Engineering University of Texas at San Antonio

More information

Mesh Generation and Load Balancing

Mesh Generation and Load Balancing Mesh Generation and Load Balancing Stan Tomov Innovative Computing Laboratory Computer Science Department The University of Tennessee April 04, 2012 CS 594 04/04/2012 Slide 1 / 19 Outline Motivation Reliable

More information

Binary search tree with SIMD bandwidth optimization using SSE

Binary search tree with SIMD bandwidth optimization using SSE Binary search tree with SIMD bandwidth optimization using SSE Bowen Zhang, Xinwei Li 1.ABSTRACT In-memory tree structured index search is a fundamental database operation. Modern processors provide tremendous

More information

Naveen Muralimanohar Rajeev Balasubramonian Norman P Jouppi

Naveen Muralimanohar Rajeev Balasubramonian Norman P Jouppi Optimizing NUCA Organizations and Wiring Alternatives for Large Caches with CACTI 6.0 Naveen Muralimanohar Rajeev Balasubramonian Norman P Jouppi University of Utah & HP Labs 1 Large Caches Cache hierarchies

More information

Performance Metrics and Scalability Analysis. Performance Metrics and Scalability Analysis

Performance Metrics and Scalability Analysis. Performance Metrics and Scalability Analysis Performance Metrics and Scalability Analysis 1 Performance Metrics and Scalability Analysis Lecture Outline Following Topics will be discussed Requirements in performance and cost Performance metrics Work

More information

Workshop on Parallel and Distributed Scientific and Engineering Computing, Shanghai, 25 May 2012

Workshop on Parallel and Distributed Scientific and Engineering Computing, Shanghai, 25 May 2012 Scientific Application Performance on HPC, Private and Public Cloud Resources: A Case Study Using Climate, Cardiac Model Codes and the NPB Benchmark Suite Peter Strazdins (Research School of Computer Science),

More information

Resource Efficient Computing for Warehouse-scale Datacenters

Resource Efficient Computing for Warehouse-scale Datacenters Resource Efficient Computing for Warehouse-scale Datacenters Christos Kozyrakis Stanford University http://csl.stanford.edu/~christos DATE Conference March 21 st 2013 Computing is the Innovation Catalyst

More information

OC By Arsene Fansi T. POLIMI 2008 1

OC By Arsene Fansi T. POLIMI 2008 1 IBM POWER 6 MICROPROCESSOR OC By Arsene Fansi T. POLIMI 2008 1 WHAT S IBM POWER 6 MICROPOCESSOR The IBM POWER6 microprocessor powers the new IBM i-series* and p-series* systems. It s based on IBM POWER5

More information

Achieving Nanosecond Latency Between Applications with IPC Shared Memory Messaging

Achieving Nanosecond Latency Between Applications with IPC Shared Memory Messaging Achieving Nanosecond Latency Between Applications with IPC Shared Memory Messaging In some markets and scenarios where competitive advantage is all about speed, speed is measured in micro- and even nano-seconds.

More information

Vorlesung Rechnerarchitektur 2 Seite 178 DASH

Vorlesung Rechnerarchitektur 2 Seite 178 DASH Vorlesung Rechnerarchitektur 2 Seite 178 Architecture for Shared () The -architecture is a cache coherent, NUMA multiprocessor system, developed at CSL-Stanford by John Hennessy, Daniel Lenoski, Monica

More information

Distributed communication-aware load balancing with TreeMatch in Charm++

Distributed communication-aware load balancing with TreeMatch in Charm++ Distributed communication-aware load balancing with TreeMatch in Charm++ The 9th Scheduling for Large Scale Systems Workshop, Lyon, France Emmanuel Jeannot Guillaume Mercier Francois Tessier In collaboration

More information

CHAPTER 5 FINITE STATE MACHINE FOR LOOKUP ENGINE

CHAPTER 5 FINITE STATE MACHINE FOR LOOKUP ENGINE CHAPTER 5 71 FINITE STATE MACHINE FOR LOOKUP ENGINE 5.1 INTRODUCTION Finite State Machines (FSMs) are important components of digital systems. Therefore, techniques for area efficiency and fast implementation

More information

Why Latency Lags Bandwidth, and What it Means to Computing

Why Latency Lags Bandwidth, and What it Means to Computing Why Latency Lags Bandwidth, and What it Means to Computing David Patterson U.C. Berkeley [email protected] October 2004 Bandwidth Rocks (1) Preview: Latency Lags Bandwidth Over last 20 to 25 years,

