Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi
|
|
|
- Laureen Harvey
- 10 years ago
- Views:
Transcription
1 Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi ICPP 6 th International Workshop on Parallel Programming Models and Systems Software for High-End Computing October 1, 2013 Lyon, France Vienne, Ramachandran, Wijngaart, Koesterke, Shaparov
2 Increasingly Complex HPC World Mainframes HPC language (Fortran, then also C) vectorization (no caches!) Clusters: MPI SMP machines (shared memory): OpenMP threads Clusters with multi-core nodes: MPI OpenMP Vectorization NUMA Clusters with accelerators Fast compute, high memory BW, limited memory Data transfer through PCIe bus à Double buffering GPUs: CUDA/OpenCL (partially mastered) MICs: Standard languages OpenMP Evaluation of Phis through standard benchmarks How do we evaluate new technologies?
3 Programming and optimizing for MIC? How hard can it be? What performance can I expect? The NAS Parallel Benchmark (NPB) gives very valuable insight
4 Programming and Optimizing for the MIC Architecture Intel s MIC is based on x86 technology x86 cores w/ caches and cache coherency SIMD instruction set Programming for MIC is similar to programming for CPUs Familiar languages: C/C and Fortran Familiar parallel programming models: OpenMP & MPI MPI on host and on the coprocessor Any code can run on MIC, not just kernels Optimizing for MIC is similar to optimizing for CPUs Make use of existing knowledge!
5 MIC Architecture Many cores on the die L1 and L2 cache Bidirectional ring network Memory and PCIe connection Phi architecture block diagram Xeon Phi ~60 cores Few GB of GDDR5 RAM 512-bit wide SIMD registers L1/L2 caches Multiple threads (up to 4) per core Xeon Phi in Stampede SE10P 61 cores 8 GB of GDDR5 memory MIC is similar to Xeon x86 cores with caches Cache coherency protocol Supports traditional threads
6 MIC vs. GPU Differences Architecture: x86 vs. streaming processors HPC Programming model: coherent caches vs. shared memory and caches extension to C/C/Fortran vs. CUDA/OpenCL OpenCL support Threading/MPI: OpenMP and Multithreading vs. threads in hardware Programming details MPI on host and/or MIC vs. MPI on host only offloaded regions vs. kernels Support for any code: serial, scripting, etc. Yes No Native mode: Any code may be offloaded as a whole to the coprocessor
7 Adapting Scientific Code to MIC Today: Most scientific code for clusters Languages: C/C and/or Fortran, Communication: MPI may be thread-based (Hybrid code: MPI & OpenMP), may use external libraries (MKL, FFTW, etc.). With MIC on Stampede: Languages: C/C and/or Fortran, Communication: MPI may run an MPI task on the MIC or may offload sections of the code to the MIC, will be thread-based (Hybrid code: MPI & OpenMP), may use external libraries (MKL), that automatically use MIC
8 Stampede Cluster at the Texas Advanced Computing Center What do we do with 6800 MIC cards? How to program and optimize for MIC?
