CS 378 Big Data Programming. Lecture 2 Map- Reduce
|
|
|
- Adam Carpenter
- 10 years ago
- Views:
Transcription
1 CS 378 Big Data Programming Lecture 2 Map- Reduce
2 MapReduce Large data sets are not new What characterizes a problem suitable for MR? Most or all of the data is processed But viewed in small increments For the most part, map and reduce tasks are stateless Write once, read muljple Jmes Data Warehouse has this intended usage (write once) Unstructured data vs. structured/normalized Data pipelines are common Chain of MR jobs, with intermediate results
3 MapReduce Table 1-1, Hadoop The DefiniJve Guide Tradi&onal RDBMS MapReduce Data Size Gigabytes Petabytes Access InteracJve and batch Batch Updates Read and write many Jmes Write once, read many Structure StaJc schema Dynamic schema Integrity High Low Scaling Nonlinear Linear
4 MapReduce Tom White, in Hadoop: The Defini/ve Guide MapReduce works well on unstructured or semistructured data because it is designed to interpret the data at processing /me. In other words, the input keys and values for MapReduce are not intrinsic proper/es of the data, but they are chosen by the persona analyzing the data.
5 MapReduce When wrijng a MapReduce program You don t know the size of the data You don t know the extent of the parallelism MapReduce tries to collocate the data with the compute node Parallelize the I/O Make the I/O local (versus across network)
6 MapReduce As the name implies, for each problem we ll write Map method/funcjon Reduce method/funcjon Terms from funcjonal programming Map Apply a funcjon to each input, output the result Reduce Given a list of inputs, compute some output value
7 The data flow for the general case of multiple reduce tasks is illustrated in Figure 2-4. This diagram makes it clear why the data flow between map and reduce tasks is colloquially known as the shuffle, as each reduce task is fed by many map tasks. The MapReduce in Hadoop Figure 2.4, Hadoop - The DefiniJve Guide shuffle is more complicated than this diagram suggests, and tuning it can have a big impact on job execution time, as you will see in Shuffle and Sort on page 208. Figure 2-4. MapReduce data flow with multiple reduce tasks
8 Map FuncJon Map input is a stream of key/value pairs Web logs: Server name (key), log entry (value) Sensor reading: sensor ID (key), sensed values (value) Document ID (key), contents (value) Map funcjon processes each input pair in turn For each input pair, the map funcjon can (but isn t required) to emit one or more key/value pairs Key/value pair(s) derived from the input key/value pair Does not need to be the same key or value data type
9 Reduce FuncJon Reduce input is a stream of key/value- list pairs These are the key value pairs emieed by the map funcjon Reduce funcjon processes each input pair in turn For each input pair, the reduce funcjon can (but isn t required) to emit a key/value pair Key value pair derived from the input key/value- list pair Does not need to be the same key or value data type
10 WordCount Example For an input text file of arbitrary size, or MulJple text files of arbitrary size, or An arbitrary number of documents Count the number occurrences of all the words that appear in the input. Output: word1, count word2, count
11 WordCount Example - Map Map input is a stream of key/value pairs File posijon in bytes (key), line of text (value) Map funcjon processes each input pair in turn Extract each word from the line of text Emits a key/value pair for each word: <the- word, 1> For each input pair, the map funcjon emits muljple key/value pairs Key is a text string (the word), value is a number
12 WordCount Example - Reduce Reduce input is a stream of key/value- list pairs These are the key value pairs emieed by the map funcjon Key is a text string (the word), value is a list of some number of the value 1 Hadoop has grouped data together by key Reduce funcjon processes each input pair in turn Sums the values in the value- list For each input pair, the reduce funcjon emits a key/ value pair Key is a text string (the word), value is total count for that word
13 The data flow for the general case of multiple reduce tasks is illustrated in Figure 2-4. This diagram makes it clear why the data flow between map and reduce tasks is colloquially known as the shuffle, as each reduce task is fed by many map tasks. The MapReduce in Hadoop Figure 2.4, Hadoop - The DefiniJve Guide shuffle is more complicated than this diagram suggests, and tuning it can have a big impact on job execution time, as you will see in Shuffle and Sort on page 208. Figure 2-4. MapReduce data flow with multiple reduce tasks
14 MapReduce (from cubrid.org)
15 Java and Maven Review Directory structure expected by maven (supported in IDEs): Project directory (example name: bdp) Source code directory: bdp/src/main/java The Java package structure appears in the java directory Ex: bdp/src/main/java/com/refactorlabs/cs378/assign1 A class defined in the com.refactorlabs.cs378/assign1 package placed here Ex: bdp/src/main/java/com/refactorlabs/cs378/assign1/wordcount.java Easy setup - Create you project directory Place pom.xml in this directory Place WordCount.java as shown above Import the maven pom.xml into your IDE.