More information

Motivation: Smartphone Market

Motivation: Smartphone Market Motivation: Smartphone Market Smartphone Systems External Display Device Display Smartphone Systems Smartphone-like system Main Camera Front-facing Camera Central Processing Unit Device Display Graphics

More information

Parallel Programming Survey

Parallel Programming Survey Christian Terboven 02.09.2014 / Aachen, Germany Stand: 26.08.2014 Version 2.3 IT Center der RWTH Aachen University Agenda Overview: Processor Microarchitecture Shared-Memory

More information

Photonic Networks for Data Centres and High Performance Computing

Photonic Networks for Data Centres and High Performance Computing Photonic Networks for Data Centres and High Performance Computing Philip Watts Department of Electronic Engineering, UCL Yury Audzevich, Nick Barrow-Williams, Robert Mullins, Simon Moore, Andrew Moore

More information

Optimizing Shared Resource Contention in HPC Clusters

Optimizing Shared Resource Contention in HPC Clusters Optimizing Shared Resource Contention in HPC Clusters Sergey Blagodurov Simon Fraser University Alexandra Fedorova Simon Fraser University Abstract Contention for shared resources in HPC clusters occurs

More information

So#ware Tools and Techniques for HPC, Clouds, and Server- Class SoCs Ron Brightwell

So#ware Tools and Techniques for HPC, Clouds, and Server- Class SoCs Ron Brightwell So#ware Tools and Techniques for HPC, Clouds, and Server- Class SoCs Ron Brightwell R&D Manager, Scalable System So#ware Department Sandia National Laboratories is a multi-program laboratory managed and

More information

Petascale Software Challenges. Piyush Chaudhary [email protected] High Performance Computing

Petascale Software Challenges. Piyush Chaudhary piyushc@us.ibm.com High Performance Computing Petascale Software Challenges Piyush Chaudhary [email protected] High Performance Computing Fundamental Observations Applications are struggling to realize growth in sustained performance at scale Reasons

More information

Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi

Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi ICPP 6 th International Workshop on Parallel Programming Models and Systems Software for High-End Computing October 1, 2013 Lyon, France

More information

Making Multicore Work and Measuring its Benefits. Markus Levy, president EEMBC and Multicore Association

Making Multicore Work and Measuring its Benefits. Markus Levy, president EEMBC and Multicore Association Making Multicore Work and Measuring its Benefits Markus Levy, president EEMBC and Multicore Association Agenda Why Multicore? Standards and issues in the multicore community What is Multicore Association?

More information

PERFORMANCE TUNING ORACLE RAC ON LINUX

PERFORMANCE TUNING ORACLE RAC ON LINUX PERFORMANCE TUNING ORACLE RAC ON LINUX By: Edward Whalen Performance Tuning Corporation INTRODUCTION Performance tuning is an integral part of the maintenance and administration of the Oracle database

More information

Introduction History Design Blue Gene/Q Job Scheduler Filesystem Power usage Performance Summary Sequoia is a petascale Blue Gene/Q supercomputer Being constructed by IBM for the National Nuclear Security

More information

Outline. Introduction. Multiprocessor Systems on Chip. A MPSoC Example: Nexperia DVP. A New Paradigm: Network on Chip

Outline. Introduction. Multiprocessor Systems on Chip. A MPSoC Example: Nexperia DVP. A New Paradigm: Network on Chip Outline Modeling, simulation and optimization of Multi-Processor SoCs (MPSoCs) Università of Verona Dipartimento di Informatica MPSoCs: Multi-Processor Systems on Chip A simulation platform for a MPSoC

More information

Physical Data Organization

Physical Data Organization Physical Data Organization Database design using logical model of the database - appropriate level for users to focus on - user independence from implementation details Performance - other major factor

More information

Memory Hierarchy. Arquitectura de Computadoras. Centro de Investigación n y de Estudios Avanzados del IPN. [email protected]. MemoryHierarchy- 1

Memory Hierarchy. Arquitectura de Computadoras. Centro de Investigación n y de Estudios Avanzados del IPN. adiaz@cinvestav.mx. MemoryHierarchy- 1 Hierarchy Arturo Díaz D PérezP Centro de Investigación n y de Estudios Avanzados del IPN [email protected] Hierarchy- 1 The Big Picture: Where are We Now? The Five Classic Components of a Computer Processor

More information

benchmarking Amazon EC2 for high-performance scientific computing

benchmarking Amazon EC2 for high-performance scientific computing Edward Walker benchmarking Amazon EC2 for high-performance scientific computing Edward Walker is a Research Scientist with the Texas Advanced Computing Center at the University of Texas at Austin. He received

More information

The Orca Chip... Heart of IBM s RISC System/6000 Value Servers

The Orca Chip... Heart of IBM s RISC System/6000 Value Servers The Orca Chip... Heart of IBM s RISC System/6000 Value Servers Ravi Arimilli IBM RISC System/6000 Division 1 Agenda. Server Background. Cache Heirarchy Performance Study. RS/6000 Value Server System Structure.

