A Comparison of Approaches to Large-Scale Data Analysis
|
|
|
- Cecily Kelley Cannon
- 9 years ago
- Views:
Transcription
1 A Comparison of Approaches to Large-Scale Data Analysis Sam Madden MIT CSAIL with Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel Abadi, David DeWitt, and Michael Stonebraker In SIGMOD 2009
2 MapReduce (MR) vs. Databases Our goal: understand performance and architectural differences Both are suitable for large-scale data processing I.e. analytical processing workloads Bulk loads Queries over large amounts of data Not transactional
3 Why Compare Them? Reason 1: CACM 09: MapReduce is a new way of thinking about programming large distributed systems To DBMS researchers, programming model doesn t feel new Other communities don t know this; important to evangelize Reason 2: Facebook is using Hive (a SQL layer) on Hadoop (MapReduce) to manage 4 TB data warehouse* Database community risk losing hearts and minds Important to show where database systems are the right choice Important to educate other communities E.g., inform Hive developers about how to architect a parallel DBMS * hadoop and hive/
4 This Talk Comparison of the Two Architectures Benchmark Tasks that either system should execute well Results on two shared nothing DBMSs & Hadoop Navel Gazing
5 Architectural Differences MapReduce operates on in-situ data, without requiring transformation or loading Schemas: MapReduce doesn t require them, DBMSs do Easy to write simple MR problems No logical data independence Indexes MR provides no built in support
6 Architectural Differences: Programming Model Common to write multiple MapReduce jobs to perform a complex task Google search index construction > 10 MR jobs Analogous to multiple joins/subqueries in DBMS E.g., select from subquery No built in optimizer in MR to order/unnest these Semantic analysis of arbitrary imperative programs is hard MR intermediate results go to disk, pulled by next task Multiple rounds of redistribution likely slow
7 Architectural Differences: Expressiveness SQL+UDFs almost as expressive as MR Impedance mismatch is no fun Inelegant programming model DBMS make this much harder than they should UDFs complicate optimization
8 Architectural Differences: Fault Tolerance MR supports mid-query fault tolerance DBMSs typically don t Only important as the number of nodes gets large 1 failure/mo, 1 hour/query Pr(mid query failure 10 nodes)=1% Pr(mid query failure 100 nodes)=13% Pr(mid query failure 1000 nodes)=75% MR doesn t provide transactions, disaster recovery, etc Not fundamental
9 The Benchmark Goals Understand differences in load and query time for some common data processing tasks Choose representative set of tasks that: Both should excel at MapReduce should excel at Databases should excel at Ran on 100 node Linux cluster at U. Wisconsin
10 Software Hadoop Java 1.6 DBMS-X Parallel l shared nothing row-store from a major vendor Hash partitioned, sorted and indexed beneficially Compression enabled Great deal of manual tuning required Vertica Parallel shared nothing column-oriented database (version 2.6) Compression enabled Default parameters, except hints that only one query runs at a time No secondary indices, tables sorted beneficially
11 Grep Used in original MapReduce paper Look for a 3 character pattern in 90 byte field of 100 byte records with schema: key VARCHAR(10) PRIMARY KEY field VARCHAR(90) Pattern occurs in.01% of records SELECT * FROM T WHERE field LIKE %XYZ% 1 TB of data spread across 25, 50, or 100 nodes ~10 billion records, GB / node Expected Hadoop to perform well
12 1 TB Grep Load Times e (second ds) Databases don t scale linearly*; y; Hadoop does Hadoop Vertica DBMS X Tim x40GB 50x20GB 100x10GB * Vertica 3.0 adds improved parallel loading; early experiments show linear scalability
13 1TB p Grep Query Times Vertica s compression works better than DBMS X here 1600 Time (seconds) 1400 Hadoop Near linear speedup Vertica DBMS X x40GB 50x20GB 100x10GB
14 Simple web processing schema Analytical Tasks CREATE TABLE Documents ( url VARCHAR(100) PRIMARY KEY, contents TEXT ); 600,000 randomly generated documents /node Contents embeds URLs ~8 GB / node 155 million user visits ii / node ~20 GB / node See paper for complete schema CREATE TABLE UserVisits ( sourceip VARCHAR(16), adrevenue FLOAT, //fields omitted ); Loading performance similar to grep