9 NAS Parallel Benchmark Suite of parallel workloads Testing performance of a variety of components Computational kernels IS: Integer sorting FT: Fourier transform CG: Conjugate gradient MG: Multi-grid Mini applications BT & SP: Factorization techniques LU: LU decomposition Variety of sizes: class A, B, and C used Parallelized with OpenMP & MPI
10 Timings à Flops Evaluation Ratio of active vector lanes to number of vector instructions VPU_ELEMENTS_ACTIVE VPU_INSTRUCTIONS_EXECUTED Vector width: 8/16 (DP/SP) Reading from caches DATA_READ_OR_WRITE Missing caches DATA_READ_MISS_OR_WRITE TLB misses DATA_PAGE_WALK, LONG_DATA_PAGE_WALK
11 Affinity and Scaling: IS Millions Million of of keys operations ranked Balanced Balanced Scatter Compact Compact IS, class C Balanced provides best performance Number of OpenMP Threads Number of Threads
12 Performance: BT Total Total MFLOPS Class A A Class Class B B C Class C BT, three sizes Best number of threads per core derived by trial Jumps at natural boundaries and in between boundaries Number of OpenMP Threads Number of Threads
13 Performance: CG Total Total MFLOPS Class A A Class Class B B C Class C CG, three sizes Best performance at maximum number of threads Number of OpenMP Threads Number of Threads
14 Xeon vs. Phi: 16 vs 61 cores 16 Sandy-Bridge cores are up to 2.5x faster Best Phi performance to break even Class C SB: time [s] SB: threads Phi: time [s] Phi: threads BT CG FT IS LU MG SP
15 Analysis: Loop Iterations Phi needs more loop iterations (concurrency, n ) for good performance Either n is a multiple of 61 or 122 Or n is much larger than 122 Technique: loop collapse BT, class A: 2x performance increase BT, other classes: no gain; Larger sizes provide already enough concurrency
16 Analysis: Division and Square Root Divisions and square roots are extra slow on Phi Division consumes 25% of execution time in BT Similar for square root in SP
17 Analysis: Strided Access Strided access in BT (stride = 5) Rearrangement of loop iterations did not increase speed, because other loops changed from stride-1 to stride-5
18 Analysis: Strided Access and Vectorization Non-unit stride access in LU Loop vectorized by autovectorizer Non-vectorized loop (-no-vec) faster Gather/scatter load and stores Reduced hardware prefetching
19 Analysis: Gather/Scatter vs. Masked Load/Store Access for low strides (stride-2) through 2 masked load/stores, instead of a gather/scatter Test code revealed a 1.8x speed-up for vectorized code Hand-coded intrinsics
20 Analysis: Vectorization (general) Some benchmarks (particularly MG) showed good performance gain from vectorizations MG faster on Phi than on Xeon Most benchmarks performed better without vectorization Phi slower than Xeon
21 Analysis: Indirect Memory Access Memory latency (main GDDR5) higher on Phi than on Xeon (main DDR3) Decreased performance for CG and IS
22 Summary NBP gives very valuable insight For code to perform well on Phi: More concurrency required (more loop iterations) Vectorization absolutely crucial But not all vectorized code performs well Stride-1 data access No indirect data access Manual hardware prefetching may be required No slow operations (div and sqrt) Only certain codes will benefit from this generation of Xeon Phi
23 Thank You! Questions?
Multicore Parallel Computing with OpenMP
Multicore Parallel Computing with OpenMP Tan Chee Chiang (SVU/Academic Computing, Computer Centre) 1. OpenMP Programming The death of OpenMP was anticipated when cluster systems rapidly replaced large
Assessing the Performance of OpenMP Programs on the Intel Xeon Phi
Assessing the Performance of OpenMP Programs on the Intel Xeon Phi Dirk Schmidl, Tim Cramer, Sandra Wienke, Christian Terboven, and Matthias S. Müller [email protected] Rechen- und Kommunikationszentrum
GPU System Architecture. Alan Gray EPCC The University of Edinburgh
GPU System Architecture EPCC The University of Edinburgh Outline Why do we want/need accelerators such as GPUs? GPU-CPU comparison Architectural reasons for GPU performance advantages GPU accelerated systems
Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Intel Xeon Processor E7 v2 Family-Based Platforms
Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Family-Based Platforms Executive Summary Complex simulations of structural and systems performance, such as car crash simulations,
Overview on Modern Accelerators and Programming Paradigms Ivan Giro7o [email protected]