More information

Benchmarking Cassandra on Violin

Benchmarking Cassandra on Violin Technical White Paper Report Technical Report Benchmarking Cassandra on Violin Accelerating Cassandra Performance and Reducing Read Latency With Violin Memory Flash-based Storage Arrays Version 1.0 Abstract

More information

big.little Technology Moves Towards Fully Heterogeneous Global Task Scheduling Improving Energy Efficiency and Performance in Mobile Devices

big.little Technology Moves Towards Fully Heterogeneous Global Task Scheduling Improving Energy Efficiency and Performance in Mobile Devices big.little Technology Moves Towards Fully Heterogeneous Global Task Scheduling Improving Energy Efficiency and Performance in Mobile Devices Brian Jeff November, 2013 Abstract ARM big.little processing

More information

Clusters: Mainstream Technology for CAE

Clusters: Mainstream Technology for CAE Clusters: Mainstream Technology for CAE Alanna Dwyer HPC Division, HP Linux and Clusters Sparked a Revolution in High Performance Computing! Supercomputing performance now affordable and accessible Linux

More information

OpenPOWER Outlook AXEL KOEHLER SR. SOLUTION ARCHITECT HPC

OpenPOWER Outlook AXEL KOEHLER SR. SOLUTION ARCHITECT HPC OpenPOWER Outlook AXEL KOEHLER SR. SOLUTION ARCHITECT HPC Driving industry innovation The goal of the OpenPOWER Foundation is to create an open ecosystem, using the POWER Architecture to share expertise,

More information

Low Power AMD Athlon 64 and AMD Opteron Processors

Low Power AMD Athlon 64 and AMD Opteron Processors Low Power AMD Athlon 64 and AMD Opteron Processors Hot Chips 2004 Presenter: Marius Evers Block Diagram of AMD Athlon 64 and AMD Opteron Based on AMD s 8 th generation architecture AMD Athlon 64 and AMD

More information

Keys to node-level performance analysis and threading in HPC applications

Keys to node-level performance analysis and threading in HPC applications Keys to node-level performance analysis and threading in HPC applications Thomas GUILLET (Intel; Exascale Computing Research) IFERC seminar, 18 March 2015 Legal Disclaimer & Optimization Notice INFORMATION

More information

McPAT: An Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore Architectures

McPAT: An Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore Architectures McPAT: An Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore Architectures Sheng Li, Junh Ho Ahn, Richard Strong, Jay B. Brockman, Dean M Tullsen, Norman Jouppi MICRO 2009

More information

Performance Evaluation of 2D-Mesh, Ring, and Crossbar Interconnects for Chip Multi- Processors. NoCArc 09

Performance Evaluation of 2D-Mesh, Ring, and Crossbar Interconnects for Chip Multi- Processors. NoCArc 09 Performance Evaluation of 2D-Mesh, Ring, and Crossbar Interconnects for Chip Multi- Processors NoCArc 09 Jesús Camacho Villanueva, José Flich, José Duato Universidad Politécnica de Valencia December 12,

More information

ACCELERATING COMMERCIAL LINEAR DYNAMIC AND NONLINEAR IMPLICIT FEA SOFTWARE THROUGH HIGH- PERFORMANCE COMPUTING

ACCELERATING COMMERCIAL LINEAR DYNAMIC AND NONLINEAR IMPLICIT FEA SOFTWARE THROUGH HIGH- PERFORMANCE COMPUTING ACCELERATING COMMERCIAL LINEAR DYNAMIC AND Vladimir Belsky Director of Solver Development* Luis Crivelli Director of Solver Development* Matt Dunbar Chief Architect* Mikhail Belyi Development Group Manager*

More information

In-network Monitoring and Control Policy for DVFS of CMP Networkson-Chip and Last Level Caches