15 Aggregation Task Simple aggregation query to find adrevenue by IP prefix SELECT SUBSTR(sourceIP, 1, 7), sum(adrevenue) FROM uservisits GROUP BY SUBSTR(sourceIP, 1, 7) Parallel analytics query for DBMSs Compute partial aggregate on each node, merge answers to produce result Yields 2,000 records (24 KB)
16 Hadoop Code (Map) public void map(text key, Text value, OutputCollector<Text, DoubleWritable> output, Reporter reporter) throws IOException { // // Split the value using VALUE_DELIMITER into separate fields // The *third* field should be our revenue // String fields[] = value.tostring().split("\\" + BenchmarkBase.VALUE_DELIMITER); if (fields.length > 0) { try { Double revenue = Double.parseDouble(fields[2]); key = new Text(key.toString().substring(0, 7)); output.collect(key, new DoubleWritable(revenue)); } catch (ArrayIndexOutOfBoundsException ex) { System.err.println("ERROR: Invalid record for key '" + key + "'"); } catch } return; } Reduce code simply sums revenue for assigned key Implicit schema Record parsing and validation (loading)
17 Performance Results Hadoop Vertica DBMS X seconds) Time ( All systems 400 show linear scaleup DBMS perform better No 200 parsing overheads Compression 0 Vertica wins because of column orientation 1 Node 10 Nodes 25 Nodes 50 Nodes 100 Nodes
18 Additional DBMS-y Tasks Paper also reports selection and join tasks Hadoop also performs poorly on these Hadoop code for join gets hairy Vertica does very well on some tasks due to column-orientation
19 Discussion Hadoop much easier to set up Hadoop load times are faster (Loading is basically non-existent) t) Hadoop query times are a lot slower (1 2 orders of magnitude) Parsing and indexing Compression Execution model
20 When to Choose MapReduce MapReduce is designed for one-off processing tasks Where fast load times are important No repeated access As such, lack of a schema, lack of indexing, etc is not so alarming However, no compelling reason to choose MR over a database for traditional database workloads E.g., scalability appears to be comparable despite claims to the contrary
21 Conclusion MapReduce and Database Systems fill different niches One-off processing vs repeated re-access MapReduce goodness Ease of use, out of box experience Single programming language Attractive fault tolerance properties Fast load times Database goodness Fast query times Due to indexing and compression Supporting tools Many recently proposed hybrids Call to arms Because Hadoop is open source and massively parallel, people are using it Open source shared nothing parallel DBMS is needed Hive, Pig, Scope, DryadLinq, HadoopDB, etc. Interesting to see how their performance and usability compares How much can be layered on top of MapReduce?
22 Osprey MapReduce Style Fault Tolerance for DBMSs Christopher Yang, Christine Yen, Ceryen Tan To Appear in ICDE 2010
23 Motivation Long running database queries on distributed databases may crash mid-flight Especially as more nodes are added Workload skew, machine load, and other factors may lead to imbalanced distribution of work Would be good to allow queries to tolerate faults and slow workers a la MapReduce
24 Approach OspreyDB is a middleware layer built of top of N Postgres installations ti Tables horizontally partitioned across machines Partitions replicated k times using chained declustering Each node is backup for previous k nodes Queries decomposed into fragments, each of which runs on one partition Coordinator assembles answers to fragments to answer query Job scheduler tracks liveness of replicas, dispatches fragments Fragments of slow and failed nodes reissued Several different scheduling policies i
25 User Architecture Query Answer Coordinator Query Transformer Result Merger Query Manager and Scheduler Worker 1 Worker 2 Worker N SQL Fragment Result Postgres 1 Part 1, 2 Postgres 2 Part 2, 3 Postgres 3 Part 3,1
26 Questions: Experiments How well does it scale? How high are the overheads? How well does it balance load? How well does it tolerate faults? Setup: 8 Machines, Running Postgres 8.3; k=1 SSB scale 1 (5.5 GB) (1.1 GB/Node) 512 MB buffer pool per node
27 Scaleup
28 Stressing 1 3 Nodes (N=4) Replication factor k
29 Failed Node
30 Conclusion Osprey: middleware-based solution for mid-query fault tolerance Decomposes queries into sub-jobs, schedules them with different policies Achieves linear speedup (for small numbers of nodes) and good fault tolerance properties Results are not on MR cluster because we don t use Hadoop Next talk similar idea, slightly different architecture, scales to many more nodes and with a much more robust query processor
YANG, Lin COMP 6311 Spring 2012 CSE HKUST
