Understanding Hadoop Performance on Lustre
|
|
|
- Harry Wiggins
- 10 years ago
- Views:
Transcription
1 Understanding Hadoop Performance on Lustre Stephen Skory, PhD Seagate Technology Collaborators Kelsie Betsch, Daniel Kaslovsky, Daniel Lingenfelter, Dimitar Vlassarev, and Zhenzhen Yan LUG Conference 15 April 2015
2 Our live demo of Hadoop on Lustre at Supercomputing November 17-20, 2014 Seagate Confidential 2
3 Why Hadoop on Lustre? LustreFS Hadoop Plugin Our Test System HDFS vs Lustre Benchmarks Performance experiments on Lustre and Hadoop Configuration Diskless Node Optimization Final Thoughts
4 Why Hadoop on Lustre? Lustre is POSIX compliant and convenient for a wide range of workflows and applications, while HDFS is a distributed object store designed narrowly for the write once, read many Hadoop paradigm Disaggregate computation and storage HDFS requires storage to accompany compute, with Lustre each part can be scaled or resized according to needs Lower Storage Overhead Lustre is typically backed by RAID with ~40% overhead, while HDFS has a default 200% overhead Speed In our testing we see nearly 30% TeraSort v2 Performance boost over HDFS. When transfer time is considered the improvement is over 50% Seagate Confidential 4
5 Hadoop on HDFS and on Lustre Data Flow Typical Workflow: Ingestion of Data before Analysis 1) Transfer (and usually duplicate) data on HDFS 2) Analyze data 1) Analyze data on Lustre Compute Compute Lustre Storage HDFS Storage Lustre Storage HDFS Storage Seagate Confidential 5
6 LustreFS Plugin It is a single Java jar file that needs to be placed in the CLASSPATH of whatever service that needs to access Lustre file Requires minimal changes to Hadoop configuration XML files Instead of file:/// or hdfs://hostname:8020/, files are accessed using lustrefs:/// HDFS can co-exist with this plugin, and jobs can run between the two file systems seamlessly Hadoop service accounts (e.g. yarn or mapred ) need to have permissions to a directory hierarchy on Lustre for temporary and other accounting data Freely available at today, with documentation A PR has been issued to include the plugin with Apache Hadoop Seagate Confidential 6
7 Our Hadoop on Lustre Development Cluster All benchmarks shown were performed on this system Hadoop Rack: 1 Namenode, 18 Datanodes 12 cores & 12 HDDs per Datanode, total of 216 for both 19x10 GbE connection within rack for Hadoop traffic Each Hadoop node has a second 10GbE connection to the ClusterStor network for a total of 190Gb full duplex bandwidth ClusterStor Rack: 2 ClusterStor 6000 SSUs 160 data HDDs Seagate Confidential 7
8 How Much Faster is Hadoop on Lustre? Terasort timings Completion Time (s) Transfer Time (s) Analysis Time (s) % Faster Overall Data Transfer not Needed 38% Faster Analysis 53% Faster Overall Data Transfer not Needed 28% Faster Analysis Faster 0 Hadoop 1 on HDFS Hadoop 1 on Lustre Hadoop 2 on HDFS Hadoop 2 on Lustre Seagate Confidential 8
9 How Much Faster is Hadoop on Lustre? Ecosystem Timings Compared to HDFS (transfer times not included) HoL Improvement over HDFS 40% 30% 20% 10% 0% -10% 38% 28% 17% 15% 8% 5% 6% 5% 1% -7% -1% 0% TeraSort Sort Wordcount Mahout Pig Hive Hadoop 1 Hadoop 2 All remaining benchmarks presented were performed on Hadoop v2 Seagate Confidential 9
10 Hadoop on Lustre Performance Stripe Size Performance Stripe size is not a strong factor in Hadoop performance, except perhaps for 1MB stripes in some cases Recommend 4MB or greater Seagate Confidential 10
11 Hadoop on Lustre Performance max_rpcs_in_flight and max_dirty_mb Terasort performance on 373GB with 4MB stripe size, 216 Mappers and 108 Reducers RPCs Dirty MB Time 5m04s 5m03s 5m07s Changing these values does not strongly affect performance. Seagate Confidential 11
12 Hadoop on Lustre Performance Number of Mappers and Reducers Terasort 373GB The number of mappers and reducers has a much stronger effect on performance than any Lustre client configuration Seagate Confidential 12