16 Assignment ArJfacts For each assignment, there will be one or more arjfacts to submit: Java code Source files in one directory (for easy inspecjon) Source files in src/main/java/ structure (use tar ) Build info: pom.xml file used for maven An inijal pom.xml file will be provided, and we ll expand this during the semester Program outputs Extracted from HDFS ArJfacts required for each assignment will be listed.
17 Assignment 1 Build a JAR file Upload to AWS S3 Create a cluster using ElasJc MapReduce (EMR) Run your map- reduce job on EMR cluster Download the output
CS 378 Big Data Programming
CS 378 Big Data Programming Lecture 2 Map- Reduce CS 378 - Fall 2015 Big Data Programming 1 MapReduce Large data sets are not new What characterizes a problem suitable for MR? Most or all of the data is
Machine- Learning Summer School - 2015
Machine- Learning Summer School - 2015 Big Data Programming David Franke Vast.com hbp://www.cs.utexas.edu/~dfranke/ Goals for Today Issues to address when you have big data Understand two popular big data
CS 378 Big Data Programming. Lecture 1 Introduc:on
CS 378 Big Data Programming Lecture 1 Introduc:on Class Logis:cs Class meets MW, 9:30 AM 11:00 AM Office Hours GDC 4.706 MW 11:00 12:00 AM By appointment Email: [email protected] Web page: cs.utexas.edu/~dfranke/courses/2015spring/cs378-
CS 378 Big Data Programming. Lecture 5 Summariza9on Pa:erns
CS 378 Big Data Programming Lecture 5 Summariza9on Pa:erns Review Assignment 2 Ques9ons? If you d like to use guava (Google collec9ons classes) pom.xml available for assignment 2 Includes dependency for
Chapter 7. Using Hadoop Cluster and MapReduce
Chapter 7 Using Hadoop Cluster and MapReduce Modeling and Prototyping of RMS for QoS Oriented Grid Page 152 7. Using Hadoop Cluster and MapReduce for Big Data Problems The size of the databases used in
Map Reduce & Hadoop Recommended Text:
Big Data Map Reduce & Hadoop Recommended Text:! Large datasets are becoming more common The New York Stock Exchange generates about one terabyte of new trade data per day. Facebook hosts approximately
Hadoop and Map-reduce computing
Hadoop and Map-reduce computing 1 Introduction This activity contains a great deal of background information and detailed instructions so that you can refer to it later for further activities and homework.
