MapReduce and Hadoop Distributed File System V I J A Y R A O
|
|
|
- Peter Hunt
- 10 years ago
- Views:
Transcription
1 MapReduce and Hadoop Distributed File System 1 V I J A Y R A O
2 The Context: Big-data Man on the moon with 32KB (1969); my laptop had 2GB RAM (2009) Google collects 270PB data in a month (2007), 20000PB a day (2008) 2010 census data is expected to be a huge gold mine of information mining huge amounts of data collected in a wide range of domains from astronomy to healthcare has become essential for planning and performance. We are in a knowledge economy. is an important asset to any organization Discovery of knowledge; Enabling discovery; annotation of data We are looking at newer programming models, and Supporting algorithms and data structures. NSF refers to it as data-intensive computing and industry calls it bigdata and cloud computing 2
3 MapReduce 3 CCSCNE 2009 Palttsburg, April B.Ramamurthy & K.Madurai
4 What is MapReduce? MapReduce is a programming model Google has used successfully is processing its big-data sets (~ peta bytes per day) Users specify the computation in terms of a map and a reduce function, Underlying runtime system automatically parallelizes the computation across large-scale clusters of machines, and 4 Underlying system also handles machine failures, efficient communications, and performance issues.
5 From CS Foundations to MapReduce Consider a large data : {web, weed, green, sun, moon, land, part, web, green, } Problem: Count the occurrences of the different words in the. Lets design a solution for this problem; We will start from scratch We will add and relax constraints We will do incremental design, improving the solution for performance and scalability 5
6 Word Counter and Result Table {web, weed, green, sun, moon, land, part, web, green, } 6 web 2 weed 1 Main WordCounter green 2 sun 1 moon 1 land 1 part 1 parse( ) count( ) Collection ResultTable
7 Multiple Instances of Word Counter 7 web 2 weed 1 Main green 2 sun 1 Thread WordCounter parse( ) count( ) moon 1 land 1 part 1 Collection ResultTable Observe: Multi-thread Lock on shared data
8 Improve Word Counter for Performance Main 8 N o No need for lock web 2 weed 1 green 2 sun 1 Parser Thread Counter moon 1 land 1 part 1 Collection WordList ResultTable Separate counters KEY web weed green sun moon land part web green. VALUE
9 Peta-scale 9 Main web 2 weed 1 green 2 Parser Thread Counter sun 1 moon 1 land 1 part 1 Collection WordList ResultTable KEY web weed green sun moon land part web green. VALUE
10 Addressing the Scale Issue Single machine cannot serve all the data: you need a distributed special (file) system Large number of commodity hardware disks: say, 1000 disks 1TB each Issue: With Mean time between failures (MTBF) or failure rate of 1/1000, then at least 1 of the above 1000 disks would be down at a given time. Thus failure is norm and not an exception. File system has to be fault-tolerant: replication, checksum transfer bandwidth is critical (location of data) Critical aspects: fault tolerance + replication + load balancing, monitoring Exploit parallelism afforded by splitting parsing and counting Provision and locate computing at data locations 10
11 Peta-scale 11 Main web 2 weed 1 green 2 Parser Thread Counter sun 1 moon 1 land 1 part 1 Collection WordList ResultTable KEY web weed green sun moon land part web green. VALUE
12 Peta Scale is Commonly Distributed 12 Main web 2 weed 1 green 2 Parser Thread Counter sun 1 moon 1 land 1 part 1 Collection WordList ResultTable Issue: managing the large scale data KEY web weed green sun moon land part web green. VALUE
13 Write Once Read Many (WORM) data 13 Main web 2 weed 1 green 2 Parser Thread Counter sun 1 moon 1 land 1 part 1 Collection WordList ResultTable KEY web weed green sun moon land part web green. VALUE
14 WORM is Amenable to Parallelism 14 Parser Main Thread Counter 1. with WORM characteristics : yields to parallel processing; 2. without dependencies: yields to out of order processing Collection WordList ResultTable
15 Divide and Conquer: Provision Computing at Location One node Parser Collection Main Thread WordList Counter ResultTable 15 For our example, #1: Schedule parallel parse tasks #2: Schedule parallel count tasks This is a particular solution; Lets generalize it: Main Parser Thread Counter Our parse is a mapping operation: MAP: input <key, value> pairs Collection WordList ResultTable Parser Collection Main Thread WordList Counter ResultTable Our count is a reduce operation: REDUCE: <key, value> pairs reduced Map/Reduce originated from Lisp But have different meaning here Parser Collection Main Thread WordList Counter ResultTable Runtime adds distribution + fault tolerance + replication + monitoring + load balancing to your base application!
