Introduction to teledection
|
|
|
- Gwen Bennett
- 10 years ago
- Views:
Transcription
1 Introduction to teledection Formation Sébastien Clerc, ACRI-ST ACRI-ST
2 Earth Observation Actors and Markets 2
3 Earth Observation economic importance Earth Observation is one of the major application of space in terms of business Satellite TV Basic Activities 5% Telecommunications 9% Human Spaceflight 10% Space Situational Awareness Robotic Exploration 3% Technology 0% 3% General Budget 5% Others 0% Earth Observation 21% Navigation 17% Meteosat GPS/ Galileo ISS Science 12% Launchers 15% ESA Budget (2011) Rosetta Planck VEGA Source: wikipedia 3
4 Why Observe Earth from space? Positive points A space observation system provides images continuously, on a worlwide scale One to 5 satellites needed for a global observation system Observation obtained in very remote places (Pacific, high-latitudes...) Same sensor gives consistent data over time and space: enable reliable long term series and global maps The satellite and launch cost is relatively high, but once the satellite is in orbit, it operates almost at no cost No refuelling needed, no maintenance Negative points Temporal coverage can be a problem Clouds reduces visbility Altitude is not favourable for spatial resolution and signal accuracy 4
5 Who are the actors of space observation? Institutions Type Examples Mission example National agencies CNES, DLR MERLIN: methane concentration European Defence DGA, ASI HELIOS: military high resolution imaging, COSMO: dual-use radar imaging Extra-European Defence European institutions Kazakhstan, EAU EU, ESA, Eumetsat Dual-use medium/high-resolution imaging Copernicus program: multi-satellite global observation system for environment monitoring and security 5
6 Who are the actors of space observation? Commercial Image providers Type Examples Services Private companies Data processing and distribution DigitalGlobe, Airbus Defense and Space, Skybox Imaging, BlackBridge Commercial medium to high resolution on-demand imaging Type Examples Services SMEs ACRI-ST, Elecnor, CS Processing, storage, quality control, value-added services 6
7 Earth Observation Applications Earth Observation Exploring Monitoring Forecasting Earth Observation provides new geophysical data Earth Observation detects changes Assimilation of Earth Observation data in geophysical models 7
8 Example Public Service Applications Earth Observation Exploring Monitoring Forecasting Sea Surface Elevation: El Nino Ozone hole monitoring Climate Change: Surface temperature Image NASA/CNES Image ESA/Eumetsat/DLR Image NOAA 8
9 Example Public Service Applications Earth Observation Exploring Monitoring Forecasting Bathymetry Flood monitoring Wind velocity map Image Digital Globe Image ESA Image Eumetsat 9
10 Example Commercial Service Applications Earth Observation Exploring Monitoring Forecasting 3D Elevation map for oleoduc installation Counting the cars Predicting crop maturity Image Airbus Image Digital Globe Image Digital Globe 10
11 The Copernicus Program ACRI-ST role in Copernicus program Leader of Sentinel-3 Mission Performance Center Responsible of Sentinel-3 Processing and Archiving Center for SLSTR and Synergy products (S3) Contributes to Sentinel-2 Processing and Archiving Center 11
12 Earth Observation Missions 12
13 What can we see from space? What can we observe? Solar light reflected by the Earth / atmosphere Earth /atmosphere Infrared radiation Linked to temperature Active sensors: radar, lidar Works day and night Even with clouds (in some cases) Need very high power Others: gravity field What information can we obtain? Reflectance of the ground: identification of objects, materials, relief / texture / altitude Absorption / reflection of the atmosphere: clouds, aerosols, gases 13
14 Sensor types Electro-magnetic Field Gravity Field Active sensor Passive sensor Radar altimeter Imaging Radar Lidar Imager Sounder Gravimeter Jason (CNES/NASA) Sea surface height Sentinel-1 (ESA) Radar images CALIPSO (CNES/NASA) Aerosol and cloud profile SEVIRI on METEOSAT-2 (EumetSat) clouds, temperature GOME on METOP (EumetSat) Ozone concentration GOCE (ESA) Earth and Ocean gravity field 14
15 Mission types: Satellites Micro-mini satellite Single small sensor Short lifetime ENVISAT 9 sensors Mass kg Proba V 1 sensor: VEGETATION Mass 140 kg Medium-large satellites Several sensors or one heavy sensor (radar) Long lifetime 15