13 Hadoop on Lustre Performance Some additional observations When it comes to Terasort, and likely other I/O intensive jobs, most performance gains come from tuning Hadoop rather than Lustre In contrast to HDFS, this means that Hadoop performance is less tied to how (or where, in the case of HDFS) the data is stored on disk, which gives users more options in how to tune their applications It s best to focus on tuning Hadoop parameters for best performance: We have seen that Lustre does better with fewer writers than the same job going to HDFS (e.g. number of Mappers for Teragen, or Reducers in Terasort) A typical Hadoop rule of thumb is to build clusters, and run jobs, following the 1:1 core:hdd rule. With Hadoop on Lustre, this isn t necessarily true Particularly for CPU-intensive jobs, performance tuning for Lustre is very similar to typical Hadoop on HDFS Seagate Confidential 13
14 Hadoop on Lustre Diskless Modification (2011) Standard Hadoop has local disks used for both HDFS and temporary data However, when using Hadoop on Lustre on diskless compute nodes, all data needs to go to Lustre, including temporary data. Beginning in 2011, we investigated an idea of how to optimize Map/Reduce performance when using Lustre as the temporary data store point This required a modification to core Hadoop functionality, and we released these changes at SC14: Seagate Confidential 14
15 Map/Reduce Data Flow Basics Hadoop on HDFS Lustre Disk HDFS Disk Local Disk RAM Local Xfer Network Xfer Sufficient RAM Note: Most cases HDFS data is local to mapper but can be remote Mapper Xfer Task (Reducer) Sort Insufficient RAM Reduce Note: 1 Local HDFS + 2 Network HDFS copies for Reduce Output HDFS data is split into blocks which is analogous to Lustre s stripe size. Default size is 128 MB for Hadoop 2 The ResourceManager does best effort to assign computation to nodes that already have the data (Mapper) When done, the Mapper writes intermediate data to local scratch disk (no replication) Reducers collect data from Mappers (reading from local disk) over HTTP (called the shuffle phase) and sort incoming data either in RAM or on disk (again, local scratch disk) When data is sorted, the Reducer applies the reduction algorithm and writes output to HDFS that is 3x replicated Seagate Confidential 15
16 Map/Reduce Data Flow Basics Hadoop on HDFS Lustre Disk HDFS Disk Local Disk RAM Local Xfer Network Xfer Sufficient RAM Note: Most cases HDFS data is local to mapper but can be remote Mapper Xfer Task (Reducer) Sort Insufficient RAM Reduce Note: 1 Local HDFS + 2 Network HDFS copies for Reduce Output Hadoop on Lustre with local Disks Mapper Xfer Task (Reducer) Sufficient RAM Sort Reduce Note: 1 Lustre network copy for Reduce output Insufficient RAM Using Lustre instead of HDFS is very similar, except the Mapper reads data from Lustre over the network, and the Reducer output is not triple replicated. The lower diagram describes the setup for how we performed all the benchmarks we ve presented so far, by using both Lustre and local disks to each Hadoop compute node. Seagate Confidential 16
17 Hadoop on Lustre Map/Reduce Diskless Modification Hadoop on HDFS Lustre Disk HDFS Disk Local Disk RAM Local Xfer Network Xfer Sufficient RAM Note: Most cases HDFS data is local to mapper but can be remote Mapper Xfer Task (Reducer) Sort Insufficient RAM Reduce Note: 1 Local HDFS + 2 Network HDFS copies for Reduce Output Hadoop on Lustre Diskless Unmodified Mapper Xfer Task (Reducer) Sufficient RAM Sort Reduce Note: 1 Lustre network copy for Reduce output Insufficient RAM Hadoop on Lustre Diskless Modified Sufficient RAM Mapper Sort Reduce Insufficient RAM Note: 1 Lustre network copy for Reduce output Seagate Confidential 17
18 Hadoop on Lustre Diskless Modification Hadoop Node Unmodified Terasort Timings: Size Unmodified Modified 100 GB 131s 155s Mapper IO Cache IO Cache Reducer 500 GB 538s 558s Modified Temporary files Saved to Lustre The modified method is slower! Takeaway: IO Caching speeds up the unmodified method. Mapper IO Cache IO Cache Reducer Seagate Confidential 18