Overview on Modern Accelerators and Programming Paradigms Ivan Giro7o [email protected] Informa(on & Communica(on Technology Sec(on (ICTS) Interna(onal Centre for Theore(cal Physics (ICTP) Mul(ple Socket
Using the Intel Xeon Phi (with the Stampede Supercomputer) ISC 13 Tutorial
Using the Intel Xeon Phi (with the Stampede Supercomputer) ISC 13 Tutorial Bill Barth, Kent Milfeld, Dan Stanzione Tommy Minyard Texas Advanced Computing Center Jim Jeffers, Intel June 2013, Leipzig, Germany
Big Data Visualization on the MIC
Big Data Visualization on the MIC Tim Dykes School of Creative Technologies University of Portsmouth [email protected] Many-Core Seminar Series 26/02/14 Splotch Team Tim Dykes, University of Portsmouth
A quick tutorial on Intel's Xeon Phi Coprocessor
A quick tutorial on Intel's Xeon Phi Coprocessor www.cism.ucl.ac.be [email protected] Architecture Setup Programming The beginning of wisdom is the definition of terms. * Name Is a... As opposed
Exascale Challenges and General Purpose Processors. Avinash Sodani, Ph.D. Chief Architect, Knights Landing Processor Intel Corporation
Exascale Challenges and General Purpose Processors Avinash Sodani, Ph.D. Chief Architect, Knights Landing Processor Intel Corporation Jun-93 Aug-94 Oct-95 Dec-96 Feb-98 Apr-99 Jun-00 Aug-01 Oct-02 Dec-03
Next Generation GPU Architecture Code-named Fermi
Next Generation GPU Architecture Code-named Fermi The Soul of a Supercomputer in the Body of a GPU Why is NVIDIA at Super Computing? Graphics is a throughput problem paint every pixel within frame time
Multi-Threading Performance on Commodity Multi-Core Processors
Multi-Threading Performance on Commodity Multi-Core Processors Jie Chen and William Watson III Scientific Computing Group Jefferson Lab 12000 Jefferson Ave. Newport News, VA 23606 Organization Introduction
Kashif Iqbal - PhD [email protected]
HPC/HTC vs. Cloud Benchmarking An empirical evalua.on of the performance and cost implica.ons Kashif Iqbal - PhD [email protected] ICHEC, NUI Galway, Ireland With acknowledgment to Michele MicheloDo
Scalable and High Performance Computing for Big Data Analytics in Understanding the Human Dynamics in the Mobile Age
Scalable and High Performance Computing for Big Data Analytics in Understanding the Human Dynamics in the Mobile Age Xuan Shi GRA: Bowei Xue University of Arkansas Spatiotemporal Modeling of Human Dynamics
benchmarking Amazon EC2 for high-performance scientific computing
Edward Walker benchmarking Amazon EC2 for high-performance scientific computing Edward Walker is a Research Scientist with the Texas Advanced Computing Center at the University of Texas at Austin. He received
High Performance Computing in CST STUDIO SUITE
High Performance Computing in CST STUDIO SUITE Felix Wolfheimer GPU Computing Performance Speedup 18 16 14 12 10 8 6 4 2 0 Promo offer for EUC participants: 25% discount for K40 cards Speedup of Solver
Binary search tree with SIMD bandwidth optimization using SSE
Binary search tree with SIMD bandwidth optimization using SSE Bowen Zhang, Xinwei Li 1.ABSTRACT In-memory tree structured index search is a fundamental database operation. Modern processors provide tremendous
Rethinking SIMD Vectorization for In-Memory Databases
SIGMOD 215, Melbourne, Victoria, Australia Rethinking SIMD Vectorization for In-Memory Databases Orestis Polychroniou Columbia University Arun Raghavan Oracle Labs Kenneth A. Ross Columbia University Latest
Trends in High-Performance Computing for Power Grid Applications
Trends in High-Performance Computing for Power Grid Applications Franz Franchetti ECE, Carnegie Mellon University www.spiral.net Co-Founder, SpiralGen www.spiralgen.com This talk presents my personal views
Parallel Computing. Benson Muite. [email protected] http://math.ut.ee/ benson. https://courses.cs.ut.ee/2014/paralleel/fall/main/homepage
Parallel Computing Benson Muite [email protected] http://math.ut.ee/ benson https://courses.cs.ut.ee/2014/paralleel/fall/main/homepage 3 November 2014 Hadoop, Review Hadoop Hadoop History Hadoop Framework
Three Paths to Faster Simulations Using ANSYS Mechanical 16.0 and Intel Architecture
White Paper Intel Xeon processor E5 v3 family Intel Xeon Phi coprocessor family Digital Design and Engineering Three Paths to Faster Simulations Using ANSYS Mechanical 16.0 and Intel Architecture Executive
Programming the Intel Xeon Phi Coprocessor
Programming the Intel Xeon Phi Coprocessor Tim Cramer [email protected] Rechen- und Kommunikationszentrum (RZ) Agenda Motivation Many Integrated Core (MIC) Architecture Programming Models Native
Performance Evaluation of Amazon EC2 for NASA HPC Applications!