16 Mission types: orbits Low-Earth Orbit km Most observation satellites Low altitude: Favourable for launcher Favourable for sensor design (better resolution, higher signal) Sun-synchronous orbit observation at fixed hour (e.g.10h00) Each point of the globe observed every N>3 days Geostationary km A few observation satellites (Meteorology) High altitude: Heavy launcher needed (Ariane / Soyouz) Low signal, low resolution Geo-synchronous orbit Continuous observation of 1/3 of the globe 16
17 How does an Earth Observation sensor work? Image strip acquired after one day Clouds Satellite Ground Track 17
18 How does an Earth Observation sensor work? After one week, using 2 satellites Clouds 18
19 Earth Observation Sensors 19
20 Detector How does an Earth Observation sensor work? Imaging sensor: a (large) digital camera in space Photons Photons Electrons Optics Mass Memory RF signal Telecommunication Electrons 20
21 How does an Earth Observation sensor work? Example: PLEIADES High Resolution instrument Secondary mirror M2 (with thermal refocusing device) Highly Integrated Detection Unit with its radiators Ring and Spider Blades Shutter mechanism Primary mirror M1 (Zerodur) Carbon-Carbon cylinder Bus interface (with launcher interface cone) Folding mirror Tertiary mirror M3 Optical bench Detector Optics 21
22 How does an Earth Observation sensor work? Seeing «colours»: spectral imaging 4 colours (R/G/B + black and white) => Filters 100 and more spectral bands => Spectrometer (gratings, prisms) XS1 XS2 XS product (sampling 4 m) PAN product (sampling 1 m) XS3 XS4 Colored product (sampling 1 m) XS bands (sampling 4 m) 22
23 How does an Earth Observation sensor work? LEO missions: the pushbroom concept The satellite captures the image of a band on the ground with a single line of pixels The velocity of the image band is approximately 7 km/s The detector needs to be refreshed fast to acquire the next image band 23
24 Sensor Characteristics Geometric characteristics: swath width and spatial sampling 10 m resolution: Roads visible Swath width impacts the revisit time m resolution: cars 2 m resolution: houses Images: DigitalGlobe 24
25 Sensor Characteristics Image noise Characterised by Signal to Noise Ratio (SNR) Scene Loss of contrast Characterized by the FTM Image of the scene 25
26 Detector Sensor errors Imaging sensor: a (large) digital camera in space Electronic noise Non-linearity Quantization error From this point, errors should be negligible Poisson noise Photons Photons Electrons Optics Mass Memory Aberrations (MTF) straylight Radiometric and spectral response errors RF signal Telecommunication Electrons 26
27 Sensor Error sources Error source Cause Impacting parameters Poisson noise Intrinsic noise = sqrt(signal) Signal level: instrument diameter, exposure time, spectral bandwidth MTF diffraction Instrument diameter, spectral wavelength Aberrations Spectral and radiometric response error Misalignment/deformation of optical elements, staylight Imperfect optical elements, straylight Alignment procedure, choice of materials, thermal control Manufacturing and material selection, calibration Detector noise Electronic noise Detector technology, ageing & radiation, operating temperature Quantization noise Quantization error Number of bits (bit depth) 27
28 Satellite error sources Satellite pointing error (control error) The image on ground is shifted with respect to target position Satellite pointing stability error Image degradation (motion blur) Satellite position and pointing knowledge error Image geolocation error 28
29 Earth Observation Data Processing 29
30 Data processing Instrument Level 0 Data Ancillary Data: Time, Attitude, Position Calibration Lookup Tables Conversion Instrument count => physical fields Instrument Error Corrections Geolocation, rectification Level 1 images = Perfect Sensor 30
31 Data processing Level 1 images = Perfect Sensor Meteorological data Atmosphere correction Pixel characterisation: cloud, land, ocean Level 2 images = Bottom of Atmosphere 31
32 Data processing Atmospheric correction 32
33 Data processing Level 2 images = Bottom of Atmosphere Level 2 images = Bottom of Atmosphere Regridding, Averaging, etc. Data bases Geophysical algorithms Level 3 products = Geophysical fields 33
34 Example Geophysical Algorithm: Chlorophyll retrieval Reflected signal at water surface is the sum of the contribution of: Water Plankton (Chlorophyll pigment) Coloured Dissolved Matter Air bubbles Each consistuent is characterized by its: Absorption coefficient Backscattering coefficient At different wavelengths 34
35 Example Geophysical Algorithm: Chlorophyll retrieval Question: Can we retrieve the chlorophyll concentration from the measured reflectances? 35