19 Final Thoughts We have explored three methods of Hadoop on Lustre: Using local disk(s) for temporary storage Using Lustre for temporary storage with no modifications to Map/Reduce Using Lustre for temporary storage, but with modifications to Map/Reduce We find that each method above is slower than the ones above it The local disks do not need to be close to big (where big is the largest dataset analyzed), but it is most optimal to have some kind of local disk for temporary data Thank you to my collaborators Kelsie Betsch, Daniel Kaslovsky, Daniel Lingenfelter, Dimitar Vlassarev, and Zhenzhen Yan Seagate Confidential 19
Maximizing Hadoop Performance and Storage Capacity with AltraHD TM
Maximizing Hadoop Performance and Storage Capacity with AltraHD TM Executive Summary The explosion of internet data, driven in large part by the growth of more and more powerful mobile devices, has created
CSE-E5430 Scalable Cloud Computing Lecture 2
CSE-E5430 Scalable Cloud Computing Lecture 2 Keijo Heljanko Department of Computer Science School of Science Aalto University [email protected] 14.9-2015 1/36 Google MapReduce A scalable batch processing
GraySort and MinuteSort at Yahoo on Hadoop 0.23
GraySort and at Yahoo on Hadoop.23 Thomas Graves Yahoo! May, 213 The Apache Hadoop[1] software library is an open source framework that allows for the distributed processing of large data sets across clusters
Performance Comparison of Intel Enterprise Edition for Lustre* software and HDFS for MapReduce Applications
Performance Comparison of Intel Enterprise Edition for Lustre software and HDFS for MapReduce Applications Rekha Singhal, Gabriele Pacciucci and Mukesh Gangadhar 2 Hadoop Introduc-on Open source MapReduce
Architecting for the next generation of Big Data Hortonworks HDP 2.0 on Red Hat Enterprise Linux 6 with OpenJDK 7
Architecting for the next generation of Big Data Hortonworks HDP 2.0 on Red Hat Enterprise Linux 6 with OpenJDK 7 Yan Fisher Senior Principal Product Marketing Manager, Red Hat Rohit Bakhshi Product Manager,
Introduction to Hadoop HDFS and Ecosystems. Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data
Introduction to Hadoop HDFS and Ecosystems ANSHUL MITTAL Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data Topics The goal of this presentation is to give
Accelerating and Simplifying Apache
Accelerating and Simplifying Apache Hadoop with Panasas ActiveStor White paper NOvember 2012 1.888.PANASAS www.panasas.com Executive Overview The technology requirements for big data vary significantly
Hadoop Architecture. Part 1
Hadoop Architecture Part 1 Node, Rack and Cluster: A node is simply a computer, typically non-enterprise, commodity hardware for nodes that contain data. Consider we have Node 1.Then we can add more nodes,
Big Data Storage Options for Hadoop Sam Fineberg, HP Storage
Sam Fineberg, HP Storage SNIA Legal Notice The material contained in this tutorial is copyrighted by the SNIA unless otherwise noted. Member companies and individual members may use this material in presentations
Hadoop MapReduce over Lustre* High Performance Data Division Omkar Kulkarni April 16, 2013
Hadoop MapReduce over Lustre* High Performance Data Division Omkar Kulkarni April 16, 2013 * Other names and brands may be claimed as the property of others. Agenda Hadoop Intro Why run Hadoop on Lustre?
Take An Internal Look at Hadoop. Hairong Kuang Grid Team, Yahoo! Inc [email protected]
Take An Internal Look at Hadoop Hairong Kuang Grid Team, Yahoo! Inc [email protected] What s Hadoop Framework for running applications on large clusters of commodity hardware Scale: petabytes of data
Welcome to the unit of Hadoop Fundamentals on Hadoop architecture. I will begin with a terminology review and then cover the major components
Welcome to the unit of Hadoop Fundamentals on Hadoop architecture. I will begin with a terminology review and then cover the major components of Hadoop. We will see what types of nodes can exist in a Hadoop
Unstructured Data Accelerator (UDA) Author: Motti Beck, Mellanox Technologies Date: March 27, 2012
Unstructured Data Accelerator (UDA) Author: Motti Beck, Mellanox Technologies Date: March 27, 2012 1 Market Trends Big Data Growing technology deployments are creating an exponential increase in the volume