In-network Monitoring and Control Policy for DVFS of CMP Networkson-Chip and Last Level Caches In-network Monitoring and Control Policy for DVFS of CMP Networkson-Chip and Last Level Caches Xi Chen 1, Zheng Xu 1, Hyungjun Kim 1, Paul V. Gratz 1, Jiang Hu 1, Michael Kishinevsky 2 and Umit Ogras 2

More information

Three Paths to Faster Simulations Using ANSYS Mechanical 16.0 and Intel Architecture

Three Paths to Faster Simulations Using ANSYS Mechanical 16.0 and Intel Architecture White Paper Intel Xeon processor E5 v3 family Intel Xeon Phi coprocessor family Digital Design and Engineering Three Paths to Faster Simulations Using ANSYS Mechanical 16.0 and Intel Architecture Executive

More information

Lecture 3: Modern GPUs A Hardware Perspective Mohamed Zahran (aka Z) [email protected] http://www.mzahran.com

Lecture 3: Modern GPUs A Hardware Perspective Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com CSCI-GA.3033-012 Graphics Processing Units (GPUs): Architecture and Programming Lecture 3: Modern GPUs A Hardware Perspective Mohamed Zahran (aka Z) [email protected] http://www.mzahran.com Modern GPU

More information

ECLIPSE Best Practices Performance, Productivity, Efficiency. March 2009

ECLIPSE Best Practices Performance, Productivity, Efficiency. March 2009 ECLIPSE Best Practices Performance, Productivity, Efficiency March 29 ECLIPSE Performance, Productivity, Efficiency The following research was performed under the HPC Advisory Council activities HPC Advisory

More information

Data Centric Systems (DCS)

Data Centric Systems (DCS) Data Centric Systems (DCS) Architecture and Solutions for High Performance Computing, Big Data and High Performance Analytics High Performance Computing with Data Centric Systems 1 Data Centric Systems

More information

System Interconnect Architectures. Goals and Analysis. Network Properties and Routing. Terminology - 2. Terminology - 1

System Interconnect Architectures. Goals and Analysis. Network Properties and Routing. Terminology - 2. Terminology - 1 System Interconnect Architectures CSCI 8150 Advanced Computer Architecture Hwang, Chapter 2 Program and Network Properties 2.4 System Interconnect Architectures Direct networks for static connections Indirect

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 MOTIVATION OF RESEARCH Multicore processors have two or more execution cores (processors) implemented on a single chip having their own set of execution and architectural recourses.

More information

Parallel Programming at the Exascale Era: A Case Study on Parallelizing Matrix Assembly For Unstructured Meshes

Parallel Programming at the Exascale Era: A Case Study on Parallelizing Matrix Assembly For Unstructured Meshes Parallel Programming at the Exascale Era: A Case Study on Parallelizing Matrix Assembly For Unstructured Meshes Eric Petit, Loïc Thebault, Quang V. Dinh May 2014 EXA2CT Consortium 2 WPs Organization Proto-Applications

More information

Why the Network Matters

Why the Network Matters Week 2, Lecture 2 Copyright 2009 by W. Feng. Based on material from Matthew Sottile. So Far Overview of Multicore Systems Why Memory Matters Memory Architectures Emerging Chip Multiprocessors (CMP) Increasing

More information

Networking Virtualization Using FPGAs

Networking Virtualization Using FPGAs Networking Virtualization Using FPGAs Russell Tessier, Deepak Unnikrishnan, Dong Yin, and Lixin Gao Reconfigurable Computing Group Department of Electrical and Computer Engineering University of Massachusetts,

More information

Intel Data Direct I/O Technology (Intel DDIO): A Primer >

Intel Data Direct I/O Technology (Intel DDIO): A Primer > Intel Data Direct I/O Technology (Intel DDIO): A Primer > Technical Brief February 2012 Revision 1.0 Legal Statements INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,

More information

and RISC Optimization Techniques for the Hitachi SR8000 Architecture

and RISC Optimization Techniques for the Hitachi SR8000 Architecture 1 KONWIHR Project: Centre of Excellence for High Performance Computing Pseudo-Vectorization and RISC Optimization Techniques for the Hitachi SR8000 Architecture F. Deserno, G. Hager, F. Brechtefeld, G.