16 Mapper and Reducer 16 MapReduceTask Mapper Reducer YourMapper Parser YourReducer Counter Remember: MapReduce is simplified processing for larger data sets: MapReduce Version of WordCount Source code
17 Map Operation MAP: Input data <key, value> pair Collection: split1 Collection: split 2 Split the data to Supply multiple processors 17 Map Map web 1 weed 1 green 1 web 1 sun 1 weed 1 moon 1 green 1 land 1 web sun 1 1 part 1 weed moon 1 1 web 1 green land 1 web 1 1 green 1 sun part 1 weed 1 1 web 1 1 moon web 1 green 1 1 weedkey 1 VALUE land green 1 sun 1 1 green 1 part 1 moon 1 1 sun 1 web KEY 1 land VALUE 1 moon 1 green 1 part 1 land 1 1 web 1 part 1 KEY VALUE green 1 web 1 1 green 1 KEY VALUE 1 Collection: split n KEY VALUE
18 Reduce Operation MAP: Input data <key, value> pair REDUCE: <key, value> pair <result> 18 Collection: split1 Split the data to Supply multiple processors Map Reduce Collection: split 2 Map Reduce Collection: split n Map Reduce
19 Large scale data splits Map <key, 1> Reducers (say, Count) Parse-hash Count P-0000, count1 Parse-hash Parse-hash Count P-0001, count2 Parse-hash Count P-0002,count3
20 MapReduce Example 20 Cat split map combine reduce part0 split map combine reduce part1 Bat Dog split map combine reduce part2 Other Words (size: TByte) split map
21 Overall MapReduce Example
22 MapReduce Programming Model 22
23 MapReduce programming model Determine if the problem is parallelizable and solvable using MapReduce (ex: Is the data WORM?, large data set). Design and implement solution as Mapper classes and Reducer class. Compile the source code with hadoop core. Package the code as jar executable. Configure the application (job) as to the number of mappers and reducers (tasks), input and output streams Load the data (or use it on previously available data) Launch the job and monitor. Study the result. Detailed steps. 23
24 MapReduce Characteristics Very large scale data: peta, exa bytes Write once and read many data: allows for parallelism without mutexes Map and Reduce are the main operations: simple code There are other supporting operations such as combine and partition (out of the scope of this talk). All the map should be completed before reduce operation starts. Map and reduce operations are typically performed by the same physical processor. Number of map tasks and reduce tasks are configurable. Operations are provisioned near the data. Commodity hardware and storage. Runtime takes care of splitting and moving data for operations. Special distributed file system. Example: Hadoop Distributed File System and Hadoop Runtime. 24
25 Classes of problems mapreducable Benchmark for comparing: Jim Gray s challenge on dataintensive computing. Ex: Sort Google uses it (we think) for wordcount, adwords, pagerank, indexing data. Simple algorithms such as grep, text-indexing, reverse indexing Bayesian classification: data mining domain Facebook uses it for various operations: demographics Financial services use it for analytics Astronomy: Gaussian analysis for locating extra-terrestrial objects. Expected to play a critical role in semantic web and web3.0 25
26 size: small Pipelined Instruction level Scope of MapReduce 26 Concurrent Thread level Service Object level Indexed File level Mega Block level Virtual System Level size: large
27 Hadoop 27
28 What is Hadoop? 28 At Google MapReduce operation are run on a special file system called Google File System (GFS) that is highly optimized for this purpose. GFS is not open source. Doug Cutting and Yahoo! reverse engineered the GFS and called it Hadoop Distributed File System (HDFS). The software framework that supports HDFS, MapReduce and other related entities is called the project Hadoop or simply Hadoop. This is open source and distributed by Apache.