36 Example Geophysical Algorithm: Chlorophyll retrieval The GSM algorithm Geometric parameters Total reflectance Absorption coefficient Backscattering coefficient water phytoplankton Dissolved matter water Particles 36
37 Example Geophysical Algorithm: Chlorophyll retrieval The GSM algorithm (semi-analytic) Assumptions: Water properties a w (l) and b w (l) are know functions Chlorophyll absorption: a ph (l) = Chl. a*(l), a* is a known function Chl concentration unknown Detrital Matter absorption a dg (l) = a(l 0 ) exp[-s(l-l 0 )] Spectral coefficient S is known a(l 0 ) is unknown Particle Back-scattering b bp (l) = b bp (l 0 ) (l/l 0 ) -h Spectral slope h is known b bp (l 0 ) is unknown 37
38 Example Geophysical Algorithm: Chlorophyll retrieval Summary: 3 scalar unknowns Chl concentration a(l 0 ) b bp (l 0 ) With reflectance measured at > 3 reflectances, we can retrieve the three unknowns Non-linear best fit algorithm of Newton type (Levenberg-Marquat) 38
39 Example Geophysical Algorithm: Chlorophyll retrieval Estimated Chlorophyll concentration from satellite images vs. In-situ measurements 39
Update on EUMETSAT ocean colour services. Ewa J. Kwiatkowska
Update on EUMETSAT ocean colour services Ewa J. Kwiatkowska 1 st International Ocean Colour Science meeting, 6 8 May, 2013 EUMETSAT space data provider for operational oceanography Operational data provider
Hyperspectral Satellite Imaging Planning a Mission
Hyperspectral Satellite Imaging Planning a Mission Victor Gardner University of Maryland 2007 AIAA Region 1 Mid-Atlantic Student Conference National Institute of Aerospace, Langley, VA Outline Objective
16 th IOCCG Committee annual meeting. Plymouth, UK 15 17 February 2011. mission: Present status and near future
16 th IOCCG Committee annual meeting Plymouth, UK 15 17 February 2011 The Meteor 3M Mt satellite mission: Present status and near future plans MISSION AIMS Satellites of the series METEOR M M are purposed
Proba-V: Earthwatch Mission as part of ESA s Earth Observation Programmes
Proba-V: Earthwatch Mission as part of ESA s Earth Observation Programmes Antwerp 05.07.2013 Bianca Hoersch Proba-V Mission Manager Third Party Mission & Sentinel-2 Mission Manager Earth Observation Directorate,
The Sentinel-4/UVN instrument on-board MTG-S
The Sentinel-4/UVN instrument on-board MTG-S Grégory Bazalgette Courrèges-Lacoste; Berit Ahlers; Benedikt Guldimann; Alex Short; Ben Veihelmann, Hendrik Stark ESA ESTEC European Space Technology & Research
RS platforms. Fabio Dell Acqua - Gruppo di Telerilevamento
RS platforms Platform vs. instrument Sensor Platform Instrument The remote sensor can be ideally represented as an instrument carried by a platform Platforms Remote Sensing: Ground-based air-borne space-borne
Examination Space Missions and Applications I (AE2103) Faculty of Aerospace Engineering Delft University of Technology SAMPLE EXAM
Examination Space Missions and Applications I AE2103 Faculty of Aerospace Engineering Delft University of Technology SAMPLE EXAM Please read these instructions first: This are a series of multiple-choice
Overview of the IR channels and their applications
Ján Kaňák Slovak Hydrometeorological Institute [email protected] Overview of the IR channels and their applications EUMeTrain, 14 June 2011 Ján Kaňák, SHMÚ 1 Basics in satellite Infrared image interpretation
From Whitehall to orbit and back again: using space in government
From Whitehall to orbit and back again: using space in government 18 th June 2014 Bristol 25 th June 2014 Liverpool 3 rd July 2014 -Newcastle Space for Smarter Government Programme ([email protected])
Satellite Altimetry Missions
Satellite Altimetry Missions SINGAPORE SPACE SYMPOSIUM 30 TH SEPTEMBER 2015 AUTHORS: LUCA SIMONINI/ ERICK LANSARD/ JOSE M GONZALEZ www.thalesgroup.com Table of Content General Principles and Applications
2.3 Spatial Resolution, Pixel Size, and Scale
Section 2.3 Spatial Resolution, Pixel Size, and Scale Page 39 2.3 Spatial Resolution, Pixel Size, and Scale For some remote sensing instruments, the distance between the target being imaged and the platform,
Satellite Remote Sensing of Volcanic Ash
Marco Fulle www.stromboli.net Satellite Remote Sensing of Volcanic Ash Michael Pavolonis NOAA/NESDIS/STAR SCOPE Nowcasting 1 Meeting November 19 22, 2013 1 Outline Getty Images Volcanic ash satellite remote
How To Monitor Sea Level With Satellite Radar
Satellite Altimetry Wolfgang Bosch Deutsches Geodätisches Forschungsinstitut (DGFI), München email: [email protected] Objectives You shall recognize satellite altimetry as an operational remote sensing
A remote sensing instrument collects information about an object or phenomenon within the