National Aeronautics and Space Administration Performance Evaluation of Amazon EC2 for NASA HPC Applications! Piyush Mehrotra!! J. Djomehri, S. Heistand, R. Hood, H. Jin, A. Lazanoff,! S. Saini, R. Biswas!
Introduction to GP-GPUs. Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 1
Introduction to GP-GPUs Advanced Computer Architectures, Cristina Silvano, Politecnico di Milano 1 GPU Architectures: How do we reach here? NVIDIA Fermi, 512 Processing Elements (PEs) 2 What Can It Do?
Introduction to GPU Programming Languages
CSC 391/691: GPU Programming Fall 2011 Introduction to GPU Programming Languages Copyright 2011 Samuel S. Cho http://www.umiacs.umd.edu/ research/gpu/facilities.html Maryland CPU/GPU Cluster Infrastructure
Xeon+FPGA Platform for the Data Center
Xeon+FPGA Platform for the Data Center ISCA/CARL 2015 PK Gupta, Director of Cloud Platform Technology, DCG/CPG Overview Data Center and Workloads Xeon+FPGA Accelerator Platform Applications and Eco-system
GPU File System Encryption Kartik Kulkarni and Eugene Linkov
GPU File System Encryption Kartik Kulkarni and Eugene Linkov 5/10/2012 SUMMARY. We implemented a file system that encrypts and decrypts files. The implementation uses the AES algorithm computed through
OpenMP Programming on ScaleMP
OpenMP Programming on ScaleMP Dirk Schmidl [email protected] Rechen- und Kommunikationszentrum (RZ) MPI vs. OpenMP MPI distributed address space explicit message passing typically code redesign
1 Bull, 2011 Bull Extreme Computing
1 Bull, 2011 Bull Extreme Computing Table of Contents HPC Overview. Cluster Overview. FLOPS. 2 Bull, 2011 Bull Extreme Computing HPC Overview Ares, Gerardo, HPC Team HPC concepts HPC: High Performance
HETEROGENEOUS HPC, ARCHITECTURE OPTIMIZATION, AND NVLINK
HETEROGENEOUS HPC, ARCHITECTURE OPTIMIZATION, AND NVLINK Steve Oberlin CTO, Accelerated Computing US to Build Two Flagship Supercomputers SUMMIT SIERRA Partnership for Science 100-300 PFLOPS Peak Performance
Comparing the OpenMP, MPI, and Hybrid Programming Paradigm on an SMP Cluster
Comparing the OpenMP, MPI, and Hybrid Programming Paradigm on an SMP Cluster Gabriele Jost and Haoqiang Jin NAS Division, NASA Ames Research Center, Moffett Field, CA 94035-1000 {gjost,hjin}@nas.nasa.gov
OpenFOAM: Computational Fluid Dynamics. Gauss Siedel iteration : (L + D) * x new = b - U * x old
OpenFOAM: Computational Fluid Dynamics Gauss Siedel iteration : (L + D) * x new = b - U * x old What s unique about my tuning work The OpenFOAM (Open Field Operation and Manipulation) CFD Toolbox is a
Parallel Programming Survey
Christian Terboven 02.09.2014 / Aachen, Germany Stand: 26.08.2014 Version 2.3 IT Center der RWTH Aachen University Agenda Overview: Processor Microarchitecture Shared-Memory
RDMA over Ethernet - A Preliminary Study
RDMA over Ethernet - A Preliminary Study Hari Subramoni, Miao Luo, Ping Lai and Dhabaleswar. K. Panda Computer Science & Engineering Department The Ohio State University Outline Introduction Problem Statement
HPC performance applications on Virtual Clusters
Panagiotis Kritikakos EPCC, School of Physics & Astronomy, University of Edinburgh, Scotland - UK [email protected] 4 th IC-SCCE, Athens 7 th July 2010 This work investigates the performance of (Java)
Emerging storage and HPC technologies to accelerate big data analytics Jerome Gaysse JG Consulting
Emerging storage and HPC technologies to accelerate big data analytics Jerome Gaysse JG Consulting Introduction Big Data Analytics needs: Low latency data access Fast computing Power efficiency Latest
Introduction to Cloud Computing
Introduction to Cloud Computing Parallel Processing I 15 319, spring 2010 7 th Lecture, Feb 2 nd Majd F. Sakr Lecture Motivation Concurrency and why? Different flavors of parallel computing Get the basic
Performance Characteristics of Large SMP Machines