Big Fast Data Hadoop acceleration with Flash. June 2013
Big Fast Data Hadoop acceleration with Flash June 2013 Agenda The Big Data Problem What is Hadoop Hadoop and Flash The Nytro Solution Test Results The Big Data Problem Big Data Output Facebook Traditional
HADOOP ADMINISTATION AND DEVELOPMENT TRAINING CURRICULUM
HADOOP ADMINISTATION AND DEVELOPMENT TRAINING CURRICULUM 1. Introduction 1.1 Big Data Introduction What is Big Data Data Analytics Bigdata Challenges Technologies supported by big data 1.2 Hadoop Introduction
Developing a MapReduce Application
TIE 12206 - Apache Hadoop Tampere University of Technology, Finland November, 2014 Outline 1 MapReduce Paradigm 2 Hadoop Default Ports 3 Outline 1 MapReduce Paradigm 2 Hadoop Default Ports 3 MapReduce
COURSE CONTENT Big Data and Hadoop Training
COURSE CONTENT Big Data and Hadoop Training 1. Meet Hadoop Data! Data Storage and Analysis Comparison with Other Systems RDBMS Grid Computing Volunteer Computing A Brief History of Hadoop Apache Hadoop
THE HADOOP DISTRIBUTED FILE SYSTEM
THE HADOOP DISTRIBUTED FILE SYSTEM Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler Presented by Alexander Pokluda October 7, 2013 Outline Motivation and Overview of Hadoop Architecture,
Performance and Energy Efficiency of. Hadoop deployment models
Performance and Energy Efficiency of Hadoop deployment models Contents Review: What is MapReduce Review: What is Hadoop Hadoop Deployment Models Metrics Experiment Results Summary MapReduce Introduced
HADOOP MOCK TEST HADOOP MOCK TEST II
http://www.tutorialspoint.com HADOOP MOCK TEST Copyright tutorialspoint.com This section presents you various set of Mock Tests related to Hadoop Framework. You can download these sample mock tests at
Weekly Report. Hadoop Introduction. submitted By Anurag Sharma. Department of Computer Science and Engineering. Indian Institute of Technology Bombay
Weekly Report Hadoop Introduction submitted By Anurag Sharma Department of Computer Science and Engineering Indian Institute of Technology Bombay Chapter 1 What is Hadoop? Apache Hadoop (High-availability
Peers Techno log ies Pv t. L td. HADOOP
Page 1 Peers Techno log ies Pv t. L td. Course Brochure Overview Hadoop is a Open Source from Apache, which provides reliable storage and faster process by using the Hadoop distibution file system and
Hadoop: A Framework for Data- Intensive Distributed Computing. CS561-Spring 2012 WPI, Mohamed Y. Eltabakh
1 Hadoop: A Framework for Data- Intensive Distributed Computing CS561-Spring 2012 WPI, Mohamed Y. Eltabakh 2 What is Hadoop? Hadoop is a software framework for distributed processing of large datasets
MapReduce and Hadoop. Aaron Birkland Cornell Center for Advanced Computing. January 2012
MapReduce and Hadoop Aaron Birkland Cornell Center for Advanced Computing January 2012 Motivation Simple programming model for Big Data Distributed, parallel but hides this Established success at petabyte
An Alternative Storage Solution for MapReduce. Eric Lomascolo Director, Solutions Marketing
An Alternative Storage Solution for MapReduce Eric Lomascolo Director, Solutions Marketing MapReduce Breaks the Problem Down Data Analysis Distributes processing work (Map) across compute nodes and accumulates
CS380 Final Project Evaluating the Scalability of Hadoop in a Real and Virtual Environment
CS380 Final Project Evaluating the Scalability of Hadoop in a Real and Virtual Environment James Devine December 15, 2008 Abstract Mapreduce has been a very successful computational technique that has
Performance Comparison of SQL based Big Data Analytics with Lustre and HDFS file systems
Performance Comparison of SQL based Big Data Analytics with Lustre and HDFS file systems Rekha Singhal and Gabriele Pacciucci * Other names and brands may be claimed as the property of others. Lustre File
Reference Architecture and Best Practices for Virtualizing Hadoop Workloads Justin Murray VMware
Reference Architecture and Best Practices for Virtualizing Hadoop Workloads Justin Murray ware 2 Agenda The Hadoop Journey Why Virtualize Hadoop? Elasticity and Scalability Performance Tests Storage Reference