YANG, Lin COMP 6311 Spring 2012 CSE HKUST 1 Outline Background Overview of Big Data Management Comparison btw PDB and MR DB Solution on MapReduce Conclusion 2 Data-driven World Science Data bases from
Parallel Databases. Parallel Architectures. Parallelism Terminology 1/4/2015. Increase performance by performing operations in parallel
Parallel Databases Increase performance by performing operations in parallel Parallel Architectures Shared memory Shared disk Shared nothing closely coupled loosely coupled Parallelism Terminology Speedup:
A Comparison of Approaches to Large-Scale Data Analysis
A Comparison of Approaches to Large-Scale Data Analysis Andrew Pavlo Erik Paulson Alexander Rasin Brown University University of Wisconsin Brown University [email protected] [email protected] [email protected]
Hadoop s Entry into the Traditional Analytical DBMS Market. Daniel Abadi Yale University August 3 rd, 2010
Hadoop s Entry into the Traditional Analytical DBMS Market Daniel Abadi Yale University August 3 rd, 2010 Data, Data, Everywhere Data explosion Web 2.0 more user data More devices that sense data More
Big Data Data-intensive Computing Methods, Tools, and Applications (CMSC 34900)
Big Data Data-intensive Computing Methods, Tools, and Applications (CMSC 34900) Ian Foster Computation Institute Argonne National Lab & University of Chicago 2 3 SQL Overview Structured Query Language
Hadoop IST 734 SS CHUNG
Hadoop IST 734 SS CHUNG Introduction What is Big Data?? Bulk Amount Unstructured Lots of Applications which need to handle huge amount of data (in terms of 500+ TB per day) If a regular machine need to
Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware
Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware Created by Doug Cutting and Mike Carafella in 2005. Cutting named the program after
Cloud Computing at Google. Architecture
Cloud Computing at Google Google File System Web Systems and Algorithms Google Chris Brooks Department of Computer Science University of San Francisco Google has developed a layered system to handle webscale
Big Data Analytics with MapReduce VL Implementierung von Datenbanksystemen 05-Feb-13
Big Data Analytics with MapReduce VL Implementierung von Datenbanksystemen 05-Feb-13 Astrid Rheinländer Wissensmanagement in der Bioinformatik What is Big Data? collection of data sets so large and complex
Data Management in the Cloud MAP/REDUCE. Map/Reduce. Programming model Examples Execution model Criticism Iterative map/reduce
Data Management in the Cloud MAP/REDUCE 117 Programming model Examples Execution model Criticism Iterative map/reduce Map/Reduce 118 Motivation Background and Requirements computations are conceptually
Hadoop: A Framework for Data- Intensive Distributed Computing. CS561-Spring 2012 WPI, Mohamed Y. Eltabakh
1 Hadoop: A Framework for Data- Intensive Distributed Computing CS561-Spring 2012 WPI, Mohamed Y. Eltabakh 2 What is Hadoop? Hadoop is a software framework for distributed processing of large datasets
Architectures for Big Data Analytics A database perspective
Architectures for Big Data Analytics A database perspective Fernando Velez Director of Product Management Enterprise Information Management, SAP June 2013 Outline Big Data Analytics Requirements Spectrum
Analysing Large Web Log Files in a Hadoop Distributed Cluster Environment
Analysing Large Files in a Hadoop Distributed Cluster Environment S Saravanan, B Uma Maheswari Department of Computer Science and Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham,
Hadoop and Map-Reduce. Swati Gore
Hadoop and Map-Reduce Swati Gore Contents Why Hadoop? Hadoop Overview Hadoop Architecture Working Description Fault Tolerance Limitations Why Map-Reduce not MPI Distributed sort Why Hadoop? Existing Data
HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads
HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads Azza Abouzeid 1, Kamil Bajda-Pawlikowski 1, Daniel Abadi 1, Avi Silberschatz 1, Alexander Rasin 2 1 Yale University,
Recommended Literature for this Lecture
COSC 6339 Big Data Analytics Introduction to MapReduce (III) and 1 st homework assignment Edgar Gabriel Spring 2015 Recommended Literature for this Lecture Andrew Pavlo, Erik Paulson, Alexander Rasin,
Parallel Databases vs. Hadoop
Parallel Databases vs. Hadoop Juliana Freire New York University Some slides from J. Lin, C. Olston et al. The Debate Starts http://homes.cs.washington.edu/~billhowe/mapreduce_a_major_step_backwards.html
Can the Elephants Handle the NoSQL Onslaught?