Performance Characteristics of Large SMP Machines Dirk Schmidl, Dieter an Mey, Matthias S. Müller [email protected] Rechen- und Kommunikationszentrum (RZ) Agenda Investigated Hardware Kernel Benchmark
High Performance. CAEA elearning Series. Jonathan G. Dudley, Ph.D. 06/09/2015. 2015 CAE Associates
High Performance Computing (HPC) CAEA elearning Series Jonathan G. Dudley, Ph.D. 06/09/2015 2015 CAE Associates Agenda Introduction HPC Background Why HPC SMP vs. DMP Licensing HPC Terminology Types of
HPC Wales Skills Academy Course Catalogue 2015
HPC Wales Skills Academy Course Catalogue 2015 Overview The HPC Wales Skills Academy provides a variety of courses and workshops aimed at building skills in High Performance Computing (HPC). Our courses
Parallel Algorithm Engineering
Parallel Algorithm Engineering Kenneth S. Bøgh PhD Fellow Based on slides by Darius Sidlauskas Outline Background Current multicore architectures UMA vs NUMA The openmp framework Examples Software crisis
Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms
Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms Amani AlOnazi, David E. Keyes, Alexey Lastovetsky, Vladimir Rychkov Extreme Computing Research Center,
OpenACC Parallelization and Optimization of NAS Parallel Benchmarks
OpenACC Parallelization and Optimization of NAS Parallel Benchmarks Presented by Rengan Xu GTC 2014, S4340 03/26/2014 Rengan Xu, Xiaonan Tian, Sunita Chandrasekaran, Yonghong Yan, Barbara Chapman HPC Tools
SR-IOV: Performance Benefits for Virtualized Interconnects!
SR-IOV: Performance Benefits for Virtualized Interconnects! Glenn K. Lockwood! Mahidhar Tatineni! Rick Wagner!! July 15, XSEDE14, Atlanta! Background! High Performance Computing (HPC) reaching beyond traditional
Case Study on Productivity and Performance of GPGPUs
Case Study on Productivity and Performance of GPGPUs Sandra Wienke [email protected] ZKI Arbeitskreis Supercomputing April 2012 Rechen- und Kommunikationszentrum (RZ) RWTH GPU-Cluster 56 Nvidia
CUDA programming on NVIDIA GPUs
p. 1/21 on NVIDIA GPUs Mike Giles [email protected] Oxford University Mathematical Institute Oxford-Man Institute for Quantitative Finance Oxford eresearch Centre p. 2/21 Overview hardware view
GPUs for Scientific Computing
GPUs for Scientific Computing p. 1/16 GPUs for Scientific Computing Mike Giles [email protected] Oxford-Man Institute of Quantitative Finance Oxford University Mathematical Institute Oxford e-research
Performance of the NAS Parallel Benchmarks on Grid Enabled Clusters
Performance of the NAS Parallel Benchmarks on Grid Enabled Clusters Philip J. Sokolowski Dept. of Electrical and Computer Engineering Wayne State University 55 Anthony Wayne Dr., Detroit, MI 4822 [email protected]
OpenPOWER Outlook AXEL KOEHLER SR. SOLUTION ARCHITECT HPC
OpenPOWER Outlook AXEL KOEHLER SR. SOLUTION ARCHITECT HPC Driving industry innovation The goal of the OpenPOWER Foundation is to create an open ecosystem, using the POWER Architecture to share expertise,
Performance and Scalability of the NAS Parallel Benchmarks in Java
Performance and Scalability of the NAS Parallel Benchmarks in Java Michael A. Frumkin, Matthew Schultz, Haoqiang Jin, and Jerry Yan NASA Advanced Supercomputing (NAS) Division NASA Ames Research Center,
Building a Top500-class Supercomputing Cluster at LNS-BUAP
Building a Top500-class Supercomputing Cluster at LNS-BUAP Dr. José Luis Ricardo Chávez Dr. Humberto Salazar Ibargüen Dr. Enrique Varela Carlos Laboratorio Nacional de Supercómputo Benemérita Universidad
The Uintah Framework: A Unified Heterogeneous Task Scheduling and Runtime System
The Uintah Framework: A Unified Heterogeneous Task Scheduling and Runtime System Qingyu Meng, Alan Humphrey, Martin Berzins Thanks to: John Schmidt and J. Davison de St. Germain, SCI Institute Justin Luitjens
Accelerating Simulation & Analysis with Hybrid GPU Parallelization and Cloud Computing