29 Basic Features: HDFS Highly fault-tolerant High throughput Suitable for applications with large data sets Streaming access to file system data Can be built out of commodity hardware 29
30 Hadoop Distributed File System 30 HDFS Server Master node HDFS Client Application Local file system Block size: 2K Name Nodes Block size: 128M Replicated
31 Hadoop Distributed File System 31 HDFS Server Master node blockmap HDFS Client Application heartbeat Local file system Block size: 2K Name Nodes Block size: 128M Replicated
MapReduce and Hadoop Distributed File System
MapReduce and Hadoop Distributed File System 1 B. RAMAMURTHY Contact: Dr. Bina Ramamurthy CSE Department University at Buffalo (SUNY) [email protected] http://www.cse.buffalo.edu/faculty/bina Partially
CSE-E5430 Scalable Cloud Computing Lecture 2
CSE-E5430 Scalable Cloud Computing Lecture 2 Keijo Heljanko Department of Computer Science School of Science Aalto University [email protected] 14.9-2015 1/36 Google MapReduce A scalable batch processing
Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware
Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware Created by Doug Cutting and Mike Carafella in 2005. Cutting named the program after
Distributed File System. MCSN N. Tonellotto Complements of Distributed Enabling Platforms
Distributed File System 1 How do we get data to the workers? NAS Compute Nodes SAN 2 Distributed File System Don t move data to workers move workers to the data! Store data on the local disks of nodes
Hadoop IST 734 SS CHUNG
Hadoop IST 734 SS CHUNG Introduction What is Big Data?? Bulk Amount Unstructured Lots of Applications which need to handle huge amount of data (in terms of 500+ TB per day) If a regular machine need to
Big Data and Apache Hadoop s MapReduce
Big Data and Apache Hadoop s MapReduce Michael Hahsler Computer Science and Engineering Southern Methodist University January 23, 2012 Michael Hahsler (SMU/CSE) Hadoop/MapReduce January 23, 2012 1 / 23
DATA MINING WITH HADOOP AND HIVE Introduction to Architecture
DATA MINING WITH HADOOP AND HIVE Introduction to Architecture Dr. Wlodek Zadrozny (Most slides come from Prof. Akella s class in 2014) 2015-2025. Reproduction or usage prohibited without permission of
Parallel Processing of cluster by Map Reduce
Parallel Processing of cluster by Map Reduce Abstract Madhavi Vaidya, Department of Computer Science Vivekanand College, Chembur, Mumbai [email protected] MapReduce is a parallel programming model
Chapter 7. Using Hadoop Cluster and MapReduce
Chapter 7 Using Hadoop Cluster and MapReduce Modeling and Prototyping of RMS for QoS Oriented Grid Page 152 7. Using Hadoop Cluster and MapReduce for Big Data Problems The size of the databases used in
Hadoop: A Framework for Data- Intensive Distributed Computing. CS561-Spring 2012 WPI, Mohamed Y. Eltabakh
1 Hadoop: A Framework for Data- Intensive Distributed Computing CS561-Spring 2012 WPI, Mohamed Y. Eltabakh 2 What is Hadoop? Hadoop is a software framework for distributed processing of large datasets
HiBench Introduction. Carson Wang ([email protected]) Software & Services Group
HiBench Introduction Carson Wang ([email protected]) Agenda Background Workloads Configurations Benchmark Report Tuning Guide Background WHY Why we need big data benchmarking systems? WHAT What is
Introduction to Big Data! with Apache Spark" UC#BERKELEY#
Introduction to Big Data! with Apache Spark" UC#BERKELEY# This Lecture" The Big Data Problem" Hardware for Big Data" Distributing Work" Handling Failures and Slow Machines" Map Reduce and Complex Jobs"
PLATFORM AND SOFTWARE AS A SERVICE THE MAPREDUCE PROGRAMMING MODEL AND IMPLEMENTATIONS
PLATFORM AND SOFTWARE AS A SERVICE THE MAPREDUCE PROGRAMMING MODEL AND IMPLEMENTATIONS By HAI JIN, SHADI IBRAHIM, LI QI, HAIJUN CAO, SONG WU and XUANHUA SHI Prepared by: Dr. Faramarz Safi Islamic Azad
Hadoop Architecture. Part 1
Hadoop Architecture Part 1 Node, Rack and Cluster: A node is simply a computer, typically non-enterprise, commodity hardware for nodes that contain data. Consider we have Node 1.Then we can add more nodes,
THE HADOOP DISTRIBUTED FILE SYSTEM
THE HADOOP DISTRIBUTED FILE SYSTEM Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler Presented by Alexander Pokluda October 7, 2013 Outline Motivation and Overview of Hadoop Architecture,
Hadoop Distributed File System. Jordan Prosch, Matt Kipps
Hadoop Distributed File System Jordan Prosch, Matt Kipps Outline - Background - Architecture - Comments & Suggestions Background What is HDFS? Part of Apache Hadoop - distributed storage What is Hadoop?