Testing 3Vs (Volume, Variety and Velocity) of Big Data
Testing 3Vs (Volume, Variety and Velocity) of Big Data 1 A lot happens in the Digital World in 60 seconds 2 What is Big Data Big Data refers to data sets whose size is beyond the ability of commonly used
How To Scale Out Of A Nosql Database
Firebird meets NoSQL (Apache HBase) Case Study Firebird Conference 2011 Luxembourg 25.11.2011 26.11.2011 Thomas Steinmaurer DI +43 7236 3343 896 [email protected] www.scch.at Michael Zwick DI
DATA MINING WITH HADOOP AND HIVE Introduction to Architecture
DATA MINING WITH HADOOP AND HIVE Introduction to Architecture Dr. Wlodek Zadrozny (Most slides come from Prof. Akella s class in 2014) 2015-2025. Reproduction or usage prohibited without permission of
Introduction to NoSQL Databases and MapReduce. Tore Risch Information Technology Uppsala University 2014-05-12
Introduction to NoSQL Databases and MapReduce Tore Risch Information Technology Uppsala University 2014-05-12 What is a NoSQL Database? 1. A key/value store Basic index manager, no complete query language
Map Reduce / Hadoop / HDFS
Chapter 3: Map Reduce / Hadoop / HDFS 97 Overview Outline Distributed File Systems (re-visited) Motivation Programming Model Example Applications Big Data in Apache Hadoop HDFS in Hadoop YARN 98 Overview
Tutorial: Big Data Algorithms and Applications Under Hadoop KUNPENG ZHANG SIDDHARTHA BHATTACHARYYA
Tutorial: Big Data Algorithms and Applications Under Hadoop KUNPENG ZHANG SIDDHARTHA BHATTACHARYYA http://kzhang6.people.uic.edu/tutorial/amcis2014.html August 7, 2014 Schedule I. Introduction to big data
Analytics in the Cloud. Peter Sirota, GM Elastic MapReduce
Analytics in the Cloud Peter Sirota, GM Elastic MapReduce Data-Driven Decision Making Data is the new raw material for any business on par with capital, people, and labor. What is Big Data? Terabytes of
Introduction to Hadoop
Introduction to Hadoop Miles Osborne School of Informatics University of Edinburgh [email protected] October 28, 2010 Miles Osborne Introduction to Hadoop 1 Background Hadoop Programming Model Examples
10605 BigML Assignment 4(a): Naive Bayes using Hadoop Streaming
10605 BigML Assignment 4(a): Naive Bayes using Hadoop Streaming Due: Friday, Feb. 21, 2014 23:59 EST via Autolab Late submission with 50% credit: Sunday, Feb. 23, 2014 23:59 EST via Autolab Policy on Collaboration
AGENDA. What is BIG DATA? What is Hadoop? Why Microsoft? The Microsoft BIG DATA story. Our BIG DATA Roadmap. Hadoop PDW
AGENDA What is BIG DATA? What is Hadoop? Why Microsoft? The Microsoft BIG DATA story Hadoop PDW Our BIG DATA Roadmap BIG DATA? Volume 59% growth in annual WW information 1.2M Zetabytes (10 21 bytes) this
Hands-on Exercises with Big Data
Hands-on Exercises with Big Data Lab Sheet 1: Getting Started with MapReduce and Hadoop The aim of this exercise is to learn how to begin creating MapReduce programs using the Hadoop Java framework. In
Introduction to Hadoop
Introduction to Hadoop 1 What is Hadoop? the big data revolution extracting value from data cloud computing 2 Understanding MapReduce the word count problem more examples MCS 572 Lecture 24 Introduction
How to properly misuse Hadoop. Marcel Huntemann NERSC tutorial session 2/12/13
How to properly misuse Hadoop Marcel Huntemann NERSC tutorial session 2/12/13 History Created by Doug Cutting (also creator of Apache Lucene). 2002 Origin in Apache Nutch (open source web search engine).