Can the Elephants Handle the NoSQL Onslaught? Avrilia Floratou, Nikhil Teletia David J. DeWitt, Jignesh M. Patel, Donghui Zhang University of Wisconsin-Madison Microsoft Jim Gray Systems Lab Presented
Hadoop at Yahoo! Owen O Malley Yahoo!, Grid Team [email protected]
Hadoop at Yahoo! Owen O Malley Yahoo!, Grid Team [email protected] Who Am I? Yahoo! Architect on Hadoop Map/Reduce Design, review, and implement features in Hadoop Working on Hadoop full time since Feb
CSE-E5430 Scalable Cloud Computing Lecture 2
CSE-E5430 Scalable Cloud Computing Lecture 2 Keijo Heljanko Department of Computer Science School of Science Aalto University [email protected] 14.9-2015 1/36 Google MapReduce A scalable batch processing
Hadoop vs. Parallel Databases. Juliana Freire!
Hadoop vs. Parallel Databases Juliana Freire! The Debate Starts The Debate Continues A comparison of approaches to large-scale data analysis. Pavlo et al., SIGMOD 2009! o Parallel DBMS beats MapReduce
Introduction to Hadoop
Introduction to Hadoop Miles Osborne School of Informatics University of Edinburgh [email protected] October 28, 2010 Miles Osborne Introduction to Hadoop 1 Background Hadoop Programming Model Examples
How to Build a High-Performance Data Warehouse By David J. DeWitt, Ph.D.; Samuel Madden, Ph.D.; and Michael Stonebraker, Ph.D.
1 How To Build a High-Performance Data Warehouse How to Build a High-Performance Data Warehouse By David J. DeWitt, Ph.D.; Samuel Madden, Ph.D.; and Michael Stonebraker, Ph.D. Over the last decade, the
Introduction to NoSQL Databases and MapReduce. Tore Risch Information Technology Uppsala University 2014-05-12
Introduction to NoSQL Databases and MapReduce Tore Risch Information Technology Uppsala University 2014-05-12 What is a NoSQL Database? 1. A key/value store Basic index manager, no complete query language
Introduction to Hadoop HDFS and Ecosystems. Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data
Introduction to Hadoop HDFS and Ecosystems ANSHUL MITTAL Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data Topics The goal of this presentation is to give
COMP 598 Applied Machine Learning Lecture 21: Parallelization methods for large-scale machine learning! Big Data by the numbers
COMP 598 Applied Machine Learning Lecture 21: Parallelization methods for large-scale machine learning! Instructor: ([email protected]) TAs: Pierre-Luc Bacon ([email protected]) Ryan Lowe ([email protected])
A STUDY ON HADOOP ARCHITECTURE FOR BIG DATA ANALYTICS
A STUDY ON HADOOP ARCHITECTURE FOR BIG DATA ANALYTICS Dr. Ananthi Sheshasayee 1, J V N Lakshmi 2 1 Head Department of Computer Science & Research, Quaid-E-Millath Govt College for Women, Chennai, (India)
Xiaoming Gao Hui Li Thilina Gunarathne
Xiaoming Gao Hui Li Thilina Gunarathne Outline HBase and Bigtable Storage HBase Use Cases HBase vs RDBMS Hands-on: Load CSV file to Hbase table with MapReduce Motivation Lots of Semi structured data Horizontal
Big Data Analytics. with EMC Greenplum and Hadoop. Big Data Analytics. Ofir Manor Pre Sales Technical Architect EMC Greenplum
Big Data Analytics with EMC Greenplum and Hadoop Big Data Analytics with EMC Greenplum and Hadoop Ofir Manor Pre Sales Technical Architect EMC Greenplum 1 Big Data and the Data Warehouse Potential All
MapReduce: A Flexible Data Processing Tool
DOI:10.1145/1629175.1629198 MapReduce advantages over parallel databases include storage-system independence and fine-grain fault tolerance for large jobs. BY JEFFREY DEAN AND SANJAY GHEMAWAT MapReduce:
The Performance of MapReduce: An In-depth Study
The Performance of MapReduce: An In-depth Study Dawei Jiang Beng Chin Ooi Lei Shi Sai Wu School of Computing National University of Singapore {jiangdw, ooibc, shilei, wusai}@comp.nus.edu.sg ABSTRACT MapReduce
