Recommended Literature for this Lecture
|
|
|
- Jayson McCormick
- 10 years ago
- Views:
Transcription
1 COSC 6339 Big Data Analytics Introduction to MapReduce (III) and 1 st homework assignment Edgar Gabriel Spring 2015 Recommended Literature for this Lecture Andrew Pavlo, Erik Paulson, Alexander Rasin, A Comparison of Approaches to Large-Scale Data Analysis, 1
2 Two Approaches to Large-Scale Data Analysis Shared nothing architectures Distributed file system Map, Split, Copy, Reduce MR scheduler Standard relational tables Data are partitioned over cluster nodes SQL MapReduce vs. Parallel DBMS: Schema Support Flexible, programmers write code to interpret input data Good for single application scenario Bad if data are shared by multiple applications. Must address data syntax, consistency, etc. Relational schema required Good if data are shared by multiple applications 2
3 MapReduce vs. Parallel DBMS: Programming Model & Flexibility Low level Anecdotal evidence from the MR community suggests that there is widespread sharing of MR code fragments to do common tasks, such as joining data sets. very flexible SQL user-defined functions, stored procedures, user-defined aggregates MapReduce vs. Parallel DBMS: Indexing No native index support Programmers can implement their own index support in Map/Reduce code But hard to share the customized indexes in multiple applications Hash/b-tree indexes well supported 3
4 MapReduce vs. Parallel DBMS: Execution Strategy & Fault Tolerance Intermediate results are saved to local files If a node fails, run the node-task again on another node At a mapper machine, when multiple reducers are reading multiple local files, there could be large numbers of disk seeks, leading to poor performance. Intermediate results are pushed across network If a node fails, must re-run the entire query Avoiding Data Transfers Schedule Map to close to data But other than this, programmers must avoid data transfers themselves A lot of optimizations Such as determine where to perform filtering 4
5 Compiling Hadoop test code mkdir hw1 mkdir hw1/src put all java file in hw1/src ideally as part of the same package cp build.xml to hw1 cd hw1 Adjust build.xml, specifically name of your jar file ant build In hw1/build/lib there is now the jar file To verify content of your jar file jar tf nameofjarfile.jar Running a Hadoop Mapreduce job cd hw1/build/lib name of jar file name of package name of class containing the main() function yarn jar hw1.jar example.flightclass /bigdata-common/ /bigd45/output/ name of input directory (in hdfs) name of output directory - must not exist before execution 5
6 How to kill a job if it is hanging yarn application -list 14/02/05 17:01:23 INFO client.rmproxy: Connecting to ResourceManager at shark/ :10040 Total number of applications (application-types: [] and states: [SUBMITTED, ACCEPTED, RUNNING]):1 Application-Id Application-Name Application- Type User Queue State Final- State Progress Tracking-URL application_ _0007 wordcount MAPREDUCE gabriel default RUNNING UNDEFINED 5% yarn application -kill application_ _ /02/05 17:01:38 INFO client.rmproxy: Connecting to ResourceManager at shark/ :10040 Killing application application_ _ /02/05 17:01:38 INFO impl.yarnclientimpl: Killing application application_ _0007 Using HDFS If you want to run a MapReduce job on the cluster, you have to have the input data in HDFS (can not be local), and the result also will be in HDFS Large input data set is already available with read-only permission for all students in hdfs:///bigdata-common/ Using HDFS is similar to local UNIX file system hdfs dfs ls / hdfs dfs ls /bigd45/ hdfs dfs mkdir /bigd45/newdir hdfs dfs rm /bigd45/file.txt hdfs dfs rm -r /bigd45/ 6
7 Using HDFS (II) Copying a file into hdfs hdfs dfs put <localfilename> /bigd45/<remotefilename> Looking at the content of a file in hdfs hdfs dfs cat /bigd45/filename.txt Copying a file from hdfs into local directory hdfs dfs get /bigd45/output/part-r Merging multiple output file (each reducer produces a separate output file!) hdfs dfs getmerge /bigd/output/part-* allparts.out 1 st Homework Rules Each student should deliver Source code (.java files) Documentation (.pdf,.doc,.tex or.txt file) explanations to the code answers to questions Deliver electronically to [email protected] Expected by Friday, February 27, 11.59pm In case of questions: ask, ask, ask! 7