The Performance Characteristics of MapReduce Applications on Scalable Clusters
The Performance Characteristics of MapReduce Applications on Scalable Clusters Kenneth Wottrich Denison University Granville, OH 43023 [email protected] ABSTRACT Many cluster owners and operators have
Distributed Computing and Big Data: Hadoop and MapReduce
Distributed Computing and Big Data: Hadoop and MapReduce Bill Keenan, Director Terry Heinze, Architect Thomson Reuters Research & Development Agenda R&D Overview Hadoop and MapReduce Overview Use Case:
How To Use Hadoop
Hadoop in Action Justin Quan March 15, 2011 Poll What s to come Overview of Hadoop for the uninitiated How does Hadoop work? How do I use Hadoop? How do I get started? Final Thoughts Key Take Aways Hadoop
Big Data and Apache Hadoop s MapReduce
Big Data and Apache Hadoop s MapReduce Michael Hahsler Computer Science and Engineering Southern Methodist University January 23, 2012 Michael Hahsler (SMU/CSE) Hadoop/MapReduce January 23, 2012 1 / 23
Yahoo! Grid Services Where Grid Computing at Yahoo! is Today
Yahoo! Grid Services Where Grid Computing at Yahoo! is Today Marco Nicosia Grid Services Operations [email protected] What is Apache Hadoop? Distributed File System and Map-Reduce programming platform
Introduction to Hadoop
1 What is Hadoop? Introduction to Hadoop We are living in an era where large volumes of data are available and the problem is to extract meaning from the data avalanche. The goal of the software tools
Hadoop implementation of MapReduce computational model. Ján Vaňo
Hadoop implementation of MapReduce computational model Ján Vaňo What is MapReduce? A computational model published in a paper by Google in 2004 Based on distributed computation Complements Google s distributed
Hadoop WordCount Explained! IT332 Distributed Systems
Hadoop WordCount Explained! IT332 Distributed Systems Typical problem solved by MapReduce Read a lot of data Map: extract something you care about from each record Shuffle and Sort Reduce: aggregate, summarize,
Developing a MapReduce Application
TIE 12206 - Apache Hadoop Tampere University of Technology, Finland November, 2014 Outline 1 MapReduce Paradigm 2 Hadoop Default Ports 3 Outline 1 MapReduce Paradigm 2 Hadoop Default Ports 3 MapReduce
Research Laboratory. Java Web Crawler & Hadoop MapReduce Anri Morchiladze && Bachana Dolidze Supervisor Nodar Momtselidze
Research Laboratory Java Web Crawler & Hadoop MapReduce Anri Morchiladze && Bachana Dolidze Supervisor Nodar Momtselidze 1. Java Web Crawler Description Java Code 2. MapReduce Overview Example of mapreduce
CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop)
CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Spring 2016 MapReduce MapReduce is a programming model
What We Can Do in the Cloud (2) -Tutorial for Cloud Computing Course- Mikael Fernandus Simalango WISE Research Lab Ajou University, South Korea
What We Can Do in the Cloud (2) -Tutorial for Cloud Computing Course- Mikael Fernandus Simalango WISE Research Lab Ajou University, South Korea Overview Riding Google App Engine Taming Hadoop Summary Riding
Accelerating Hadoop MapReduce Using an In-Memory Data Grid
Accelerating Hadoop MapReduce Using an In-Memory Data Grid By David L. Brinker and William L. Bain, ScaleOut Software, Inc. 2013 ScaleOut Software, Inc. 12/27/2012 H adoop has been widely embraced for
L1: Introduction to Hadoop
L1: Introduction to Hadoop Feng Li [email protected] School of Statistics and Mathematics Central University of Finance and Economics Revision: December 1, 2014 Today we are going to learn... 1 General
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK A COMPREHENSIVE VIEW OF HADOOP ER. AMRINDER KAUR Assistant Professor, Department
Hadoop: A Framework for Data- Intensive Distributed Computing. CS561-Spring 2012 WPI, Mohamed Y. Eltabakh
1 Hadoop: A Framework for Data- Intensive Distributed Computing CS561-Spring 2012 WPI, Mohamed Y. Eltabakh 2 What is Hadoop? Hadoop is a software framework for distributed processing of large datasets
Getting Started with Hadoop with Amazon s Elastic MapReduce
Getting Started with Hadoop with Amazon s Elastic MapReduce Scott Hendrickson [email protected] http://drskippy.net/projects/emr-hadoopmeetup.pdf Boulder/Denver Hadoop Meetup 8 July 2010 Scott Hendrickson
Big Data With Hadoop
With Saurabh Singh [email protected] The Ohio State University February 11, 2016 Overview 1 2 3 Requirements Ecosystem Resilient Distributed Datasets (RDDs) Example Code vs Mapreduce 4 5 Source: [Tutorials
Using BAC Hadoop Cluster
Using BAC Hadoop Cluster Bodhisatta Barman Roy January 16, 2015 1 Contents 1 Introduction 3 2 Daemon locations 4 3 Pre-requisites 5 4 Setting up 6 4.1 Using a Linux Virtual Machine................... 6
Take An Internal Look at Hadoop. Hairong Kuang Grid Team, Yahoo! Inc [email protected]
Take An Internal Look at Hadoop Hairong Kuang Grid Team, Yahoo! Inc [email protected] What s Hadoop Framework for running applications on large clusters of commodity hardware Scale: petabytes of data
ITG Software Engineering
Introduction to Cloudera Course ID: Page 1 Last Updated 12/15/2014 Introduction to Cloudera Course : This 5 day course introduces the student to the Hadoop architecture, file system, and the Hadoop Ecosystem.