More information

Multi-Threading Performance on Commodity Multi-Core Processors

Multi-Threading Performance on Commodity Multi-Core Processors Multi-Threading Performance on Commodity Multi-Core Processors Jie Chen and William Watson III Scientific Computing Group Jefferson Lab 12000 Jefferson Ave. Newport News, VA 23606 Organization Introduction

More information

Fast Multipole Method for particle interactions: an open source parallel library component

Fast Multipole Method for particle interactions: an open source parallel library component Fast Multipole Method for particle interactions: an open source parallel library component F. A. Cruz 1,M.G.Knepley 2,andL.A.Barba 1 1 Department of Mathematics, University of Bristol, University Walk,

More information

Intel Labs at ISSCC 2012. Copyright Intel Corporation 2012

Intel Labs at ISSCC 2012. Copyright Intel Corporation 2012 Intel Labs at ISSCC 2012 Copyright Intel Corporation 2012 Intel Labs ISSCC 2012 Highlights 1. Efficient Computing Research: Making the most of every milliwatt to make computing greener and more scalable

More information

Towards Energy Efficient Query Processing in Database Management System

Towards Energy Efficient Query Processing in Database Management System Towards Energy Efficient Query Processing in Database Management System Report by: Ajaz Shaik, Ervina Cergani Abstract Rising concerns about the amount of energy consumed by the data centers, several computer

More information

:Introducing Star-P. The Open Platform for Parallel Application Development. Yoel Jacobsen E&M Computing LTD [email protected]

:Introducing Star-P. The Open Platform for Parallel Application Development. Yoel Jacobsen E&M Computing LTD yoel@emet.co.il :Introducing Star-P The Open Platform for Parallel Application Development Yoel Jacobsen E&M Computing LTD [email protected] The case for VHLLs Functional / applicative / very high-level languages allow

More information

Recommended hardware system configurations for ANSYS users

Recommended hardware system configurations for ANSYS users Recommended hardware system configurations for ANSYS users The purpose of this document is to recommend system configurations that will deliver high performance for ANSYS users across the entire range

More information

361 Computer Architecture Lecture 14: Cache Memory

361 Computer Architecture Lecture 14: Cache Memory 1 361 Computer Architecture Lecture 14 Memory cache.1 The Motivation for s Memory System Processor DRAM Motivation Large memories (DRAM) are slow Small memories (SRAM) are fast Make the average access

More information

Concept of Cache in web proxies

Concept of Cache in web proxies Concept of Cache in web proxies Chan Kit Wai and Somasundaram Meiyappan 1. Introduction Caching is an effective performance enhancing technique that has been used in computer systems for decades. However,

More information

Computer Architecture

Computer Architecture Computer Architecture Slide Sets WS 2013/2014 Prof. Dr. Uwe Brinkschulte M.Sc. Benjamin Betting Part 11 Memory Management Computer Architecture Part 11 page 1 of 44 Prof. Dr. Uwe Brinkschulte, M.Sc. Benjamin

More information

Memory ICS 233. Computer Architecture and Assembly Language Prof. Muhamed Mudawar

Memory ICS 233. Computer Architecture and Assembly Language Prof. Muhamed Mudawar Memory ICS 233 Computer Architecture and Assembly Language Prof. Muhamed Mudawar College of Computer Sciences and Engineering King Fahd University of Petroleum and Minerals Presentation Outline Random

More information

EFFICIENT EXTERNAL SORTING ON FLASH MEMORY EMBEDDED DEVICES

EFFICIENT EXTERNAL SORTING ON FLASH MEMORY EMBEDDED DEVICES ABSTRACT EFFICIENT EXTERNAL SORTING ON FLASH MEMORY EMBEDDED DEVICES Tyler Cossentine and Ramon Lawrence Department of Computer Science, University of British Columbia Okanagan Kelowna, BC, Canada [email protected]

More information

PERFORMANCE TOOLS DEVELOPMENTS

PERFORMANCE TOOLS DEVELOPMENTS PERFORMANCE TOOLS DEVELOPMENTS Roberto A. Vitillo presented by Paolo Calafiura & Wim Lavrijsen Lawrence Berkeley National Laboratory Future computing in particle physics, 16 June 2011 1 LINUX PERFORMANCE

More information

DIABLO TECHNOLOGIES MEMORY CHANNEL STORAGE AND VMWARE VIRTUAL SAN : VDI ACCELERATION

DIABLO TECHNOLOGIES MEMORY CHANNEL STORAGE AND VMWARE VIRTUAL SAN : VDI ACCELERATION DIABLO TECHNOLOGIES MEMORY CHANNEL STORAGE AND VMWARE VIRTUAL SAN : VDI ACCELERATION A DIABLO WHITE PAPER AUGUST 2014 Ricky Trigalo Director of Business Development Virtualization, Diablo Technologies