Reducer Load Balancing and Lazy Initialization in Map Reduce Environment S.Mohanapriya, P.Natesan
Reducer Load Balancing and Lazy Initialization in Map Reduce Environment S.Mohanapriya, P.Natesan Abstract Big Data is revolutionizing 21st-century with increasingly huge amounts of data to store and be
Big Data Processing with Google s MapReduce. Alexandru Costan
1 Big Data Processing with Google s MapReduce Alexandru Costan Outline Motivation MapReduce programming model Examples MapReduce system architecture Limitations Extensions 2 Motivation Big Data @Google:
GraySort and MinuteSort at Yahoo on Hadoop 0.23
GraySort and at Yahoo on Hadoop.23 Thomas Graves Yahoo! May, 213 The Apache Hadoop[1] software library is an open source framework that allows for the distributed processing of large data sets across clusters
Hadoop Distributed File System. T-111.5550 Seminar On Multimedia 2009-11-11 Eero Kurkela
Hadoop Distributed File System T-111.5550 Seminar On Multimedia 2009-11-11 Eero Kurkela Agenda Introduction Flesh and bones of HDFS Architecture Accessing data Data replication strategy Fault tolerance
Jeffrey D. Ullman slides. MapReduce for data intensive computing
Jeffrey D. Ullman slides MapReduce for data intensive computing Single-node architecture CPU Machine Learning, Statistics Memory Classical Data Mining Disk Commodity Clusters Web data sets can be very
Data-Intensive Computing with Map-Reduce and Hadoop
Data-Intensive Computing with Map-Reduce and Hadoop Shamil Humbetov Department of Computer Engineering Qafqaz University Baku, Azerbaijan [email protected] Abstract Every day, we create 2.5 quintillion
MapReduce with Apache Hadoop Analysing Big Data
MapReduce with Apache Hadoop Analysing Big Data April 2010 Gavin Heavyside [email protected] About Journey Dynamics Founded in 2006 to develop software technology to address the issues
Hadoop at Yahoo! Owen O Malley Yahoo!, Grid Team [email protected]
Hadoop at Yahoo! Owen O Malley Yahoo!, Grid Team [email protected] Who Am I? Yahoo! Architect on Hadoop Map/Reduce Design, review, and implement features in Hadoop Working on Hadoop full time since Feb
Open source Google-style large scale data analysis with Hadoop
Open source Google-style large scale data analysis with Hadoop Ioannis Konstantinou Email: [email protected] Web: http://www.cslab.ntua.gr/~ikons Computing Systems Laboratory School of Electrical
Unstructured Data Accelerator (UDA) Author: Motti Beck, Mellanox Technologies Date: March 27, 2012
Unstructured Data Accelerator (UDA) Author: Motti Beck, Mellanox Technologies Date: March 27, 2012 1 Market Trends Big Data Growing technology deployments are creating an exponential increase in the volume
Introduction to Hadoop HDFS and Ecosystems. Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data
Introduction to Hadoop HDFS and Ecosystems ANSHUL MITTAL Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data Topics The goal of this presentation is to give
BIG DATA USING HADOOP
+ Breakaway Session By Johnson Iyilade, Ph.D. University of Saskatchewan, Canada 23-July, 2015 BIG DATA USING HADOOP + Outline n Framing the Problem Hadoop Solves n Meet Hadoop n Storage with HDFS n Data
MapReduce, Hadoop and Amazon AWS
MapReduce, Hadoop and Amazon AWS Yasser Ganjisaffar http://www.ics.uci.edu/~yganjisa February 2011 What is Hadoop? A software framework that supports data-intensive distributed applications. It enables
Hadoop Distributed File System. Dhruba Borthakur Apache Hadoop Project Management Committee [email protected] June 3 rd, 2008
Hadoop Distributed File System Dhruba Borthakur Apache Hadoop Project Management Committee [email protected] June 3 rd, 2008 Who Am I? Hadoop Developer Core contributor since Hadoop s infancy Focussed
Introduction to Hadoop