Big Data Storage, Management and challenges. Ahmed Ali-Eldin
Big Data Storage, Management and challenges Ahmed Ali-Eldin (Ambitious) Plan What is Big Data? And Why talk about Big Data? How to store Big Data? BigTables (Google) Dynamo (Amazon) How to process Big
Graph Mining on Big Data System. Presented by Hefu Chai, Rui Zhang, Jian Fang
Graph Mining on Big Data System Presented by Hefu Chai, Rui Zhang, Jian Fang Outline * Overview * Approaches & Environment * Results * Observations * Notes * Conclusion Overview * What we have done? *
How To Scale Out Of A Nosql Database
Firebird meets NoSQL (Apache HBase) Case Study Firebird Conference 2011 Luxembourg 25.11.2011 26.11.2011 Thomas Steinmaurer DI +43 7236 3343 896 [email protected] www.scch.at Michael Zwick DI
INTRODUCTION TO APACHE HADOOP MATTHIAS BRÄGER CERN GS-ASE
INTRODUCTION TO APACHE HADOOP MATTHIAS BRÄGER CERN GS-ASE AGENDA Introduction to Big Data Introduction to Hadoop HDFS file system Map/Reduce framework Hadoop utilities Summary BIG DATA FACTS In what timeframe
Duke University http://www.cs.duke.edu/starfish
Herodotos Herodotou, Harold Lim, Fei Dong, Shivnath Babu Duke University http://www.cs.duke.edu/starfish Practitioners of Big Data Analytics Google Yahoo! Facebook ebay Physicists Biologists Economists
Data Management in the Cloud: Limitations and Opportunities. Annies Ductan
Data Management in the Cloud: Limitations and Opportunities Annies Ductan Discussion Outline: Introduc)on Overview Vision of Cloud Compu8ng Managing Data in The Cloud Cloud Characteris8cs Data Management
Big Data and Analytics by Seema Acharya and Subhashini Chellappan Copyright 2015, WILEY INDIA PVT. LTD. Introduction to Pig
Introduction to Pig Agenda What is Pig? Key Features of Pig The Anatomy of Pig Pig on Hadoop Pig Philosophy Pig Latin Overview Pig Latin Statements Pig Latin: Identifiers Pig Latin: Comments Data Types
BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB
BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB Planet Size Data!? Gartner s 10 key IT trends for 2012 unstructured data will grow some 80% over the course of the next
MapReduce Jeffrey Dean and Sanjay Ghemawat. Background context
MapReduce Jeffrey Dean and Sanjay Ghemawat Background context BIG DATA!! o Large-scale services generate huge volumes of data: logs, crawls, user databases, web site content, etc. o Very useful to be able
HBase A Comprehensive Introduction. James Chin, Zikai Wang Monday, March 14, 2011 CS 227 (Topics in Database Management) CIT 367
HBase A Comprehensive Introduction James Chin, Zikai Wang Monday, March 14, 2011 CS 227 (Topics in Database Management) CIT 367 Overview Overview: History Began as project by Powerset to process massive
Data Mining in the Swamp
WHITE PAPER Page 1 of 8 Data Mining in the Swamp Taming Unruly Data with Cloud Computing By John Brothers Business Intelligence is all about making better decisions from the data you have. However, all
An Oracle White Paper June 2012. High Performance Connectors for Load and Access of Data from Hadoop to Oracle Database
An Oracle White Paper June 2012 High Performance Connectors for Load and Access of Data from Hadoop to Oracle Database Executive Overview... 1 Introduction... 1 Oracle Loader for Hadoop... 2 Oracle Direct
Lecture Data Warehouse Systems
Lecture Data Warehouse Systems Eva Zangerle SS 2013 PART C: Novel Approaches in DW NoSQL and MapReduce Stonebraker on Data Warehouses Star and snowflake schemas are a good idea in the DW world C-Stores
Systems Infrastructure for Data Science. Web Science Group Uni Freiburg WS 2012/13
Systems Infrastructure for Data Science Web Science Group Uni Freiburg WS 2012/13 Hadoop Ecosystem Overview of this Lecture Module Background Google MapReduce The Hadoop Ecosystem Core components: Hadoop
BIG DATA What it is and how to use?