Enabling High performance Big Data platform with RDMA
Enabling High performance Big Data platform with RDMA Tong Liu HPC Advisory Council Oct 7 th, 2014 Shortcomings of Hadoop Administration tooling Performance Reliability SQL support Backup and recovery
Hadoop Job Oriented Training Agenda
1 Hadoop Job Oriented Training Agenda Kapil CK [email protected] Module 1 M o d u l e 1 Understanding Hadoop This module covers an overview of big data, Hadoop, and the Hortonworks Data Platform. 1.1 Module
Building & Optimizing Enterprise-class Hadoop with Open Architectures Prem Jain NetApp
Building & Optimizing Enterprise-class Hadoop with Open Architectures Prem Jain NetApp Introduction to Hadoop Comes from Internet companies Emerging big data storage and analytics platform HDFS and MapReduce
HiBench Introduction. Carson Wang ([email protected]) Software & Services Group
HiBench Introduction Carson Wang ([email protected]) Agenda Background Workloads Configurations Benchmark Report Tuning Guide Background WHY Why we need big data benchmarking systems? WHAT What is
t] open source Hadoop Beginner's Guide ij$ data avalanche Garry Turkington Learn how to crunch big data to extract meaning from
Hadoop Beginner's Guide Learn how to crunch big data to extract meaning from data avalanche Garry Turkington [ PUBLISHING t] open source I I community experience distilled ftu\ ij$ BIRMINGHAMMUMBAI ')
Use of Hadoop File System for Nuclear Physics Analyses in STAR
1 Use of Hadoop File System for Nuclear Physics Analyses in STAR EVAN SANGALINE UC DAVIS Motivations 2 Data storage a key component of analysis requirements Transmission and storage across diverse resources
ITG Software Engineering
Introduction to Cloudera Course ID: Page 1 Last Updated 12/15/2014 Introduction to Cloudera Course : This 5 day course introduces the student to the Hadoop architecture, file system, and the Hadoop Ecosystem.
Duke University http://www.cs.duke.edu/starfish
Herodotos Herodotou, Harold Lim, Fei Dong, Shivnath Babu Duke University http://www.cs.duke.edu/starfish Practitioners of Big Data Analytics Google Yahoo! Facebook ebay Physicists Biologists Economists
Hadoop* on Lustre* Liu Ying ([email protected]) High Performance Data Division, Intel Corporation
Hadoop* on Lustre* Liu Ying ([email protected]) High Performance Data Division, Intel Corporation Agenda Overview HAM and HAL Hadoop* Ecosystem with Lustre * Benchmark results Conclusion and future work
MapReduce and Lustre * : Running Hadoop * in a High Performance Computing Environment
MapReduce and Lustre * : Running Hadoop * in a High Performance Computing Environment Ralph H. Castain Senior Architect, Intel Corporation Omkar Kulkarni Software Developer, Intel Corporation Xu, Zhenyu
H2O on Hadoop. September 30, 2014. www.0xdata.com
H2O on Hadoop September 30, 2014 www.0xdata.com H2O on Hadoop Introduction H2O is the open source math & machine learning engine for big data that brings distribution and parallelism to powerful algorithms
Performance measurement of a Hadoop Cluster
Performance measurement of a Hadoop Cluster Technical white paper Created: February 8, 2012 Last Modified: February 23 2012 Contents Introduction... 1 The Big Data Puzzle... 1 Apache Hadoop and MapReduce...
The Performance Characteristics of MapReduce Applications on Scalable Clusters
The Performance Characteristics of MapReduce Applications on Scalable Clusters Kenneth Wottrich Denison University Granville, OH 43023 [email protected] ABSTRACT Many cluster owners and operators have
MapReduce Evaluator: User Guide
University of A Coruña Computer Architecture Group MapReduce Evaluator: User Guide Authors: Jorge Veiga, Roberto R. Expósito, Guillermo L. Taboada and Juan Touriño December 9, 2014 Contents 1 Overview
Evaluating MapReduce and Hadoop for Science
Evaluating MapReduce and Hadoop for Science Lavanya Ramakrishnan [email protected] Lawrence Berkeley National Lab Computation and Data are critical parts of the scientific process Three Pillars of
Sector vs. Hadoop. A Brief Comparison Between the Two Systems