8 1. Given a data set continaing many questions asked on and the corresponding answers Different categories (e.g. academic, math, stackoverflow etc.) Questions are answered by users, answers are being voted on Answer might be marked as Accepted Input file are stripped down xml files xml headers have been removed, you can probably parse as a regular string/text Description of the input file - Id - PostTypeId (1: Question 2: Answer) - ParentID (only present if PostTypeId is 2) - AcceptedAnswerId (only present if PostTypeId is 1) - CreationDate - Score - ViewCount - Body - OwnerUserId - LastEditorUserId - LastEditorDisplayName="Jeff Atwood" - LastEditDate=" T22:28:34.823" - LastActivityDate=" T12:51:01.480" - CommunityOwnedDate=" T12:51:01.480" - ClosedDate=" T12:51:01.480" - Title= - Tags= - AnswerCount - CommentCount - FavoriteCount 8
9 Example <row Id="1" PostTypeId="1" AcceptedAnswerId="180" CreationDate=" T20:23:40.127" Score="12" ViewCount="166" Body="<p>As from title. What kind of visa class do I have to apply for, in order to work as an academic in Japan? </p> " OwnerUserId="5" LastEditorUserId="2700" LastEditDate=" T09:14:11.633" LastActivityDate=" T09:14:11.633" Title="What kind of Visa is required to work in Academia in Japan?" Tags="<jobsearch><visa><japan>" AnswerCount="1" CommentCount="1" FavoriteCount="1" /> <row Id="2" PostTypeId="1" AcceptedAnswerId="246" CreationDate=" T20:26:22.683" Score="7" ViewCount="292" Body="<p>Which online resources are available for job search at the Ph.D. level in the computational chemistry field?</p> " OwnerUserId="5" LastEditorUserId="116" LastEditDate=" T21:06:16.473" LastActivityDate=" T14:06:37.883" Title= Which online resources are available for Ph.D. level jobs?" Tags="<phd><jobsearch><chemistry>" AnswerCount="2" CommentCount="2" /> <row Id="6" PostTypeId="2" ParentId="3" CreationDate=" T20:30:29.917" Score="18" Body="<p>If your institution has a subscription to Journal Citation Reports (JCR), you can check it there" OwnerUserId="18" LastActivityDate=" T20:30:29.917" CommentCount="1" /> Part 1: Write a Hadoop MapReduce code that calculates the average number of answers per question Part 2: write a MapReduce code that calculates the average score per accepted answer, and the average score for answers that were not marked as accepted answers. Compare the two values. Part 3: write a MapReduce code that determines the number of answers per UserID For each of the three code versions, determine the time to perform the required analysis on the large file on the shark cluster. 9
10 Input files Very small input file available on the webpages for code development (300 lines) Small input file ( ~30MB) available in hdfs in /bigdata-hw1-small/ Large input file ( ~10GB) available in hdfs in /bigdata-hw1-large Only use large input file after you have confirmed that your code runs correctly with the small input file Documentation The Documentation should contain (Brief) Problem description Solution strategy Results section Description of resources used Description of measurements performed Results (graphs/tables + findings) 10
11 The document should not contain Replication of the entire source code that s why you have to deliver the sources Screen shots of every single measurement you made Actually, no screen shots at all. The output files 11
COSC 6397 Big Data Analytics. 2 nd homework assignment Pig and Hive. Edgar Gabriel Spring 2015
COSC 6397 Big Data Analytics 2 nd homework assignment Pig and Hive Edgar Gabriel Spring 2015 2 nd Homework Rules Each student should deliver Source code (.java files) Documentation (.pdf,.doc,.tex or.txt
Introduction to Hadoop HDFS and Ecosystems. Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data
Introduction to Hadoop HDFS and Ecosystems ANSHUL MITTAL Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data Topics The goal of this presentation is to give