Accelerating Simulation & Analysis with Hybrid GPU Parallelization and Cloud Computing Innovation Intelligence Devin Jensen August 2012 Altair Knows HPC Altair is the only company that: makes HPC tools
Using the Windows Cluster
Using the Windows Cluster Christian Terboven [email protected] aachen.de Center for Computing and Communication RWTH Aachen University Windows HPC 2008 (II) September 17, RWTH Aachen Agenda o Windows Cluster
A Study on the Scalability of Hybrid LS-DYNA on Multicore Architectures
11 th International LS-DYNA Users Conference Computing Technology A Study on the Scalability of Hybrid LS-DYNA on Multicore Architectures Yih-Yih Lin Hewlett-Packard Company Abstract In this paper, the
High-Density Network Flow Monitoring
Petr Velan [email protected] High-Density Network Flow Monitoring IM2015 12 May 2015, Ottawa Motivation What is high-density flow monitoring? Monitor high traffic in as little rack units as possible
Embedded Systems: map to FPGA, GPU, CPU?
Embedded Systems: map to FPGA, GPU, CPU? Jos van Eijndhoven [email protected] Bits&Chips Embedded systems Nov 7, 2013 # of transistors Moore s law versus Amdahl s law Computational Capacity Hardware
David Rioja Redondo Telecommunication Engineer Englobe Technologies and Systems
David Rioja Redondo Telecommunication Engineer Englobe Technologies and Systems About me David Rioja Redondo Telecommunication Engineer - Universidad de Alcalá >2 years building and managing clusters UPM
Parallel Computing with MATLAB
Parallel Computing with MATLAB Scott Benway Senior Account Manager Jiro Doke, Ph.D. Senior Application Engineer 2013 The MathWorks, Inc. 1 Acceleration Strategies Applied in MATLAB Approach Options Best
GPU Architectures. A CPU Perspective. Data Parallelism: What is it, and how to exploit it? Workload characteristics
GPU Architectures A CPU Perspective Derek Hower AMD Research 5/21/2013 Goals Data Parallelism: What is it, and how to exploit it? Workload characteristics Execution Models / GPU Architectures MIMD (SPMD),
Benchmarking Large Scale Cloud Computing in Asia Pacific
2013 19th IEEE International Conference on Parallel and Distributed Systems ing Large Scale Cloud Computing in Asia Pacific Amalina Mohamad Sabri 1, Suresh Reuben Balakrishnan 1, Sun Veer Moolye 1, Chung
Resource Scheduling Best Practice in Hybrid Clusters
Available online at www.prace-ri.eu Partnership for Advanced Computing in Europe Resource Scheduling Best Practice in Hybrid Clusters C. Cavazzoni a, A. Federico b, D. Galetti a, G. Morelli b, A. Pieretti
MAQAO Performance Analysis and Optimization Tool
MAQAO Performance Analysis and Optimization Tool Andres S. CHARIF-RUBIAL [email protected] Performance Evaluation Team, University of Versailles S-Q-Y http://www.maqao.org VI-HPS 18 th Grenoble 18/22
How System Settings Impact PCIe SSD Performance
How System Settings Impact PCIe SSD Performance Suzanne Ferreira R&D Engineer Micron Technology, Inc. July, 2012 As solid state drives (SSDs) continue to gain ground in the enterprise server and storage
Performance Analysis and Optimization Tool
Performance Analysis and Optimization Tool Andres S. CHARIF-RUBIAL [email protected] Performance Analysis Team, University of Versailles http://www.maqao.org Introduction Performance Analysis Develop
Overview of HPC Resources at Vanderbilt
Overview of HPC Resources at Vanderbilt Will French Senior Application Developer and Research Computing Liaison Advanced Computing Center for Research and Education June 10, 2015 2 Computing Resources
FPGA-based Multithreading for In-Memory Hash Joins
FPGA-based Multithreading for In-Memory Hash Joins Robert J. Halstead, Ildar Absalyamov, Walid A. Najjar, Vassilis J. Tsotras University of California, Riverside Outline Background What are FPGAs Multithreaded
22S:295 Seminar in Applied Statistics High Performance Computing in Statistics
22S:295 Seminar in Applied Statistics High Performance Computing in Statistics Luke Tierney Department of Statistics & Actuarial Science University of Iowa August 30, 2007 Luke Tierney (U. of Iowa) HPC