Introduction to Hadoop Miles Osborne School of Informatics University of Edinburgh [email protected] October 28, 2010 Miles Osborne Introduction to Hadoop 1 Background Hadoop Programming Model Examples
Mobile Cloud Computing for Data-Intensive Applications
Mobile Cloud Computing for Data-Intensive Applications Senior Thesis Final Report Vincent Teo, [email protected] Advisor: Professor Priya Narasimhan, [email protected] Abstract The computational and storage
Hadoop and Map-Reduce. Swati Gore
Hadoop and Map-Reduce Swati Gore Contents Why Hadoop? Hadoop Overview Hadoop Architecture Working Description Fault Tolerance Limitations Why Map-Reduce not MPI Distributed sort Why Hadoop? Existing Data
Hadoop and its Usage at Facebook. Dhruba Borthakur [email protected], June 22 rd, 2009
Hadoop and its Usage at Facebook Dhruba Borthakur [email protected], June 22 rd, 2009 Who Am I? Hadoop Developer Core contributor since Hadoop s infancy Focussed on Hadoop Distributed File System Facebook
Hadoop/MapReduce. Object-oriented framework presentation CSCI 5448 Casey McTaggart
Hadoop/MapReduce Object-oriented framework presentation CSCI 5448 Casey McTaggart What is Apache Hadoop? Large scale, open source software framework Yahoo! has been the largest contributor to date Dedicated
CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop)
CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Spring 2016 MapReduce MapReduce is a programming model
Cloud Computing at Google. Architecture
Cloud Computing at Google Google File System Web Systems and Algorithms Google Chris Brooks Department of Computer Science University of San Francisco Google has developed a layered system to handle webscale
COMP 598 Applied Machine Learning Lecture 21: Parallelization methods for large-scale machine learning! Big Data by the numbers
COMP 598 Applied Machine Learning Lecture 21: Parallelization methods for large-scale machine learning! Instructor: ([email protected]) TAs: Pierre-Luc Bacon ([email protected]) Ryan Lowe ([email protected])
Take An Internal Look at Hadoop. Hairong Kuang Grid Team, Yahoo! Inc [email protected]
Take An Internal Look at Hadoop Hairong Kuang Grid Team, Yahoo! Inc [email protected] What s Hadoop Framework for running applications on large clusters of commodity hardware Scale: petabytes of data
MapReduce and Hadoop. Aaron Birkland Cornell Center for Advanced Computing. January 2012
MapReduce and Hadoop Aaron Birkland Cornell Center for Advanced Computing January 2012 Motivation Simple programming model for Big Data Distributed, parallel but hides this Established success at petabyte
MASSIVE DATA PROCESSING (THE GOOGLE WAY ) 27/04/2015. Fundamentals of Distributed Systems. Inside Google circa 2015
7/04/05 Fundamentals of Distributed Systems CC5- PROCESAMIENTO MASIVO DE DATOS OTOÑO 05 Lecture 4: DFS & MapReduce I Aidan Hogan [email protected] Inside Google circa 997/98 MASSIVE DATA PROCESSING (THE
Log Mining Based on Hadoop s Map and Reduce Technique
Log Mining Based on Hadoop s Map and Reduce Technique ABSTRACT: Anuja Pandit Department of Computer Science, [email protected] Amruta Deshpande Department of Computer Science, [email protected]
Parallel Databases. Parallel Architectures. Parallelism Terminology 1/4/2015. Increase performance by performing operations in parallel
Parallel Databases Increase performance by performing operations in parallel Parallel Architectures Shared memory Shared disk Shared nothing closely coupled loosely coupled Parallelism Terminology Speedup:
BIG DATA TRENDS AND TECHNOLOGIES
BIG DATA TRENDS AND TECHNOLOGIES THE WORLD OF DATA IS CHANGING Cloud WHAT IS BIG DATA? Big data are datasets that grow so large that they become awkward to work with using onhand database management tools.