Hadoop: A Framework for Data- Intensive Distributed Computing. CS561-Spring 2012 WPI, Mohamed Y. Eltabakh
1 Hadoop: A Framework for Data- Intensive Distributed Computing CS561-Spring 2012 WPI, Mohamed Y. Eltabakh 2 What is Hadoop? Hadoop is a software framework for distributed processing of large datasets
Introduction to Hadoop
Introduction to Hadoop Miles Osborne School of Informatics University of Edinburgh [email protected] October 28, 2010 Miles Osborne Introduction to Hadoop 1 Background Hadoop Programming Model Examples
Introduction to HDFS. Prasanth Kothuri, CERN
Prasanth Kothuri, CERN 2 What s HDFS HDFS is a distributed file system that is fault tolerant, scalable and extremely easy to expand. HDFS is the primary distributed storage for Hadoop applications. Hadoop
Introduction to HDFS. Prasanth Kothuri, CERN
Prasanth Kothuri, CERN 2 What s HDFS HDFS is a distributed file system that is fault tolerant, scalable and extremely easy to expand. HDFS is the primary distributed storage for Hadoop applications. HDFS
Introduction to Cloud Computing
Introduction to Cloud Computing Qloud Demonstration 15 319, spring 2010 3 rd Lecture, Jan 19 th Suhail Rehman Time to check out the Qloud! Enough Talk! Time for some Action! Finally you can have your own
A Comparison of Approaches to Large-Scale Data Analysis
A Comparison of Approaches to Large-Scale Data Analysis Sam Madden MIT CSAIL with Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel Abadi, David DeWitt, and Michael Stonebraker In SIGMOD 2009 MapReduce
HDFS. Hadoop Distributed File System
HDFS Kevin Swingler Hadoop Distributed File System File system designed to store VERY large files Streaming data access Running across clusters of commodity hardware Resilient to node failure 1 Large files
Apache Hadoop. Alexandru Costan
1 Apache Hadoop Alexandru Costan Big Data Landscape No one-size-fits-all solution: SQL, NoSQL, MapReduce, No standard, except Hadoop 2 Outline What is Hadoop? Who uses it? Architecture HDFS MapReduce Open
CS242 PROJECT. Presented by Moloud Shahbazi Spring 2015
CS242 PROJECT Presented by Moloud Shahbazi Spring 2015 AGENDA Project Overview Data Collection Indexing Big Data Processing PROJECT- PART1 1.1 Data Collection: 5G < data size < 10G Deliverables: Document
CS455 - Lab 10. Thilina Buddhika. April 6, 2015
Thilina Buddhika April 6, 2015 Agenda Course Logistics Quiz 8 Review Giga Sort - FAQ Census Data Analysis - Introduction Implementing Custom Data Types in Hadoop Course Logistics HW3-PC Component 1 (Giga
Chapter 7. Using Hadoop Cluster and MapReduce
Chapter 7 Using Hadoop Cluster and MapReduce Modeling and Prototyping of RMS for QoS Oriented Grid Page 152 7. Using Hadoop Cluster and MapReduce for Big Data Problems The size of the databases used in
Yahoo! Grid Services Where Grid Computing at Yahoo! is Today
Yahoo! Grid Services Where Grid Computing at Yahoo! is Today Marco Nicosia Grid Services Operations [email protected] What is Apache Hadoop? Distributed File System and Map-Reduce programming platform
Extreme Computing. Hadoop. Stratis Viglas. School of Informatics University of Edinburgh [email protected]. Stratis Viglas Extreme Computing 1
Extreme Computing Hadoop Stratis Viglas School of Informatics University of Edinburgh [email protected] Stratis Viglas Extreme Computing 1 Hadoop Overview Examples Environment Stratis Viglas Extreme
Extreme computing lab exercises Session one
Extreme computing lab exercises Session one Michail Basios ([email protected]) Stratis Viglas ([email protected]) 1 Getting started First you need to access the machine where you will be doing all
Big Data Too Big To Ignore
Big Data Too Big To Ignore Geert! Big Data Consultant and Manager! Currently finishing a 3 rd Big Data project! IBM & Cloudera Certified! IBM & Microsoft Big Data Partner 2 Agenda! Defining Big Data! Introduction
Hadoop. MPDL-Frühstück 9. Dezember 2013 MPDL INTERN
Hadoop MPDL-Frühstück 9. Dezember 2013 MPDL INTERN Understanding Hadoop Understanding Hadoop What's Hadoop about? Apache Hadoop project (started 2008) downloadable open-source software library (current