Pedraforca: ARM + GPU prototype
www.bsc.es Pedraforca: ARM + GPU prototype Filippo Mantovani Workshop on exascale and PRACE prototypes Barcelona, 20 May 2014 Overview Goals: Test the performance, scalability, and energy efficiency of
Introducing PgOpenCL A New PostgreSQL Procedural Language Unlocking the Power of the GPU! By Tim Child
Introducing A New PostgreSQL Procedural Language Unlocking the Power of the GPU! By Tim Child Bio Tim Child 35 years experience of software development Formerly VP Oracle Corporation VP BEA Systems Inc.
Why Computers Are Getting Slower (and what we can do about it) Rik van Riel Sr. Software Engineer, Red Hat
Why Computers Are Getting Slower (and what we can do about it) Rik van Riel Sr. Software Engineer, Red Hat Why Computers Are Getting Slower The traditional approach better performance Why computers are
COMP 422, Lecture 3: Physical Organization & Communication Costs in Parallel Machines (Sections 2.4 & 2.5 of textbook)
COMP 422, Lecture 3: Physical Organization & Communication Costs in Parallel Machines (Sections 2.4 & 2.5 of textbook) Vivek Sarkar Department of Computer Science Rice University [email protected] COMP
64-Bit versus 32-Bit CPUs in Scientific Computing
64-Bit versus 32-Bit CPUs in Scientific Computing Axel Kohlmeyer Lehrstuhl für Theoretische Chemie Ruhr-Universität Bochum March 2004 1/25 Outline 64-Bit and 32-Bit CPU Examples
The PHI solution. Fujitsu Industry Ready Intel XEON-PHI based solution. SC2013 - Denver
1 The PHI solution Fujitsu Industry Ready Intel XEON-PHI based solution SC2013 - Denver Industrial Application Challenges Most of existing scientific and technical applications Are written for legacy execution
Optimizing a 3D-FWT code in a cluster of CPUs+GPUs
Optimizing a 3D-FWT code in a cluster of CPUs+GPUs Gregorio Bernabé Javier Cuenca Domingo Giménez Universidad de Murcia Scientific Computing and Parallel Programming Group XXIX Simposium Nacional de la
OpenMP and Performance
Dirk Schmidl IT Center, RWTH Aachen University Member of the HPC Group [email protected] IT Center der RWTH Aachen University Tuning Cycle Performance Tuning aims to improve the runtime of an
The Foundation for Better Business Intelligence
Product Brief Intel Xeon Processor E7-8800/4800/2800 v2 Product Families Data Center The Foundation for Big data is changing the way organizations make business decisions. To transform petabytes of data
Workshare Process of Thread Programming and MPI Model on Multicore Architecture
Vol., No. 7, 011 Workshare Process of Thread Programming and MPI Model on Multicore Architecture R. Refianti 1, A.B. Mutiara, D.T Hasta 3 Faculty of Computer Science and Information Technology, Gunadarma
Performance Analysis of a Hybrid MPI/OpenMP Application on Multi-core Clusters
Performance Analysis of a Hybrid MPI/OpenMP Application on Multi-core Clusters Martin J. Chorley a, David W. Walker a a School of Computer Science and Informatics, Cardiff University, Cardiff, UK Abstract
LS-DYNA Best-Practices: Networking, MPI and Parallel File System Effect on LS-DYNA Performance
11 th International LS-DYNA Users Conference Session # LS-DYNA Best-Practices: Networking, MPI and Parallel File System Effect on LS-DYNA Performance Gilad Shainer 1, Tong Liu 2, Jeff Layton 3, Onur Celebioglu
MPI and Hybrid Programming Models. William Gropp www.cs.illinois.edu/~wgropp
MPI and Hybrid Programming Models William Gropp www.cs.illinois.edu/~wgropp 2 What is a Hybrid Model? Combination of several parallel programming models in the same program May be mixed in the same source
Achieving Nanosecond Latency Between Applications with IPC Shared Memory Messaging
Achieving Nanosecond Latency Between Applications with IPC Shared Memory Messaging In some markets and scenarios where competitive advantage is all about speed, speed is measured in micro- and even nano-seconds.