CS 378 Big Data Programming. Lecture 24 RDDs
CS 378 Big Data Programming Lecture 24 RDDs Review Assignment 10 Download and run Spark WordCount implementaeon WordCount alternaeve implementaeon Basic RDD TransformaEons we ve discussed filter(function)
Hadoop Installation MapReduce Examples Jake Karnes
Big Data Management Hadoop Installation MapReduce Examples Jake Karnes These slides are based on materials / slides from Cloudera.com Amazon.com Prof. P. Zadrozny's Slides Prerequistes You must have an
Performance and Energy Efficiency of. Hadoop deployment models
Performance and Energy Efficiency of Hadoop deployment models Contents Review: What is MapReduce Review: What is Hadoop Hadoop Deployment Models Metrics Experiment Results Summary MapReduce Introduced
Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related
Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related Summary Xiangzhe Li Nowadays, there are more and more data everyday about everything. For instance, here are some of the astonishing
A bit about Hadoop. Luca Pireddu. March 9, 2012. CRS4Distributed Computing Group. [email protected] (CRS4) Luca Pireddu March 9, 2012 1 / 18
A bit about Hadoop Luca Pireddu CRS4Distributed Computing Group March 9, 2012 [email protected] (CRS4) Luca Pireddu March 9, 2012 1 / 18 Often seen problems Often seen problems Low parallelism I/O is
Open source Google-style large scale data analysis with Hadoop
Open source Google-style large scale data analysis with Hadoop Ioannis Konstantinou Email: [email protected] Web: http://www.cslab.ntua.gr/~ikons Computing Systems Laboratory School of Electrical
The Hadoop Framework
The Hadoop Framework Nils Braden University of Applied Sciences Gießen-Friedberg Wiesenstraße 14 35390 Gießen [email protected] Abstract. The Hadoop Framework offers an approach to large-scale
CSE-E5430 Scalable Cloud Computing Lecture 2
CSE-E5430 Scalable Cloud Computing Lecture 2 Keijo Heljanko Department of Computer Science School of Science Aalto University [email protected] 14.9-2015 1/36 Google MapReduce A scalable batch processing
To reduce or not to reduce, that is the question
To reduce or not to reduce, that is the question 1 Running jobs on the Hadoop cluster For part 1 of assignment 8, you should have gotten the word counting example from class compiling. To start with, let
Yuji Shirasaki (JVO NAOJ)
Yuji Shirasaki (JVO NAOJ) A big table : 20 billions of photometric data from various survey SDSS, TWOMASS, USNO-b1.0,GSC2.3,Rosat, UKIDSS, SDS(Subaru Deep Survey), VVDS (VLT), GDDS (Gemini), RXTE, GOODS,
Big Data : Experiments with Apache Hadoop and JBoss Community projects
Big Data : Experiments with Apache Hadoop and JBoss Community projects About the speaker Anil Saldhana is Lead Security Architect at JBoss. Founder of PicketBox and PicketLink. Interested in using Big
Cloud Computing. Chapter 8. 8.1 Hadoop
Chapter 8 Cloud Computing In cloud computing, the idea is that a large corporation that has many computers could sell time on them, for example to make profitable use of excess capacity. The typical customer
map/reduce connected components
1, map/reduce connected components find connected components with analogous algorithm: map edges randomly to partitions (k subgraphs of n nodes) for each partition remove edges, so that only tree remains
Hadoop Job Oriented Training Agenda
1 Hadoop Job Oriented Training Agenda Kapil CK [email protected] Module 1 M o d u l e 1 Understanding Hadoop This module covers an overview of big data, Hadoop, and the Hortonworks Data Platform. 1.1 Module
Introduction To Hive