How To Use Hadoop
Hadoop in Action Justin Quan March 15, 2011 Poll What s to come Overview of Hadoop for the uninitiated How does Hadoop work? How do I use Hadoop? How do I get started? Final Thoughts Key Take Aways Hadoop
Tutorial: Big Data Algorithms and Applications Under Hadoop KUNPENG ZHANG SIDDHARTHA BHATTACHARYYA
Tutorial: Big Data Algorithms and Applications Under Hadoop KUNPENG ZHANG SIDDHARTHA BHATTACHARYYA http://kzhang6.people.uic.edu/tutorial/amcis2014.html August 7, 2014 Schedule I. Introduction to big data
Map Reduce & Hadoop Recommended Text:
Big Data Map Reduce & Hadoop Recommended Text:! Large datasets are becoming more common The New York Stock Exchange generates about one terabyte of new trade data per day. Facebook hosts approximately
Hadoop Architecture. Part 1
Hadoop Architecture Part 1 Node, Rack and Cluster: A node is simply a computer, typically non-enterprise, commodity hardware for nodes that contain data. Consider we have Node 1.Then we can add more nodes,
Analysing Large Web Log Files in a Hadoop Distributed Cluster Environment
Analysing Large Files in a Hadoop Distributed Cluster Environment S Saravanan, B Uma Maheswari Department of Computer Science and Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham,
Take An Internal Look at Hadoop. Hairong Kuang Grid Team, Yahoo! Inc [email protected]
Take An Internal Look at Hadoop Hairong Kuang Grid Team, Yahoo! Inc [email protected] What s Hadoop Framework for running applications on large clusters of commodity hardware Scale: petabytes of data
Parallel Databases. Parallel Architectures. Parallelism Terminology 1/4/2015. Increase performance by performing operations in parallel
Parallel Databases Increase performance by performing operations in parallel Parallel Architectures Shared memory Shared disk Shared nothing closely coupled loosely coupled Parallelism Terminology Speedup:
Introduction to NoSQL Databases and MapReduce. Tore Risch Information Technology Uppsala University 2014-05-12
Introduction to NoSQL Databases and MapReduce Tore Risch Information Technology Uppsala University 2014-05-12 What is a NoSQL Database? 1. A key/value store Basic index manager, no complete query language
Xiaoming Gao Hui Li Thilina Gunarathne
Xiaoming Gao Hui Li Thilina Gunarathne Outline HBase and Bigtable Storage HBase Use Cases HBase vs RDBMS Hands-on: Load CSV file to Hbase table with MapReduce Motivation Lots of Semi structured data Horizontal
Performance Comparison of SQL based Big Data Analytics with Lustre and HDFS file systems
Performance Comparison of SQL based Big Data Analytics with Lustre and HDFS file systems Rekha Singhal and Gabriele Pacciucci * Other names and brands may be claimed as the property of others. Lustre File
CS 455 Spring 2015. Word Count Example
CS 455 Spring 2015 Word Count Example Before starting, make sure that you have HDFS and Yarn running, using sbin/start-dfs.sh and sbin/start-yarn.sh Download text copies of at least 3 books from Project
CSE-E5430 Scalable Cloud Computing. Lecture 4
Lecture 4 Keijo Heljanko Department of Computer Science School of Science Aalto University [email protected] 5.10-2015 1/23 Hadoop - Linux of Big Data Hadoop = Open Source Distributed Operating System
Big Data With Hadoop
With Saurabh Singh [email protected] The Ohio State University February 11, 2016 Overview 1 2 3 Requirements Ecosystem Resilient Distributed Datasets (RDDs) Example Code vs Mapreduce 4 5 Source: [Tutorials
MapReduce. Tushar B. Kute, http://tusharkute.com
MapReduce Tushar B. Kute, http://tusharkute.com What is MapReduce? MapReduce is a framework using which we can write applications to process huge amounts of data, in parallel, on large clusters of commodity
OLH: Oracle Loader for Hadoop OSCH: Oracle SQL Connector for Hadoop Distributed File System (HDFS)
Use Data from a Hadoop Cluster with Oracle Database Hands-On Lab Lab Structure Acronyms: OLH: Oracle Loader for Hadoop OSCH: Oracle SQL Connector for Hadoop Distributed File System (HDFS) All files are
Extreme computing lab exercises Session one