BIG DATA What it is and how to use? Lauri Ilison, PhD Data Scientist 21.11.2014 Big Data definition? There is no clear definition for BIG DATA BIG DATA is more of a concept than precise term 1 21.11.14
The Vertica Analytic Database Technical Overview White Paper. A DBMS Architecture Optimized for Next-Generation Data Warehousing
The Vertica Analytic Database Technical Overview White Paper A DBMS Architecture Optimized for Next-Generation Data Warehousing Copyright Vertica Systems Inc. March, 2010 Table of Contents Table of Contents...2
Data Management in the Cloud -
Data Management in the Cloud - current issues and research directions Patrick Valduriez Esther Pacitti DNAC Congress, Paris, nov. 2010 http://www.med-hoc-net-2010.org SOPHIA ANTIPOLIS - MÉDITERRANÉE Is
Big Data and Apache Hadoop s MapReduce
Big Data and Apache Hadoop s MapReduce Michael Hahsler Computer Science and Engineering Southern Methodist University January 23, 2012 Michael Hahsler (SMU/CSE) Hadoop/MapReduce January 23, 2012 1 / 23
Chapter 7. Using Hadoop Cluster and MapReduce
Chapter 7 Using Hadoop Cluster and MapReduce Modeling and Prototyping of RMS for QoS Oriented Grid Page 152 7. Using Hadoop Cluster and MapReduce for Big Data Problems The size of the databases used in
How to Choose Between Hadoop, NoSQL and RDBMS
How to Choose Between Hadoop, NoSQL and RDBMS Keywords: Jean-Pierre Dijcks Oracle Redwood City, CA, USA Big Data, Hadoop, NoSQL Database, Relational Database, SQL, Security, Performance Introduction A
Data Warehousing and Analytics Infrastructure at Facebook. Ashish Thusoo & Dhruba Borthakur athusoo,[email protected]
Data Warehousing and Analytics Infrastructure at Facebook Ashish Thusoo & Dhruba Borthakur athusoo,[email protected] Overview Challenges in a Fast Growing & Dynamic Environment Data Flow Architecture,
The Sierra Clustered Database Engine, the technology at the heart of
A New Approach: Clustrix Sierra Database Engine The Sierra Clustered Database Engine, the technology at the heart of the Clustrix solution, is a shared-nothing environment that includes the Sierra Parallel
Apache Hadoop FileSystem and its Usage in Facebook
Apache Hadoop FileSystem and its Usage in Facebook Dhruba Borthakur Project Lead, Apache Hadoop Distributed File System [email protected] Presented at Indian Institute of Technology November, 2010 http://www.facebook.com/hadoopfs
One-Size-Fits-All: A DBMS Idea Whose Time has Come and Gone. Michael Stonebraker December, 2008
One-Size-Fits-All: A DBMS Idea Whose Time has Come and Gone Michael Stonebraker December, 2008 DBMS Vendors (The Elephants) Sell One Size Fits All (OSFA) It s too hard for them to maintain multiple code
Jeffrey D. Ullman slides. MapReduce for data intensive computing
Jeffrey D. Ullman slides MapReduce for data intensive computing Single-node architecture CPU Machine Learning, Statistics Memory Classical Data Mining Disk Commodity Clusters Web data sets can be very
International Journal of Advancements in Research & Technology, Volume 3, Issue 2, February-2014 10 ISSN 2278-7763
International Journal of Advancements in Research & Technology, Volume 3, Issue 2, February-2014 10 A Discussion on Testing Hadoop Applications Sevuga Perumal Chidambaram ABSTRACT The purpose of analysing
NoSQL and Hadoop Technologies On Oracle Cloud
NoSQL and Hadoop Technologies On Oracle Cloud Vatika Sharma 1, Meenu Dave 2 1 M.Tech. Scholar, Department of CSE, Jagan Nath University, Jaipur, India 2 Assistant Professor, Department of CSE, Jagan Nath
Best Practices for Hadoop Data Analysis with Tableau
Best Practices for Hadoop Data Analysis with Tableau September 2013 2013 Hortonworks Inc. http:// Tableau 6.1.4 introduced the ability to visualize large, complex data stored in Apache Hadoop with Hortonworks
Constructing a Data Lake: Hadoop and Oracle Database United!