Satellite Remote Sensing GE 4150- Natural Hazards Some slides taken from Ann Maclean: Introduction to Digital Image Processing Remote Sensing the art, science, and technology of obtaining reliable information
Evaluating GCM clouds using instrument simulators
Evaluating GCM clouds using instrument simulators University of Washington September 24, 2009 Why do we care about evaluation of clouds in GCMs? General Circulation Models (GCMs) project future climate
Joint Polar Satellite System (JPSS)
Joint Polar Satellite System (JPSS) John Furgerson, User Liaison Joint Polar Satellite System National Environmental Satellite, Data, and Information Service National Oceanic and Atmospheric Administration
The RapidEye optical satellite family for high resolution imagery
'Photogrammetric Week 01' D. Fritsch & R. Spiller, Eds. Wichmann Verlag, Heidelberg 2001. Scherer, Krischke 139 The RapidEye optical satellite family for high resolution imagery STEFAN SCHERER and MANFRED
Volcanic Ash Monitoring: Product Guide
Doc.No. Issue : : EUM/TSS/MAN/15/802120 v1a EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555 Date : 2 June 2015 http://www.eumetsat.int WBS/DBS : EUMETSAT
Sky Monitoring Techniques using Thermal Infrared Sensors. sabino piazzolla Optical Communications Group JPL
Sky Monitoring Techniques using Thermal Infrared Sensors sabino piazzolla Optical Communications Group JPL Atmospheric Monitoring The atmospheric channel has a great impact on the channel capacity at optical
Chapter Contents Page No
Chapter Contents Page No Preface Acknowledgement 1 Basics of Remote Sensing 1 1.1. Introduction 1 1.2. Definition of Remote Sensing 1 1.3. Principles of Remote Sensing 1 1.4. Various Stages in Remote Sensing
An Introduction to the MTG-IRS Mission
An Introduction to the MTG-IRS Mission Stefano Gigli, EUMETSAT IRS-NWC Workshop, Eumetsat HQ, 25-0713 Summary 1. Products and Performance 2. Design Overview 3. L1 Data Organisation 2 Part 1 1. Products
CBERS Program Update Jacie 2011. Frederico dos Santos Liporace AMS Kepler [email protected]
CBERS Program Update Jacie 2011 Frederico dos Santos Liporace AMS Kepler [email protected] Overview CBERS 3 and 4 characteristics Differences from previous CBERS satellites (CBERS 1/2/2B) Geometric
Passive Remote Sensing of Clouds from Airborne Platforms
Passive Remote Sensing of Clouds from Airborne Platforms Why airborne measurements? My instrument: the Solar Spectral Flux Radiometer (SSFR) Some spectrometry/radiometry basics How can we infer cloud properties
INVESTIGA I+D+i 2013/2014
INVESTIGA I+D+i 2013/2014 SPECIFIC GUIDELINES ON AEROSPACE OBSERVATION OF EARTH Text by D. Eduardo de Miguel October, 2013 Introducction Earth observation is the use of remote sensing techniques to better
Studying cloud properties from space using sounder data: A preparatory study for INSAT-3D
Studying cloud properties from space using sounder data: A preparatory study for INSAT-3D Munn V. Shukla and P. K. Thapliyal Atmospheric Sciences Division Atmospheric and Oceanic Sciences Group Space Applications
THE GOCI INSTRUMENT ON COMS MISSION THE FIRST GEOSTATIONARY OCEAN COLOR IMAGER
THE GOCI INSTRUMENT ON COMS MISSION THE FIRST GEOSTATIONARY OCEAN COLOR IMAGER Topic 1 - Optical instruments for Earth / Planets surface and atmosphere study François FAURE, Astrium SAS Satellite, Toulouse,
Review for Introduction to Remote Sensing: Science Concepts and Technology
Review for Introduction to Remote Sensing: Science Concepts and Technology Ann Johnson Associate Director [email protected] Funded by National Science Foundation Advanced Technological Education program [DUE
High Resolution Information from Seven Years of ASTER Data
High Resolution Information from Seven Years of ASTER Data Anna Colvin Michigan Technological University Department of Geological and Mining Engineering and Sciences Outline Part I ASTER mission Terra
The European Space Agency s Synthetic Aperture Radar Programme From Experiment to Service Provision
The European Space Agency s Synthetic Aperture Radar Programme From Experiment to Service Provision Evert Attema ESA, Directorate of Earth Observation Programme! The idea of an independent European space
Landsat Monitoring our Earth s Condition for over 40 years
Landsat Monitoring our Earth s Condition for over 40 years Thomas Cecere Land Remote Sensing Program USGS ISPRS:Earth Observing Data and Tools for Health Studies Arlington, VA August 28, 2013 U.S. Department
Monitoring Soil Moisture from Space. Dr. Heather McNairn Science and Technology Branch Agriculture and Agri-Food Canada [email protected].