Extreme computing lab exercises Session one Miles Osborne (original: Sasa Petrovic) October 23, 2012 1 Getting started First you need to access the machine where you will be doing all the work. Do this
How To Install Hadoop 1.2.1.1 From Apa Hadoop 1.3.2 To 1.4.2 (Hadoop)
Contents Download and install Java JDK... 1 Download the Hadoop tar ball... 1 Update $HOME/.bashrc... 3 Configuration of Hadoop in Pseudo Distributed Mode... 4 Format the newly created cluster to create
Understanding Hadoop Performance on Lustre
Understanding Hadoop Performance on Lustre Stephen Skory, PhD Seagate Technology Collaborators Kelsie Betsch, Daniel Kaslovsky, Daniel Lingenfelter, Dimitar Vlassarev, and Zhenzhen Yan LUG Conference 15
Hadoop Hands-On Exercises
Hadoop Hands-On Exercises Lawrence Berkeley National Lab July 2011 We will Training accounts/user Agreement forms Test access to carver HDFS commands Monitoring Run the word count example Simple streaming
Introduction to MapReduce and Hadoop
Introduction to MapReduce and Hadoop Jie Tao Karlsruhe Institute of Technology [email protected] Die Kooperation von Why Map/Reduce? Massive data Can not be stored on a single machine Takes too long to process
Hadoop Tutorial Group 7 - Tools For Big Data Indian Institute of Technology Bombay
Hadoop Tutorial Group 7 - Tools For Big Data Indian Institute of Technology Bombay Dipojjwal Ray Sandeep Prasad 1 Introduction In installation manual we listed out the steps for hadoop-1.0.3 and hadoop-
Map Reduce / Hadoop / HDFS
Chapter 3: Map Reduce / Hadoop / HDFS 97 Overview Outline Distributed File Systems (re-visited) Motivation Programming Model Example Applications Big Data in Apache Hadoop HDFS in Hadoop YARN 98 Overview
Hadoop. Apache Hadoop is an open-source software framework for storage and large scale processing of data-sets on clusters of commodity hardware.
Hadoop Source Alessandro Rezzani, Big Data - Architettura, tecnologie e metodi per l utilizzo di grandi basi di dati, Apogeo Education, ottobre 2013 wikipedia Hadoop Apache Hadoop is an open-source software
Distributed Filesystems
Distributed Filesystems Amir H. Payberah Swedish Institute of Computer Science [email protected] April 8, 2014 Amir H. Payberah (SICS) Distributed Filesystems April 8, 2014 1 / 32 What is Filesystem? Controls
Running Hadoop on Windows CCNP Server
Running Hadoop at Stirling Kevin Swingler Summary The Hadoopserver in CS @ Stirling A quick intoduction to Unix commands Getting files in and out Compliing your Java Submit a HadoopJob Monitor your jobs
CS380 Final Project Evaluating the Scalability of Hadoop in a Real and Virtual Environment
CS380 Final Project Evaluating the Scalability of Hadoop in a Real and Virtual Environment James Devine December 15, 2008 Abstract Mapreduce has been a very successful computational technique that has
Comparing SQL and NOSQL databases
COSC 6397 Big Data Analytics Data Formats (II) HBase Edgar Gabriel Spring 2015 Comparing SQL and NOSQL databases Types Development History Data Storage Model SQL One type (SQL database) with minor variations
Sector vs. Hadoop. A Brief Comparison Between the Two Systems
Sector vs. Hadoop A Brief Comparison Between the Two Systems Background Sector is a relatively new system that is broadly comparable to Hadoop, and people want to know what are the differences. Is Sector
A. Aiken & K. Olukotun PA3
Programming Assignment #3 Hadoop N-Gram Due Tue, Feb 18, 11:59PM In this programming assignment you will use Hadoop s implementation of MapReduce to search Wikipedia. This is not a course in search, so
BIG DATA HANDS-ON WORKSHOP Data Manipulation with Hive and Pig
BIG DATA HANDS-ON WORKSHOP Data Manipulation with Hive and Pig Contents Acknowledgements... 1 Introduction to Hive and Pig... 2 Setup... 2 Exercise 1 Load Avro data into HDFS... 2 Exercise 2 Define an
GraySort and MinuteSort at Yahoo on Hadoop 0.23
GraySort and at Yahoo on Hadoop.23 Thomas Graves Yahoo! May, 213 The Apache Hadoop[1] software library is an open source framework that allows for the distributed processing of large data sets across clusters
CS 378 Big Data Programming. Lecture 2 Map- Reduce