Introduction To Hive How to use Hive in Amazon EC2 CS 341: Project in Mining Massive Data Sets Hyung Jin(Evion) Kim Stanford University References: Cloudera Tutorials, CS345a session slides, Hadoop - The
MapReduce and Hadoop. Aaron Birkland Cornell Center for Advanced Computing. January 2012
MapReduce and Hadoop Aaron Birkland Cornell Center for Advanced Computing January 2012 Motivation Simple programming model for Big Data Distributed, parallel but hides this Established success at petabyte
Hadoop and Map-Reduce. Swati Gore
Hadoop and Map-Reduce Swati Gore Contents Why Hadoop? Hadoop Overview Hadoop Architecture Working Description Fault Tolerance Limitations Why Map-Reduce not MPI Distributed sort Why Hadoop? Existing Data
Connecting Hadoop with Oracle Database
Connecting Hadoop with Oracle Database Sharon Stephen Senior Curriculum Developer Server Technologies Curriculum The following is intended to outline our general product direction.
Big Data Storage, Management and challenges. Ahmed Ali-Eldin
Big Data Storage, Management and challenges Ahmed Ali-Eldin (Ambitious) Plan What is Big Data? And Why talk about Big Data? How to store Big Data? BigTables (Google) Dynamo (Amazon) How to process Big
Large scale processing using Hadoop. Ján Vaňo
Large scale processing using Hadoop Ján Vaňo What is Hadoop? Software platform that lets one easily write and run applications that process vast amounts of data Includes: MapReduce offline computing engine
Big Data Technology Map-Reduce Motivation: Indexing in Search Engines
Big Data Technology Map-Reduce Motivation: Indexing in Search Engines Edward Bortnikov & Ronny Lempel Yahoo Labs, Haifa Indexing in Search Engines Information Retrieval s two main stages: Indexing process
Understanding Hadoop Performance on Lustre
Understanding Hadoop Performance on Lustre Stephen Skory, PhD Seagate Technology Collaborators Kelsie Betsch, Daniel Kaslovsky, Daniel Lingenfelter, Dimitar Vlassarev, and Zhenzhen Yan LUG Conference 15
Can the Elephants Handle the NoSQL Onslaught?
Can the Elephants Handle the NoSQL Onslaught? Avrilia Floratou, Nikhil Teletia David J. DeWitt, Jignesh M. Patel, Donghui Zhang University of Wisconsin-Madison Microsoft Jim Gray Systems Lab Presented
A Scalable Data Transformation Framework using the Hadoop Ecosystem
A Scalable Data Transformation Framework using the Hadoop Ecosystem Raj Nair Director Data Platform Kiru Pakkirisamy CTO AGENDA About Penton and Serendio Inc Data Processing at Penton PoC Use Case Functional
MapReduce. Tushar B. Kute, http://tusharkute.com
MapReduce Tushar B. Kute, http://tusharkute.com What is MapReduce? MapReduce is a framework using which we can write applications to process huge amounts of data, in parallel, on large clusters of commodity
Analysing Large Web Log Files in a Hadoop Distributed Cluster Environment
Analysing Large Files in a Hadoop Distributed Cluster Environment S Saravanan, B Uma Maheswari Department of Computer Science and Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham,
Facebook s Petabyte Scale Data Warehouse using Hive and Hadoop
Facebook s Petabyte Scale Data Warehouse using Hive and Hadoop Why Another Data Warehousing System? Data, data and more data 200GB per day in March 2008 12+TB(compressed) raw data per day today Trends
Open source large scale distributed data management with Google s MapReduce and Bigtable
Open source large scale distributed data management with Google s MapReduce and Bigtable Ioannis Konstantinou Email: [email protected] Web: http://www.cslab.ntua.gr/~ikons Computing Systems Laboratory