Constructing a Data Lake: Hadoop and Oracle Database United! Sharon Sophia Stephen Big Data PreSales Consultant February 21, 2015 Safe Harbor The following is intended to outline our general product direction.
I/O Considerations in Big Data Analytics
Library of Congress I/O Considerations in Big Data Analytics 26 September 2011 Marshall Presser Federal Field CTO EMC, Data Computing Division 1 Paradigms in Big Data Structured (relational) data Very
Hadoop Architecture. Part 1
Hadoop Architecture Part 1 Node, Rack and Cluster: A node is simply a computer, typically non-enterprise, commodity hardware for nodes that contain data. Consider we have Node 1.Then we can add more nodes,
CS54100: Database Systems
CS54100: Database Systems Cloud Databases: The Next Post- Relational World 18 April 2012 Prof. Chris Clifton Beyond RDBMS The Relational Model is too limiting! Simple data model doesn t capture semantics
Where We Are. References. Cloud Computing. Levels of Service. Cloud Computing History. Introduction to Data Management CSE 344
Where We Are Introduction to Data Management CSE 344 Lecture 25: DBMS-as-a-service and NoSQL We learned quite a bit about data management see course calendar Three topics left: DBMS-as-a-service and NoSQL
Scaling Out With Apache Spark. DTL Meeting 17-04-2015 Slides based on https://www.sics.se/~amir/files/download/dic/spark.pdf
Scaling Out With Apache Spark DTL Meeting 17-04-2015 Slides based on https://www.sics.se/~amir/files/download/dic/spark.pdf Your hosts Mathijs Kattenberg Technical consultant Jeroen Schot Technical consultant
Big Data With Hadoop
With Saurabh Singh [email protected] The Ohio State University February 11, 2016 Overview 1 2 3 Requirements Ecosystem Resilient Distributed Datasets (RDDs) Example Code vs Mapreduce 4 5 Source: [Tutorials
Big Data Course Highlights
Big Data Course Highlights The Big Data course will start with the basics of Linux which are required to get started with Big Data and then slowly progress from some of the basics of Hadoop/Big Data (like
From GWS to MapReduce: Google s Cloud Technology in the Early Days
Large-Scale Distributed Systems From GWS to MapReduce: Google s Cloud Technology in the Early Days Part II: MapReduce in a Datacenter COMP6511A Spring 2014 HKUST Lin Gu [email protected] MapReduce/Hadoop
A Brief Outline on Bigdata Hadoop
A Brief Outline on Bigdata Hadoop Twinkle Gupta 1, Shruti Dixit 2 RGPV, Department of Computer Science and Engineering, Acropolis Institute of Technology and Research, Indore, India Abstract- Bigdata is
Facebook s Petabyte Scale Data Warehouse using Hive and Hadoop
Facebook s Petabyte Scale Data Warehouse using Hive and Hadoop Why Another Data Warehousing System? Data, data and more data 200GB per day in March 2008 12+TB(compressed) raw data per day today Trends
White Paper. Optimizing the Performance Of MySQL Cluster
White Paper Optimizing the Performance Of MySQL Cluster Table of Contents Introduction and Background Information... 2 Optimal Applications for MySQL Cluster... 3 Identifying the Performance Issues.....