CS 378 Big Data Programming Lecture 2 Map- Reduce MapReduce Large data sets are not new What characterizes a problem suitable for MR? Most or all of the data is processed But viewed in small increments
Cloud Computing at Google. Architecture
Cloud Computing at Google Google File System Web Systems and Algorithms Google Chris Brooks Department of Computer Science University of San Francisco Google has developed a layered system to handle webscale
Architectural patterns for building real time applications with Apache HBase. Andrew Purtell Committer and PMC, Apache HBase
Architectural patterns for building real time applications with Apache HBase Andrew Purtell Committer and PMC, Apache HBase Who am I? Distributed systems engineer Principal Architect in the Big Data Platform
Hadoop 2.2.0 MultiNode Cluster Setup
Hadoop 2.2.0 MultiNode Cluster Setup Sunil Raiyani Jayam Modi June 7, 2014 Sunil Raiyani Jayam Modi Hadoop 2.2.0 MultiNode Cluster Setup June 7, 2014 1 / 14 Outline 4 Starting Daemons 1 Pre-Requisites
From Relational to Hadoop Part 1: Introduction to Hadoop. Gwen Shapira, Cloudera and Danil Zburivsky, Pythian
From Relational to Hadoop Part 1: Introduction to Hadoop Gwen Shapira, Cloudera and Danil Zburivsky, Pythian Tutorial Logistics 2 Got VM? 3 Grab a USB USB contains: Cloudera QuickStart VM Slides Exercises
Data Management in the Cloud
Data Management in the Cloud Ryan Stern [email protected] : Advanced Topics in Distributed Systems Department of Computer Science Colorado State University Outline Today Microsoft Cloud SQL Server
Apache Hadoop new way for the company to store and analyze big data
Apache Hadoop new way for the company to store and analyze big data Reyna Ulaque Software Engineer Agenda What is Big Data? What is Hadoop? Who uses Hadoop? Hadoop Architecture Hadoop Distributed File
MapReduce and Hadoop Distributed File System
MapReduce and Hadoop Distributed File System 1 B. RAMAMURTHY Contact: Dr. Bina Ramamurthy CSE Department University at Buffalo (SUNY) [email protected] http://www.cse.buffalo.edu/faculty/bina Partially
Hadoop IST 734 SS CHUNG
Hadoop IST 734 SS CHUNG Introduction What is Big Data?? Bulk Amount Unstructured Lots of Applications which need to handle huge amount of data (in terms of 500+ TB per day) If a regular machine need to
Scaling Out With Apache Spark. DTL Meeting 17-04-2015 Slides based on https://www.sics.se/~amir/files/download/dic/spark.pdf
Scaling Out With Apache Spark DTL Meeting 17-04-2015 Slides based on https://www.sics.se/~amir/files/download/dic/spark.pdf Your hosts Mathijs Kattenberg Technical consultant Jeroen Schot Technical consultant
DATA MINING WITH HADOOP AND HIVE Introduction to Architecture
DATA MINING WITH HADOOP AND HIVE Introduction to Architecture Dr. Wlodek Zadrozny (Most slides come from Prof. Akella s class in 2014) 2015-2025. Reproduction or usage prohibited without permission of
What We Can Do in the Cloud (2) -Tutorial for Cloud Computing Course- Mikael Fernandus Simalango WISE Research Lab Ajou University, South Korea
What We Can Do in the Cloud (2) -Tutorial for Cloud Computing Course- Mikael Fernandus Simalango WISE Research Lab Ajou University, South Korea Overview Riding Google App Engine Taming Hadoop Summary Riding
Jeffrey D. Ullman slides. MapReduce for data intensive computing
Jeffrey D. Ullman slides MapReduce for data intensive computing Single-node architecture CPU Machine Learning, Statistics Memory Classical Data Mining Disk Commodity Clusters Web data sets can be very
Lecture 32 Big Data. 1. Big Data problem 2. Why the excitement about big data 3. What is MapReduce 4. What is Hadoop 5. Get started with Hadoop
Lecture 32 Big Data 1. Big Data problem 2. Why the excitement about big data 3. What is MapReduce 4. What is Hadoop 5. Get started with Hadoop 1 2 Big Data Problems Data explosion Data from users on social
Istanbul Şehir University Big Data Camp 14. Hadoop Map Reduce. Aslan Bakirov Kevser Nur Çoğalmış
Istanbul Şehir University Big Data Camp 14 Hadoop Map Reduce Aslan Bakirov Kevser Nur Çoğalmış Agenda Map Reduce Concepts System Overview Hadoop MR Hadoop MR Internal Job Execution Workflow Map Side Details