Hadoop Cluster Applications
Hadoop Overview Data analytics has become a key element of the business decision process over the last decade. Classic reporting on a dataset stored in a database was sufficient until recently, but yesterday
Jeffrey D. Ullman slides. MapReduce for data intensive computing
Jeffrey D. Ullman slides MapReduce for data intensive computing Single-node architecture CPU Machine Learning, Statistics Memory Classical Data Mining Disk Commodity Clusters Web data sets can be very
Big Data and Scripting map/reduce in Hadoop
Big Data and Scripting map/reduce in Hadoop 1, 2, parts of a Hadoop map/reduce implementation core framework provides customization via indivudual map and reduce functions e.g. implementation in mongodb
How To Write A Mapreduce Program On An Ipad Or Ipad (For Free)
Course NDBI040: Big Data Management and NoSQL Databases Practice 01: MapReduce Martin Svoboda Faculty of Mathematics and Physics, Charles University in Prague MapReduce: Overview MapReduce Programming
Hadoop. http://hadoop.apache.org/ Sunday, November 25, 12
Hadoop http://hadoop.apache.org/ What Is Apache Hadoop? The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using
Getting to know Apache Hadoop
Getting to know Apache Hadoop Oana Denisa Balalau Télécom ParisTech October 13, 2015 1 / 32 Table of Contents 1 Apache Hadoop 2 The Hadoop Distributed File System(HDFS) 3 Application management in the
Sriram Krishnan, Ph.D. [email protected]
Sriram Krishnan, Ph.D. [email protected] (Re-)Introduction to cloud computing Introduction to the MapReduce and Hadoop Distributed File System Programming model Examples of MapReduce Where/how to run MapReduce
Suresh Lakavath csir urdip Pune, India [email protected].
A Big Data Hadoop Architecture for Online Analysis. Suresh Lakavath csir urdip Pune, India [email protected]. Ramlal Naik L Acme Tele Power LTD Haryana, India [email protected]. Abstract Big Data
HiBench Introduction. Carson Wang ([email protected]) Software & Services Group
HiBench Introduction Carson Wang ([email protected]) Agenda Background Workloads Configurations Benchmark Report Tuning Guide Background WHY Why we need big data benchmarking systems? WHAT What is
Big Data Analytics* Outline. Issues. Big Data
Outline Big Data Analytics* Big Data Data Analytics: Challenges and Issues Misconceptions Big Data Infrastructure Scalable Distributed Computing: Hadoop Programming in Hadoop: MapReduce Paradigm Example
INTRODUCTION TO APACHE HADOOP MATTHIAS BRÄGER CERN GS-ASE
INTRODUCTION TO APACHE HADOOP MATTHIAS BRÄGER CERN GS-ASE AGENDA Introduction to Big Data Introduction to Hadoop HDFS file system Map/Reduce framework Hadoop utilities Summary BIG DATA FACTS In what timeframe
Internals of Hadoop Application Framework and Distributed File System
International Journal of Scientific and Research Publications, Volume 5, Issue 7, July 2015 1 Internals of Hadoop Application Framework and Distributed File System Saminath.V, Sangeetha.M.S Abstract- Hadoop
Real Time Big Data Processing
Real Time Big Data Processing Cloud Expo 2014 Ian Meyers Amazon Web Services Global Infrastructure Deployment & Administration App Services Analytics Compute Storage Database Networking AWS Global Infrastructure
Architecting for Big Data Analytics and Beyond: A New Framework for Business Intelligence and Data Warehousing
Architecting for Big Data Analytics and Beyond: A New Framework for Business Intelligence and Data Warehousing Wayne W. Eckerson Director of Research, TechTarget Founder, BI Leadership Forum Business Analytics