More information

Trends in High-Performance Computing for Power Grid Applications

Trends in High-Performance Computing for Power Grid Applications Trends in High-Performance Computing for Power Grid Applications Franz Franchetti ECE, Carnegie Mellon University www.spiral.net Co-Founder, SpiralGen www.spiralgen.com This talk presents my personal views

More information

FLOW-3D Performance Benchmark and Profiling. September 2012

FLOW-3D Performance Benchmark and Profiling. September 2012 FLOW-3D Performance Benchmark and Profiling September 2012 Note The following research was performed under the HPC Advisory Council activities Participating vendors: FLOW-3D, Dell, Intel, Mellanox Compute

More information

Performance Characteristics of VMFS and RDM VMware ESX Server 3.0.1

Performance Characteristics of VMFS and RDM VMware ESX Server 3.0.1 Performance Study Performance Characteristics of and RDM VMware ESX Server 3.0.1 VMware ESX Server offers three choices for managing disk access in a virtual machine VMware Virtual Machine File System

More information

OpenSPARC T1 Processor

OpenSPARC T1 Processor OpenSPARC T1 Processor The OpenSPARC T1 processor is the first chip multiprocessor that fully implements the Sun Throughput Computing Initiative. Each of the eight SPARC processor cores has full hardware

More information

FPGA-based Multithreading for In-Memory Hash Joins

FPGA-based Multithreading for In-Memory Hash Joins FPGA-based Multithreading for In-Memory Hash Joins Robert J. Halstead, Ildar Absalyamov, Walid A. Najjar, Vassilis J. Tsotras University of California, Riverside Outline Background What are FPGAs Multithreaded

More information

A NOR Emulation Strategy over NAND Flash Memory

A NOR Emulation Strategy over NAND Flash Memory A NOR Emulation Strategy over NAND Flash Memory Jian-Hong Lin, Yuan-Hao Chang, Jen-Wei Hsieh, and Tei-Wei Kuo Embedded Systems and Wireless Networking Laboratory Dept. of Computer Science and Information

More information

Memory Architecture and Management in a NoC Platform

Memory Architecture and Management in a NoC Platform Architecture and Management in a NoC Platform Axel Jantsch Xiaowen Chen Zhonghai Lu Chaochao Feng Abdul Nameed Yuang Zhang Ahmed Hemani DATE 2011 Overview Motivation State of the Art Data Management Engine

More information

Parallel Computing 37 (2011) 26 41. Contents lists available at ScienceDirect. Parallel Computing. journal homepage: www.elsevier.

Parallel Computing 37 (2011) 26 41. Contents lists available at ScienceDirect. Parallel Computing. journal homepage: www.elsevier. Parallel Computing 37 (2011) 26 41 Contents lists available at ScienceDirect Parallel Computing journal homepage: www.elsevier.com/locate/parco Architectural support for thread communications in multi-core

More information

This Unit: Putting It All Together. CIS 501 Computer Architecture. Sources. What is Computer Architecture?

This Unit: Putting It All Together. CIS 501 Computer Architecture. Sources. What is Computer Architecture? This Unit: Putting It All Together CIS 501 Computer Architecture Unit 11: Putting It All Together: Anatomy of the XBox 360 Game Console Slides originally developed by Amir Roth with contributions by Milo

More information

Icepak High-Performance Computing at Rockwell Automation: Benefits and Benchmarks

Icepak High-Performance Computing at Rockwell Automation: Benefits and Benchmarks Icepak High-Performance Computing at Rockwell Automation: Benefits and Benchmarks Garron K. Morris Senior Project Thermal Engineer [email protected] Standard Drives Division Bruce W. Weiss Principal

More information

Rambus Smart Data Acceleration

Rambus Smart Data Acceleration Rambus Smart Data Acceleration Back to the Future Memory and Data Access: The Final Frontier As an industry, if real progress is to be made towards the level of computing that the future mandates, then

More information

22S:295 Seminar in Applied Statistics High Performance Computing in Statistics

22S:295 Seminar in Applied Statistics High Performance Computing in Statistics 22S:295 Seminar in Applied Statistics High Performance Computing in Statistics Luke Tierney Department of Statistics & Actuarial Science University of Iowa August 30, 2007 Luke Tierney (U. of Iowa) HPC

More information

Scalability and Classifications

Scalability and Classifications Scalability and Classifications 1 Types of Parallel Computers MIMD and SIMD classifications shared and distributed memory multicomputers distributed shared memory computers 2 Network Topologies static

More information