Keywords: Big Data, HDFS, Map Reduce, Hadoop
Volume 5, Issue 7, July 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Configuration Tuning
Scalable Cloud Computing Solutions for Next Generation Sequencing Data
Scalable Cloud Computing Solutions for Next Generation Sequencing Data Matti Niemenmaa 1, Aleksi Kallio 2, André Schumacher 1, Petri Klemelä 2, Eija Korpelainen 2, and Keijo Heljanko 1 1 Department of
Introduction to Hadoop
Introduction to Hadoop 1 What is Hadoop? the big data revolution extracting value from data cloud computing 2 Understanding MapReduce the word count problem more examples MCS 572 Lecture 24 Introduction
Hadoop Distributed File System. Dhruba Borthakur Apache Hadoop Project Management Committee [email protected] [email protected]
Hadoop Distributed File System Dhruba Borthakur Apache Hadoop Project Management Committee [email protected] [email protected] Hadoop, Why? Need to process huge datasets on large clusters of computers
IMPROVED FAIR SCHEDULING ALGORITHM FOR TASKTRACKER IN HADOOP MAP-REDUCE
IMPROVED FAIR SCHEDULING ALGORITHM FOR TASKTRACKER IN HADOOP MAP-REDUCE Mr. Santhosh S 1, Mr. Hemanth Kumar G 2 1 PG Scholor, 2 Asst. Professor, Dept. Of Computer Science & Engg, NMAMIT, (India) ABSTRACT
Lecture 10 - Functional programming: Hadoop and MapReduce
Lecture 10 - Functional programming: Hadoop and MapReduce Sohan Dharmaraja Sohan Dharmaraja Lecture 10 - Functional programming: Hadoop and MapReduce 1 / 41 For today Big Data and Text analytics Functional
Outline. High Performance Computing (HPC) Big Data meets HPC. Case Studies: Some facts about Big Data Technologies HPC and Big Data converging
Outline High Performance Computing (HPC) Towards exascale computing: a brief history Challenges in the exascale era Big Data meets HPC Some facts about Big Data Technologies HPC and Big Data converging
A STUDY ON HADOOP ARCHITECTURE FOR BIG DATA ANALYTICS
A STUDY ON HADOOP ARCHITECTURE FOR BIG DATA ANALYTICS Dr. Ananthi Sheshasayee 1, J V N Lakshmi 2 1 Head Department of Computer Science & Research, Quaid-E-Millath Govt College for Women, Chennai, (India)
What is Big Data? Concepts, Ideas and Principles. Hitesh Dharamdasani
What is Big Data? Concepts, Ideas and Principles Hitesh Dharamdasani # whoami Security Researcher, Malware Reversing Engineer, Developer GIT > George Mason > UC Berkeley > FireEye > On Stage Building Data-driven
Intro to Map/Reduce a.k.a. Hadoop
Intro to Map/Reduce a.k.a. Hadoop Based on: Mining of Massive Datasets by Ra jaraman and Ullman, Cambridge University Press, 2011 Data Mining for the masses by North, Global Text Project, 2012 Slides by
The Hadoop Framework
The Hadoop Framework Nils Braden University of Applied Sciences Gießen-Friedberg Wiesenstraße 14 35390 Gießen [email protected] Abstract. The Hadoop Framework offers an approach to large-scale
Hadoop Parallel Data Processing
MapReduce and Implementation Hadoop Parallel Data Processing Kai Shen A programming interface (two stage Map and Reduce) and system support such that: the interface is easy to program, and suitable for
Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related
Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related Summary Xiangzhe Li Nowadays, there are more and more data everyday about everything. For instance, here are some of the astonishing
BIG DATA What it is and how to use?
BIG DATA What it is and how to use? Lauri Ilison, PhD Data Scientist 21.11.2014 Big Data definition? There is no clear definition for BIG DATA BIG DATA is more of a concept than precise term 1 21.11.14
Introduction to Hadoop
1 What is Hadoop? Introduction to Hadoop We are living in an era where large volumes of data are available and the problem is to extract meaning from the data avalanche. The goal of the software tools
A bit about Hadoop. Luca Pireddu. March 9, 2012. CRS4Distributed Computing Group. [email protected] (CRS4) Luca Pireddu March 9, 2012 1 / 18
A bit about Hadoop Luca Pireddu CRS4Distributed Computing Group March 9, 2012 [email protected] (CRS4) Luca Pireddu March 9, 2012 1 / 18 Often seen problems Often seen problems Low parallelism I/O is
Large scale processing using Hadoop. Ján Vaňo
Large scale processing using Hadoop Ján Vaňo What is Hadoop? Software platform that lets one easily write and run applications that process vast amounts of data Includes: MapReduce offline computing engine
Introduction to Big Data Science. Wuhui Chen
Introduction to Big Data Science Wuhui Chen What is Big data? Volume Variety Velocity Outline What are people doing with Big data? Classic examples Two basic technologies for Big data management: Data
CS246: Mining Massive Datasets Jure Leskovec, Stanford University. http://cs246.stanford.edu
CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu 2 CPU Memory Machine Learning, Statistics Classical Data Mining Disk 3 20+ billion web pages x 20KB = 400+ TB
16.1 MAPREDUCE. For personal use only, not for distribution. 333
For personal use only, not for distribution. 333 16.1 MAPREDUCE Initially designed by the Google labs and used internally by Google, the MAPREDUCE distributed programming model is now promoted by several
Using Hadoop for Webscale Computing. Ajay Anand Yahoo! [email protected] Usenix 2008
Using Hadoop for Webscale Computing Ajay Anand Yahoo! [email protected] Agenda The Problem Solution Approach / Introduction to Hadoop HDFS File System Map Reduce Programming Pig Hadoop implementation
Hadoop. MPDL-Frühstück 9. Dezember 2013 MPDL INTERN
Hadoop MPDL-Frühstück 9. Dezember 2013 MPDL INTERN Understanding Hadoop Understanding Hadoop What's Hadoop about? Apache Hadoop project (started 2008) downloadable open-source software library (current
A Performance Analysis of Distributed Indexing using Terrier
A Performance Analysis of Distributed Indexing using Terrier Amaury Couste Jakub Kozłowski William Martin Indexing Indexing Used by search
Leveraging BlobSeer to boost up the deployment and execution of Hadoop applications in Nimbus cloud environments on Grid 5000
Leveraging BlobSeer to boost up the deployment and execution of Hadoop applications in Nimbus cloud environments on Grid 5000 Alexandra Carpen-Amarie Diana Moise Bogdan Nicolae KerData Team, INRIA Outline
Suresh Lakavath csir urdip Pune, India [email protected].