Sector vs. Hadoop A Brief Comparison Between the Two Systems Background Sector is a relatively new system that is broadly comparable to Hadoop, and people want to know what are the differences. Is Sector
Complete Java Classes Hadoop Syllabus Contact No: 8888022204
1) Introduction to BigData & Hadoop What is Big Data? Why all industries are talking about Big Data? What are the issues in Big Data? Storage What are the challenges for storing big data? Processing What
CURSO: ADMINISTRADOR PARA APACHE HADOOP
CURSO: ADMINISTRADOR PARA APACHE HADOOP TEST DE EJEMPLO DEL EXÁMEN DE CERTIFICACIÓN www.formacionhadoop.com 1 Question: 1 A developer has submitted a long running MapReduce job with wrong data sets. You
Hadoop Distributed File System. Dhruba Borthakur Apache Hadoop Project Management Committee [email protected] June 3 rd, 2008
Hadoop Distributed File System Dhruba Borthakur Apache Hadoop Project Management Committee [email protected] June 3 rd, 2008 Who Am I? Hadoop Developer Core contributor since Hadoop s infancy Focussed
How To Use Hadoop
Hadoop in Action Justin Quan March 15, 2011 Poll What s to come Overview of Hadoop for the uninitiated How does Hadoop work? How do I use Hadoop? How do I get started? Final Thoughts Key Take Aways Hadoop
Hadoop Distributed File System. Dhruba Borthakur Apache Hadoop Project Management Committee [email protected] [email protected]
Hadoop Distributed File System Dhruba Borthakur Apache Hadoop Project Management Committee [email protected] [email protected] Hadoop, Why? Need to process huge datasets on large clusters of computers
Optimize the execution of local physics analysis workflows using Hadoop
Optimize the execution of local physics analysis workflows using Hadoop INFN CCR - GARR Workshop 14-17 May Napoli Hassen Riahi Giacinto Donvito Livio Fano Massimiliano Fasi Andrea Valentini INFN-PERUGIA
Tutorial: Big Data Algorithms and Applications Under Hadoop KUNPENG ZHANG SIDDHARTHA BHATTACHARYYA
Tutorial: Big Data Algorithms and Applications Under Hadoop KUNPENG ZHANG SIDDHARTHA BHATTACHARYYA http://kzhang6.people.uic.edu/tutorial/amcis2014.html August 7, 2014 Schedule I. Introduction to big data
Intro to Map/Reduce a.k.a. Hadoop
Intro to Map/Reduce a.k.a. Hadoop Based on: Mining of Massive Datasets by Ra jaraman and Ullman, Cambridge University Press, 2011 Data Mining for the masses by North, Global Text Project, 2012 Slides by
PassTest. Bessere Qualität, bessere Dienstleistungen!
PassTest Bessere Qualität, bessere Dienstleistungen! Q&A Exam : CCD-410 Title : Cloudera Certified Developer for Apache Hadoop (CCDH) Version : DEMO 1 / 4 1.When is the earliest point at which the reduce
A Performance Analysis of Distributed Indexing using Terrier
A Performance Analysis of Distributed Indexing using Terrier Amaury Couste Jakub Kozłowski William Martin Indexing Indexing Used by search
HADOOP PERFORMANCE TUNING
PERFORMANCE TUNING Abstract This paper explains tuning of Hadoop configuration parameters which directly affects Map-Reduce job performance under various conditions, to achieve maximum performance. The
HDFS: Hadoop Distributed File System
Istanbul Şehir University Big Data Camp 14 HDFS: Hadoop Distributed File System Aslan Bakirov Kevser Nur Çoğalmış Agenda Distributed File System HDFS Concepts HDFS Interfaces HDFS Full Picture Read Operation
A very short Intro to Hadoop
4 Overview A very short Intro to Hadoop photo by: exfordy, flickr 5 How to Crunch a Petabyte? Lots of disks, spinning all the time Redundancy, since disks die Lots of CPU cores, working all the time Retry,
Open source Google-style large scale data analysis with Hadoop
Open source Google-style large scale data analysis with Hadoop Ioannis Konstantinou Email: [email protected] Web: http://www.cslab.ntua.gr/~ikons Computing Systems Laboratory School of Electrical
From Relational to Hadoop Part 1: Introduction to Hadoop. Gwen Shapira, Cloudera and Danil Zburivsky, Pythian
From Relational to Hadoop Part 1: Introduction to Hadoop Gwen Shapira, Cloudera and Danil Zburivsky, Pythian Tutorial Logistics 2 Got VM? 3 Grab a USB USB contains: Cloudera QuickStart VM Slides Exercises
Hadoop Ecosystem B Y R A H I M A.