Big Data Analytics with MapReduce VL Implementierung von Datenbanksystemen 05-Feb-13
Big Data Analytics with MapReduce VL Implementierung von Datenbanksystemen 05-Feb-13 Astrid Rheinländer Wissensmanagement in der Bioinformatik What is Big Data? collection of data sets so large and complex
Performance Comparison of Intel Enterprise Edition for Lustre* software and HDFS for MapReduce Applications
Performance Comparison of Intel Enterprise Edition for Lustre software and HDFS for MapReduce Applications Rekha Singhal, Gabriele Pacciucci and Mukesh Gangadhar 2 Hadoop Introduc-on Open source MapReduce
CS 378 Big Data Programming
CS 378 Big Data Programming Lecture 2 Map- Reduce CS 378 - Fall 2015 Big Data Programming 1 MapReduce Large data sets are not new What characterizes a problem suitable for MR? Most or all of the data is
Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware
Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware Created by Doug Cutting and Mike Carafella in 2005. Cutting named the program after
Using distributed technologies to analyze Big Data
Using distributed technologies to analyze Big Data Abhijit Sharma Innovation Lab BMC Software 1 Data Explosion in Data Center Performance / Time Series Data Incoming data rates ~Millions of data points/
Weekly Report. Hadoop Introduction. submitted By Anurag Sharma. Department of Computer Science and Engineering. Indian Institute of Technology Bombay
Weekly Report Hadoop Introduction submitted By Anurag Sharma Department of Computer Science and Engineering Indian Institute of Technology Bombay Chapter 1 What is Hadoop? Apache Hadoop (High-availability
International Journal of Advancements in Research & Technology, Volume 3, Issue 2, February-2014 10 ISSN 2278-7763
International Journal of Advancements in Research & Technology, Volume 3, Issue 2, February-2014 10 A Discussion on Testing Hadoop Applications Sevuga Perumal Chidambaram ABSTRACT The purpose of analysing
Unified Big Data Analytics Pipeline. 连 城 [email protected]
Unified Big Data Analytics Pipeline 连 城 [email protected] What is A fast and general engine for large-scale data processing An open source implementation of Resilient Distributed Datasets (RDD) Has an
CSE-E5430 Scalable Cloud Computing Lecture 2
CSE-E5430 Scalable Cloud Computing Lecture 2 Keijo Heljanko Department of Computer Science School of Science Aalto University [email protected] 14.9-2015 1/36 Google MapReduce A scalable batch processing
MapReduce and Hadoop Distributed File System V I J A Y R A O
MapReduce and Hadoop Distributed File System 1 V I J A Y R A O The Context: Big-data Man on the moon with 32KB (1969); my laptop had 2GB RAM (2009) Google collects 270PB data in a month (2007), 20000PB
Systems Infrastructure for Data Science. Web Science Group Uni Freiburg WS 2012/13
Systems Infrastructure for Data Science Web Science Group Uni Freiburg WS 2012/13 Hadoop Ecosystem Overview of this Lecture Module Background Google MapReduce The Hadoop Ecosystem Core components: Hadoop
Architectures for Big Data Analytics A database perspective
Architectures for Big Data Analytics A database perspective Fernando Velez Director of Product Management Enterprise Information Management, SAP June 2013 Outline Big Data Analytics Requirements Spectrum
USING HDFS ON DISCOVERY CLUSTER TWO EXAMPLES - test1 and test2
USING HDFS ON DISCOVERY CLUSTER TWO EXAMPLES - test1 and test2 (Using HDFS on Discovery Cluster for Discovery Cluster Users email [email protected] if you have questions or need more clarifications. Nilay
Hadoop. History and Introduction. Explained By Vaibhav Agarwal
Hadoop History and Introduction Explained By Vaibhav Agarwal Agenda Architecture HDFS Data Flow Map Reduce Data Flow Hadoop Versions History Hadoop version 2 Hadoop Architecture HADOOP (HDFS) Data Flow
MapReduce. MapReduce and SQL Injections. CS 3200 Final Lecture. Introduction. MapReduce. Programming Model. Example
MapReduce MapReduce and SQL Injections CS 3200 Final Lecture Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. OSDI'04: Sixth Symposium on Operating System Design
Hadoop Job Oriented Training Agenda