A Big Data Hadoop Architecture for Online Analysis. Suresh Lakavath csir urdip Pune, India [email protected]. Ramlal Naik L Acme Tele Power LTD Haryana, India [email protected]. Abstract Big Data
Hadoop implementation of MapReduce computational model. Ján Vaňo
Hadoop implementation of MapReduce computational model Ján Vaňo What is MapReduce? A computational model published in a paper by Google in 2004 Based on distributed computation Complements Google s distributed
Survey on Scheduling Algorithm in MapReduce Framework
Survey on Scheduling Algorithm in MapReduce Framework Pravin P. Nimbalkar 1, Devendra P.Gadekar 2 1,2 Department of Computer Engineering, JSPM s Imperial College of Engineering and Research, Pune, India
Big Data With Hadoop
With Saurabh Singh [email protected] The Ohio State University February 11, 2016 Overview 1 2 3 Requirements Ecosystem Resilient Distributed Datasets (RDDs) Example Code vs Mapreduce 4 5 Source: [Tutorials
Apache Hadoop. Alexandru Costan
1 Apache Hadoop Alexandru Costan Big Data Landscape No one-size-fits-all solution: SQL, NoSQL, MapReduce, No standard, except Hadoop 2 Outline What is Hadoop? Who uses it? Architecture HDFS MapReduce Open
Role of Cloud Computing in Big Data Analytics Using MapReduce Component of Hadoop
Role of Cloud Computing in Big Data Analytics Using MapReduce Component of Hadoop Kanchan A. Khedikar Department of Computer Science & Engineering Walchand Institute of Technoloy, Solapur, Maharashtra,
Analysing Large Web Log Files in a Hadoop Distributed Cluster Environment
Analysing Large Files in a Hadoop Distributed Cluster Environment S Saravanan, B Uma Maheswari Department of Computer Science and Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham,
Tutorial: Big Data Algorithms and Applications Under Hadoop KUNPENG ZHANG SIDDHARTHA BHATTACHARYYA
Tutorial: Big Data Algorithms and Applications Under Hadoop KUNPENG ZHANG SIDDHARTHA BHATTACHARYYA http://kzhang6.people.uic.edu/tutorial/amcis2014.html August 7, 2014 Schedule I. Introduction to big data
BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB
BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB Planet Size Data!? Gartner s 10 key IT trends for 2012 unstructured data will grow some 80% over the course of the next
A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM
A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM Sneha D.Borkar 1, Prof.Chaitali S.Surtakar 2 Student of B.E., Information Technology, J.D.I.E.T, [email protected] Assistant Professor, Information
CS2510 Computer Operating Systems
CS2510 Computer Operating Systems HADOOP Distributed File System Dr. Taieb Znati Computer Science Department University of Pittsburgh Outline HDF Design Issues HDFS Application Profile Block Abstraction
CS2510 Computer Operating Systems
CS2510 Computer Operating Systems HADOOP Distributed File System Dr. Taieb Znati Computer Science Department University of Pittsburgh Outline HDF Design Issues HDFS Application Profile Block Abstraction
Implement Hadoop jobs to extract business value from large and varied data sets
Hadoop Development for Big Data Solutions: Hands-On You Will Learn How To: Implement Hadoop jobs to extract business value from large and varied data sets Write, customize and deploy MapReduce jobs to
MapReduce. Tushar B. Kute, http://tusharkute.com
MapReduce Tushar B. Kute, http://tusharkute.com What is MapReduce? MapReduce is a framework using which we can write applications to process huge amounts of data, in parallel, on large clusters of commodity
!"#$%&' ( )%#*'+,'-#.//"0( !"#$"%&'()*$+()',!-+.'/', 4(5,67,!-+!"89,:*$;'0+$.<.,&0$'09,&)"/=+,!()<>'0, 3, Processing LARGE data sets
!"#$%&' ( Processing LARGE data sets )%#*'+,'-#.//"0( Framework for o! reliable o! scalable o! distributed computation of large data sets 4(5,67,!-+!"89,:*$;'0+$.