Hadoop Ecosystem B Y R A H I M A. History of Hadoop Hadoop was created by Doug Cutting, the creator of Apache Lucene, the widely used text search library. Hadoop has its origins in Apache Nutch, an open
Chapter 7. Using Hadoop Cluster and MapReduce
Chapter 7 Using Hadoop Cluster and MapReduce Modeling and Prototyping of RMS for QoS Oriented Grid Page 152 7. Using Hadoop Cluster and MapReduce for Big Data Problems The size of the databases used in
CS 378 Big Data Programming. Lecture 5 Summariza9on Pa:erns
CS 378 Big Data Programming Lecture 5 Summariza9on Pa:erns Review Assignment 2 Ques9ons? If you d like to use guava (Google collec9ons classes) pom.xml available for assignment 2 Includes dependency for
Big Data With Hadoop
With Saurabh Singh [email protected] The Ohio State University February 11, 2016 Overview 1 2 3 Requirements Ecosystem Resilient Distributed Datasets (RDDs) Example Code vs Mapreduce 4 5 Source: [Tutorials
Data-Intensive Programming. Timo Aaltonen Department of Pervasive Computing
Data-Intensive Programming Timo Aaltonen Department of Pervasive Computing Data-Intensive Programming Lecturer: Timo Aaltonen University Lecturer [email protected] Assistants: Henri Terho and Antti
HADOOP MOCK TEST HADOOP MOCK TEST I
http://www.tutorialspoint.com HADOOP MOCK TEST Copyright tutorialspoint.com This section presents you various set of Mock Tests related to Hadoop Framework. You can download these sample mock tests at
Storage Architectures for Big Data in the Cloud
Storage Architectures for Big Data in the Cloud Sam Fineberg HP Storage CT Office/ May 2013 Overview Introduction What is big data? Big Data I/O Hadoop/HDFS SAN Distributed FS Cloud Summary Research Areas
Dell Reference Configuration for Hortonworks Data Platform
Dell Reference Configuration for Hortonworks Data Platform A Quick Reference Configuration Guide Armando Acosta Hadoop Product Manager Dell Revolutionary Cloud and Big Data Group Kris Applegate Solution
Big Data for Big Science. Bernard Doering Business Development, EMEA Big Data Software
Big Data for Big Science Bernard Doering Business Development, EMEA Big Data Software Internet of Things 40 Zettabytes of data will be generated WW in 2020 1 SMART CLIENTS INTELLIGENT CLOUD Richer user
Deploying Cloudera CDH (Cloudera Distribution Including Apache Hadoop) with Emulex OneConnect OCe14000 Network Adapters
Deploying Cloudera CDH (Cloudera Distribution Including Apache Hadoop) with Emulex OneConnect OCe14000 Network Adapters Table of Contents Introduction... Hardware requirements... Recommended Hadoop cluster
MapReduce and Hadoop Distributed File System
MapReduce and Hadoop Distributed File System 1 B. RAMAMURTHY Contact: Dr. Bina Ramamurthy CSE Department University at Buffalo (SUNY) [email protected] http://www.cse.buffalo.edu/faculty/bina Partially
The Top 10 7 Hadoop Patterns and Anti-patterns. Alex Holmes @
The Top 10 7 Hadoop Patterns and Anti-patterns Alex Holmes @ whoami Alex Holmes Software engineer Working on distributed systems for many years Hadoop since 2008 @grep_alex grepalex.com what s hadoop...
CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop)
CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Spring 2016 MapReduce MapReduce is a programming model
Linux Clusters Ins.tute: Turning HPC cluster into a Big Data Cluster. A Partnership for an Advanced Compu@ng Environment (PACE) OIT/ART, Georgia Tech
Linux Clusters Ins.tute: Turning HPC cluster into a Big Data Cluster Fang (Cherry) Liu, PhD [email protected] A Partnership for an Advanced Compu@ng Environment (PACE) OIT/ART, Georgia Tech Targets
Successfully Deploying Alternative Storage Architectures for Hadoop Gus Horn Iyer Venkatesan NetApp
Successfully Deploying Alternative Storage Architectures for Hadoop Gus Horn Iyer Venkatesan NetApp Agenda Hadoop and storage Alternative storage architecture for Hadoop Use cases and customer examples
Herodotos Herodotou Shivnath Babu. Duke University
Herodotos Herodotou Shivnath Babu Duke University Analysis in the Big Data Era Popular option Hadoop software stack Java / C++ / R / Python Pig Hive Jaql Oozie Elastic MapReduce Hadoop HBase MapReduce
Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware
Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware Created by Doug Cutting and Mike Carafella in 2005. Cutting named the program after
Infomatics. Big-Data and Hadoop Developer Training with Oracle WDP
Big-Data and Hadoop Developer Training with Oracle WDP What is this course about? Big Data is a collection of large and complex data sets that cannot be processed using regular database management tools
Hadoop Deployment and Performance on Gordon Data Intensive Supercomputer!