1 Hadoop Job Oriented Training Agenda Kapil CK [email protected] Module 1 M o d u l e 1 Understanding Hadoop This module covers an overview of big data, Hadoop, and the Hortonworks Data Platform. 1.1 Module
Hadoop 2.6 Configuration and More Examples
Hadoop 2.6 Configuration and More Examples Big Data 2015 Apache Hadoop & YARN Apache Hadoop (1.X)! De facto Big Data open source platform Running for about 5 years in production at hundreds of companies
Big Data Analytics(Hadoop) Prepared By : Manoj Kumar Joshi & Vikas Sawhney
Big Data Analytics(Hadoop) Prepared By : Manoj Kumar Joshi & Vikas Sawhney General Agenda Understanding Big Data and Big Data Analytics Getting familiar with Hadoop Technology Hadoop release and upgrades
Daniel J. Adabi. Workshop presentation by Lukas Probst
Daniel J. Adabi Workshop presentation by Lukas Probst 3 characteristics of a cloud computing environment: 1. Compute power is elastic, but only if workload is parallelizable 2. Data is stored at an untrusted
Fundamentals Curriculum HAWQ
Fundamentals Curriculum Pivotal Hadoop 2.1 HAWQ Education Services zdata Inc. 660 4th St. Ste. 176 San Francisco, CA 94107 t. 415.890.5764 zdatainc.com Pivotal Hadoop & HAWQ Fundamentals Course Description
Facebook s Petabyte Scale Data Warehouse using Hive and Hadoop
Facebook s Petabyte Scale Data Warehouse using Hive and Hadoop Why Another Data Warehousing System? Data, data and more data 200GB per day in March 2008 12+TB(compressed) raw data per day today Trends
Constructing a Data Lake: Hadoop and Oracle Database United!
Constructing a Data Lake: Hadoop and Oracle Database United! Sharon Sophia Stephen Big Data PreSales Consultant February 21, 2015 Safe Harbor The following is intended to outline our general product direction.
Tutorial for Assignment 2.0
Tutorial for Assignment 2.0 Florian Klien & Christian Körner IMPORTANT The presented information has been tested on the following operating systems Mac OS X 10.6 Ubuntu Linux The installation on Windows
Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related
Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related Summary Xiangzhe Li Nowadays, there are more and more data everyday about everything. For instance, here are some of the astonishing
NoSQL for SQL Professionals William McKnight
NoSQL for SQL Professionals William McKnight Session Code BD03 About your Speaker, William McKnight President, McKnight Consulting Group Frequent keynote speaker and trainer internationally Consulted to
MapReduce, Hadoop and Amazon AWS
MapReduce, Hadoop and Amazon AWS Yasser Ganjisaffar http://www.ics.uci.edu/~yganjisa February 2011 What is Hadoop? A software framework that supports data-intensive distributed applications. It enables
Cloud Computing. Lectures 10 and 11 Map Reduce: System Perspective 2014-2015
Cloud Computing Lectures 10 and 11 Map Reduce: System Perspective 2014-2015 1 MapReduce in More Detail 2 Master (i) Execution is controlled by the master process: Input data are split into 64MB blocks.
Introduction to Big data. Why Big data? Case Studies. Introduction to Hadoop. Understanding Features of Hadoop. Hadoop Architecture.
Big Data Hadoop Administration and Developer Course This course is designed to understand and implement the concepts of Big data and Hadoop. This will cover right from setting up Hadoop environment in
COURSE CONTENT Big Data and Hadoop Training
COURSE CONTENT Big Data and Hadoop Training 1. Meet Hadoop Data! Data Storage and Analysis Comparison with Other Systems RDBMS Grid Computing Volunteer Computing A Brief History of Hadoop Apache Hadoop
Department of Computer Science University of Cyprus EPL646 Advanced Topics in Databases. Lecture 14
Department of Computer Science University of Cyprus EPL646 Advanced Topics in Databases Lecture 14 Big Data Management IV: Big-data Infrastructures (Background, IO, From NFS to HFDS) Chapter 14-15: Abideboul
YARN and how MapReduce works in Hadoop By Alex Holmes
YARN and how MapReduce works in Hadoop By Alex Holmes YARN was created so that Hadoop clusters could run any type of work. This meant MapReduce had to become a YARN application and required the Hadoop