White Paper. Big Data and Hadoop. Abhishek S, Java COE. Cloud Computing Mobile DW-BI-Analytics Microsoft Oracle ERP Java SAP ERP
White Paper Big Data and Hadoop Abhishek S, Java COE www.marlabs.com Cloud Computing Mobile DW-BI-Analytics Microsoft Oracle ERP Java SAP ERP Table of contents Abstract.. 1 Introduction. 2 What is Big
MAPREDUCE Programming Model
CS 2510 COMPUTER OPERATING SYSTEMS Cloud Computing MAPREDUCE Dr. Taieb Znati Computer Science Department University of Pittsburgh MAPREDUCE Programming Model Scaling Data Intensive Application MapReduce
Scaling Out With Apache Spark. DTL Meeting 17-04-2015 Slides based on https://www.sics.se/~amir/files/download/dic/spark.pdf
Scaling Out With Apache Spark DTL Meeting 17-04-2015 Slides based on https://www.sics.se/~amir/files/download/dic/spark.pdf Your hosts Mathijs Kattenberg Technical consultant Jeroen Schot Technical consultant
Reduction of Data at Namenode in HDFS using harballing Technique
Reduction of Data at Namenode in HDFS using harballing Technique Vaibhav Gopal Korat, Kumar Swamy Pamu [email protected] [email protected] Abstract HDFS stands for the Hadoop Distributed File System.
Introduction to DISC and Hadoop
Introduction to DISC and Hadoop Alice E. Fischer April 24, 2009 Alice E. Fischer DISC... 1/20 1 2 History Hadoop provides a three-layer paradigm Alice E. Fischer DISC... 2/20 Parallel Computing Past and
marlabs driving digital agility WHITEPAPER Big Data and Hadoop
marlabs driving digital agility WHITEPAPER Big Data and Hadoop Abstract This paper explains the significance of Hadoop, an emerging yet rapidly growing technology. The prime goal of this paper is to unveil
Performance Evaluation for BlobSeer and Hadoop using Machine Learning Algorithms
Performance Evaluation for BlobSeer and Hadoop using Machine Learning Algorithms Elena Burceanu, Irina Presa Automatic Control and Computers Faculty Politehnica University of Bucharest Emails: {elena.burceanu,
R.K.Uskenbayeva 1, А.А. Kuandykov 2, Zh.B.Kalpeyeva 3, D.K.Kozhamzharova 4, N.K.Mukhazhanov 5
Distributed data processing in heterogeneous cloud environments R.K.Uskenbayeva 1, А.А. Kuandykov 2, Zh.B.Kalpeyeva 3, D.K.Kozhamzharova 4, N.K.Mukhazhanov 5 1 [email protected], 2 [email protected],
Distributed File Systems
Distributed File Systems Mauro Fruet University of Trento - Italy 2011/12/19 Mauro Fruet (UniTN) Distributed File Systems 2011/12/19 1 / 39 Outline 1 Distributed File Systems 2 The Google File System (GFS)
Comparative analysis of Google File System and Hadoop Distributed File System
Comparative analysis of Google File System and Hadoop Distributed File System R.Vijayakumari, R.Kirankumar, K.Gangadhara Rao Dept. of Computer Science, Krishna University, Machilipatnam, India, [email protected]
Big Data Analytics with MapReduce VL Implementierung von Datenbanksystemen 05-Feb-13
Big Data Analytics with MapReduce VL Implementierung von Datenbanksystemen 05-Feb-13 Astrid Rheinländer Wissensmanagement in der Bioinformatik What is Big Data? collection of data sets so large and complex
Tutorial for Assignment 2.0
Tutorial for Assignment 2.0 Web Science and Web Technology Summer 2012 Slides based on last years tutorials by Chris Körner, Philipp Singer 1 Review and Motivation Agenda Assignment Information Introduction
GraySort on Apache Spark by Databricks
GraySort on Apache Spark by Databricks Reynold Xin, Parviz Deyhim, Ali Ghodsi, Xiangrui Meng, Matei Zaharia Databricks Inc. Apache Spark Sorting in Spark Overview Sorting Within a Partition Range Partitioner