Hadoop Deployment and Performance on Gordon Data Intensive Supercomputer! Mahidhar Tatineni, Rick Wagner, Eva Hocks, Christopher Irving, and Jerry Greenberg! SDSC! XSEDE13, July 22-25, 2013! Overview!!
Certified Big Data and Apache Hadoop Developer VS-1221
Certified Big Data and Apache Hadoop Developer VS-1221 Certified Big Data and Apache Hadoop Developer Certification Code VS-1221 Vskills certification for Big Data and Apache Hadoop Developer Certification
Comparative analysis of mapreduce job by keeping data constant and varying cluster size technique
Comparative analysis of mapreduce job by keeping data constant and varying cluster size technique Mahesh Maurya a, Sunita Mahajan b * a Research Scholar, JJT University, MPSTME, Mumbai, India,[email protected]
1. GridGain In-Memory Accelerator For Hadoop. 2. Hadoop Installation. 2.1 Hadoop 1.x Installation
1. GridGain In-Memory Accelerator For Hadoop GridGain's In-Memory Accelerator For Hadoop edition is based on the industry's first high-performance dual-mode in-memory file system that is 100% compatible
CS2510 Computer Operating Systems
CS2510 Computer Operating Systems HADOOP Distributed File System Dr. Taieb Znati Computer Science Department University of Pittsburgh Outline HDF Design Issues HDFS Application Profile Block Abstraction
CS2510 Computer Operating Systems
CS2510 Computer Operating Systems HADOOP Distributed File System Dr. Taieb Znati Computer Science Department University of Pittsburgh Outline HDF Design Issues HDFS Application Profile Block Abstraction
Hadoop Distributed File System. T-111.5550 Seminar On Multimedia 2009-11-11 Eero Kurkela
Hadoop Distributed File System T-111.5550 Seminar On Multimedia 2009-11-11 Eero Kurkela Agenda Introduction Flesh and bones of HDFS Architecture Accessing data Data replication strategy Fault tolerance
CS 378 Big Data Programming. Lecture 2 Map- Reduce
CS 378 Big Data Programming Lecture 2 Map- Reduce MapReduce Large data sets are not new What characterizes a problem suitable for MR? Most or all of the data is processed But viewed in small increments
Increasing Hadoop Performance with SanDisk Solid State Drives (SSDs)
WHITE PAPER Increasing Hadoop Performance with SanDisk Solid State Drives (SSDs) July 2014 951 SanDisk Drive, Milpitas, CA 95035 2014 SanDIsk Corporation. All rights reserved www.sandisk.com Table of Contents
I/O Considerations in Big Data Analytics
Library of Congress I/O Considerations in Big Data Analytics 26 September 2011 Marshall Presser Federal Field CTO EMC, Data Computing Division 1 Paradigms in Big Data Structured (relational) data Very
Introduction to Hadoop on the SDSC Gordon Data Intensive Cluster"
Introduction to Hadoop on the SDSC Gordon Data Intensive Cluster" Mahidhar Tatineni SDSC Summer Institute August 06, 2013 Overview "" Hadoop framework extensively used for scalable distributed processing
The Greenplum Analytics Workbench
The Greenplum Analytics Workbench External Overview 1 The Greenplum Analytics Workbench Definition Is a 1000-node Hadoop Cluster. Pre-configured with publicly available data sets. Contains the entire Hadoop
ENABLING GLOBAL HADOOP WITH EMC ELASTIC CLOUD STORAGE
ENABLING GLOBAL HADOOP WITH EMC ELASTIC CLOUD STORAGE Hadoop Storage-as-a-Service ABSTRACT This White Paper illustrates how EMC Elastic Cloud Storage (ECS ) can be used to streamline the Hadoop data analytics
Hadoop Ecosystem Overview. CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook
Hadoop Ecosystem Overview CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook Agenda Introduce Hadoop projects to prepare you for your group work Intimate detail will be provided in future
HADOOP ON ORACLE ZFS STORAGE A TECHNICAL OVERVIEW
HADOOP ON ORACLE ZFS STORAGE A TECHNICAL OVERVIEW 757 Maleta Lane, Suite 201 Castle Rock, CO 80108 Brett Weninger, Managing Director [email protected] Dave Smelker, Managing Principal [email protected]
Getting to know Apache Hadoop
Getting to know Apache Hadoop Oana Denisa Balalau Télécom ParisTech October 13, 2015 1 / 32 Table of Contents 1 Apache Hadoop 2 The Hadoop Distributed File System(HDFS) 3 Application management in the