Data-Intensive Programming. Timo Aaltonen Department of Pervasive Computing
Data-Intensive Programming Timo Aaltonen Department of Pervasive Computing Data-Intensive Programming Lecturer: Timo Aaltonen University Lecturer [email protected] Assistants: Henri Terho and Antti
Scalable Cloud Computing Solutions for Next Generation Sequencing Data
Scalable Cloud Computing Solutions for Next Generation Sequencing Data Matti Niemenmaa 1, Aleksi Kallio 2, André Schumacher 1, Petri Klemelä 2, Eija Korpelainen 2, and Keijo Heljanko 1 1 Department of
CitusDB Architecture for Real-Time Big Data
CitusDB Architecture for Real-Time Big Data CitusDB Highlights Empowers real-time Big Data using PostgreSQL Scales out PostgreSQL to support up to hundreds of terabytes of data Fast parallel processing
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK A REVIEW ON HIGH PERFORMANCE DATA STORAGE ARCHITECTURE OF BIGDATA USING HDFS MS.
Hadoop & its Usage at Facebook
Hadoop & its Usage at Facebook Dhruba Borthakur Project Lead, Hadoop Distributed File System [email protected] Presented at the Storage Developer Conference, Santa Clara September 15, 2009 Outline Introduction
Using distributed technologies to analyze Big Data
Using distributed technologies to analyze Big Data Abhijit Sharma Innovation Lab BMC Software 1 Data Explosion in Data Center Performance / Time Series Data Incoming data rates ~Millions of data points/
Performance Comparison of SQL based Big Data Analytics with Lustre and HDFS file systems
Performance Comparison of SQL based Big Data Analytics with Lustre and HDFS file systems Rekha Singhal and Gabriele Pacciucci * Other names and brands may be claimed as the property of others. Lustre File
Petabyte Scale Data at Facebook. Dhruba Borthakur, Engineer at Facebook, SIGMOD, New York, June 2013
Petabyte Scale Data at Facebook Dhruba Borthakur, Engineer at Facebook, SIGMOD, New York, June 2013 Agenda 1 Types of Data 2 Data Model and API for Facebook Graph Data 3 SLTP (Semi-OLTP) and Analytics
Data Management in the Cloud
Data Management in the Cloud Ryan Stern [email protected] : Advanced Topics in Distributed Systems Department of Computer Science Colorado State University Outline Today Microsoft Cloud SQL Server
Sentimental Analysis using Hadoop Phase 2: Week 2
Sentimental Analysis using Hadoop Phase 2: Week 2 MARKET / INDUSTRY, FUTURE SCOPE BY ANKUR UPRIT The key value type basically, uses a hash table in which there exists a unique key and a pointer to a particular
BIG DATA TECHNOLOGY. Hadoop Ecosystem
BIG DATA TECHNOLOGY Hadoop Ecosystem Agenda Background What is Big Data Solution Objective Introduction to Hadoop Hadoop Ecosystem Hybrid EDW Model Predictive Analysis using Hadoop Conclusion What is Big
Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related
Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related Summary Xiangzhe Li Nowadays, there are more and more data everyday about everything. For instance, here are some of the astonishing
Performance Analysis of Cloud Relational Database Services
Performance Analysis of Cloud Relational Database Services Jialin Li [email protected] Naveen Kr. Sharma [email protected] June 7, 203 Adriana Szekeres [email protected] Introduction
Managing Big Data with Hadoop & Vertica. A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database
Managing Big Data with Hadoop & Vertica A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database Copyright Vertica Systems, Inc. October 2009 Cloudera and Vertica
SQL VS. NO-SQL. Adapted Slides from Dr. Jennifer Widom from Stanford
SQL VS. NO-SQL Adapted Slides from Dr. Jennifer Widom from Stanford 55 Traditional Databases SQL = Traditional relational DBMS Hugely popular among data analysts Widely adopted for transaction systems
Architectural patterns for building real time applications with Apache HBase. Andrew Purtell Committer and PMC, Apache HBase
Architectural patterns for building real time applications with Apache HBase Andrew Purtell Committer and PMC, Apache HBase Who am I? Distributed systems engineer Principal Architect in the Big Data Platform
low-level storage structures e.g. partitions underpinning the warehouse logical table structures
DATA WAREHOUSE PHYSICAL DESIGN The physical design of a data warehouse specifies the: low-level storage structures e.g. partitions underpinning the warehouse logical table structures low-level structures
DATA MINING WITH HADOOP AND HIVE Introduction to Architecture
DATA MINING WITH HADOOP AND HIVE Introduction to Architecture Dr. Wlodek Zadrozny (Most slides come from Prof. Akella s class in 2014) 2015-2025. Reproduction or usage prohibited without permission of