USING HDFS ON DISCOVERY CLUSTER TWO EXAMPLES - test1 and test2
USING HDFS ON DISCOVERY CLUSTER TWO EXAMPLES - test1 and test2 (Using HDFS on Discovery Cluster for Discovery Cluster Users email [email protected] if you have questions or need more clarifications. Nilay
Improving Data Processing Speed in Big Data Analytics Using. HDFS Method
Improving Data Processing Speed in Big Data Analytics Using HDFS Method M.R.Sundarakumar Assistant Professor, Department Of Computer Science and Engineering, R.V College of Engineering, Bangalore, India
GraySort and MinuteSort at Yahoo on Hadoop 0.23
GraySort and at Yahoo on Hadoop.23 Thomas Graves Yahoo! May, 213 The Apache Hadoop[1] software library is an open source framework that allows for the distributed processing of large data sets across clusters
NoSQL and Hadoop Technologies On Oracle Cloud
NoSQL and Hadoop Technologies On Oracle Cloud Vatika Sharma 1, Meenu Dave 2 1 M.Tech. Scholar, Department of CSE, Jagan Nath University, Jaipur, India 2 Assistant Professor, Department of CSE, Jagan Nath
Data Warehousing and Analytics Infrastructure at Facebook. Ashish Thusoo & Dhruba Borthakur athusoo,[email protected]
Data Warehousing and Analytics Infrastructure at Facebook Ashish Thusoo & Dhruba Borthakur athusoo,[email protected] Overview Challenges in a Fast Growing & Dynamic Environment Data Flow Architecture,
Hadoop/MapReduce. Object-oriented framework presentation CSCI 5448 Casey McTaggart
Hadoop/MapReduce Object-oriented framework presentation CSCI 5448 Casey McTaggart What is Apache Hadoop? Large scale, open source software framework Yahoo! has been the largest contributor to date Dedicated
Hadoop 101. Lars George. NoSQL- Ma4ers, Cologne April 26, 2013
Hadoop 101 Lars George NoSQL- Ma4ers, Cologne April 26, 2013 1 What s Ahead? Overview of Apache Hadoop (and related tools) What it is Why it s relevant How it works No prior experience needed Feel free
MarkLogic Server. MarkLogic Connector for Hadoop Developer s Guide. MarkLogic 8 February, 2015
MarkLogic Connector for Hadoop Developer s Guide 1 MarkLogic 8 February, 2015 Last Revised: 8.0-3, June, 2015 Copyright 2015 MarkLogic Corporation. All rights reserved. Table of Contents Table of Contents
Testing Big data is one of the biggest
Infosys Labs Briefings VOL 11 NO 1 2013 Big Data: Testing Approach to Overcome Quality Challenges By Mahesh Gudipati, Shanthi Rao, Naju D. Mohan and Naveen Kumar Gajja Validate data quality by employing
Background on Elastic Compute Cloud (EC2) AMI s to choose from including servers hosted on different Linux distros
David Moses January 2014 Paper on Cloud Computing I Background on Tools and Technologies in Amazon Web Services (AWS) In this paper I will highlight the technologies from the AWS cloud which enable you
A Novel Cloud Based Elastic Framework for Big Data Preprocessing
School of Systems Engineering A Novel Cloud Based Elastic Framework for Big Data Preprocessing Omer Dawelbeit and Rachel McCrindle October 21, 2014 University of Reading 2008 www.reading.ac.uk Overview
Introduction to Cloud Computing
Introduction to Cloud Computing Qloud Demonstration 15 319, spring 2010 3 rd Lecture, Jan 19 th Suhail Rehman Time to check out the Qloud! Enough Talk! Time for some Action! Finally you can have your own
Performance Comparison of Intel Enterprise Edition for Lustre* software and HDFS for MapReduce Applications
Performance Comparison of Intel Enterprise Edition for Lustre software and HDFS for MapReduce Applications Rekha Singhal, Gabriele Pacciucci and Mukesh Gangadhar 2 Hadoop Introduc-on Open source MapReduce