Overview. Lecture 1: an introduction to CUDA. Hardware view. Hardware view. hardware view software view CUDA programming
Overview Lecture 1: an introduction to CUDA Mike Giles [email protected] hardware view software view Oxford University Mathematical Institute Oxford e-research Centre Lecture 1 p. 1 Lecture 1 p.
INTEL Software Development Conference - LONDON 2015. High Performance Computing - BIG DATA ANALYTICS - FINANCE
INTEL Software Development Conference - LONDON 2015 High Performance Computing - BIG DATA ANALYTICS - FINANCE London, Canary Wharf December 10 th & 11 th 2015 Level39, One Canada Square INTEL Software
RWTH GPU Cluster. Sandra Wienke [email protected] November 2012. Rechen- und Kommunikationszentrum (RZ) Fotos: Christian Iwainsky
RWTH GPU Cluster Fotos: Christian Iwainsky Sandra Wienke [email protected] November 2012 Rechen- und Kommunikationszentrum (RZ) The RWTH GPU Cluster GPU Cluster: 57 Nvidia Quadro 6000 (Fermi) innovative
Programming models for heterogeneous computing. Manuel Ujaldón Nvidia CUDA Fellow and A/Prof. Computer Architecture Department University of Malaga
Programming models for heterogeneous computing Manuel Ujaldón Nvidia CUDA Fellow and A/Prof. Computer Architecture Department University of Malaga Talk outline [30 slides] 1. Introduction [5 slides] 2.
CHAPTER 1 INTRODUCTION
1 CHAPTER 1 INTRODUCTION 1.1 MOTIVATION OF RESEARCH Multicore processors have two or more execution cores (processors) implemented on a single chip having their own set of execution and architectural recourses.
Experiences on using GPU accelerators for data analysis in ROOT/RooFit
Experiences on using GPU accelerators for data analysis in ROOT/RooFit Sverre Jarp, Alfio Lazzaro, Julien Leduc, Yngve Sneen Lindal, Andrzej Nowak European Organization for Nuclear Research (CERN), Geneva,
A Case Study - Scaling Legacy Code on Next Generation Platforms
Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 00 (2015) 000 000 www.elsevier.com/locate/procedia 24th International Meshing Roundtable (IMR24) A Case Study - Scaling Legacy
Recent Advances in HPC for Structural Mechanics Simulations
Recent Advances in HPC for Structural Mechanics Simulations 1 Trends in Engineering Driving Demand for HPC Increase product performance and integrity in less time Consider more design variants Find the
Accelerating CFD using OpenFOAM with GPUs
Accelerating CFD using OpenFOAM with GPUs Authors: Saeed Iqbal and Kevin Tubbs The OpenFOAM CFD Toolbox is a free, open source CFD software package produced by OpenCFD Ltd. Its user base represents a wide
SUBJECT: SOLIDWORKS HARDWARE RECOMMENDATIONS - 2013 UPDATE
SUBJECT: SOLIDWORKS RECOMMENDATIONS - 2013 UPDATE KEYWORDS:, CORE, PROCESSOR, GRAPHICS, DRIVER, RAM, STORAGE SOLIDWORKS RECOMMENDATIONS - 2013 UPDATE Below is a summary of key components of an ideal SolidWorks
Lattice QCD Performance. on Multi core Linux Servers
Lattice QCD Performance on Multi core Linux Servers Yang Suli * Department of Physics, Peking University, Beijing, 100871 Abstract At the moment, lattice quantum chromodynamics (lattice QCD) is the most