Monitoring Soil Moisture from Space Dr. Heather McNairn Science and Technology Branch Agriculture and Agri-Food Canada [email protected] What is Remote Sensing? Scientists turn the raw data collected
Remote Sensing Satellite Information Sheets Geophysical Institute University of Alaska Fairbanks
Remote Sensing Satellite Information Sheets Geophysical Institute University of Alaska Fairbanks ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer AVHRR Advanced Very High Resolution
ENVIRONMENTAL MONITORING Vol. I - Remote Sensing (Satellite) System Technologies - Michael A. Okoye and Greg T. Koeln
REMOTE SENSING (SATELLITE) SYSTEM TECHNOLOGIES Michael A. Okoye and Greg T. Earth Satellite Corporation, Rockville Maryland, USA Keywords: active microwave, advantages of satellite remote sensing, atmospheric
International coordination for continuity and interoperability: a CGMS perspective
International coordination for continuity and interoperability: a CGMS perspective Peng Zhang, CGMS WG-III Co-Chair NSMC/CMA In Cooperation with Suzanne Hilding, CGMS WG-III Co-Chair OPPA/NESDIS/NOAA 1
Remote Sensing. Vandaag. Voordelen Remote Sensing Wat is Remote Sensing? Vier elementen Remote Sensing systeem
Remote Sensing 1 Vandaag Voordelen Remote Sensing Wat is Remote Sensing? Vier elementen Remote Sensing systeem 2 Nederland Vanaf 700 km hoogte Landsat TM mozaïek 3 Europa vanaf 36000 km hoogte 4 5 Mount
Evaluations of the CALIPSO Cloud Optical Depth Algorithm Through Comparisons with a GOES Derived Cloud Analysis
Generated using V3.0 of the official AMS LATEX template Evaluations of the CALIPSO Cloud Optical Depth Algorithm Through Comparisons with a GOES Derived Cloud Analysis Katie Carbonari, Heather Kiley, and
Laser Ranging to Nano-Satellites
13-0222 Laser Ranging to Nano-Satellites G. Kirchner (1), Ludwig Grunwaldt (2), Reinhard Neubert (2), Franz Koidl (1), Merlin Barschke (3), Zizung Yoon (3), Hauke Fiedler (4), Christine Hollenstein (5)
Climatology and Monitoring of Dust and Sand Storms in the Arabian Peninsula
Climatology and Monitoring of Dust and Sand Storms in the Arabian Peninsula Mansour Almazroui Center of Excellence for Climate Change Research (CECCR) King Abdulaziz University, Jeddah, Saudi Arabia E-mail:
Precision on earth. Reliability in space. RUAG Space.
Precision on earth. Reliability in space. RUAG Space. Image: ESA Precision on earth. Reliability in space. RUAG Space is the leading supplier of products for the space industry in Europe. Experience, outstanding
European Space Agency EO Missions. Ola Gråbak ESA Earth Observation Programmes Tromsø, 17 October 2012
European Space Agency EO Missions Ola Gråbak ESA Earth Observation Programmes Tromsø, 17 October 2012 Europe and Space, A POLICY Article 189 of the Lisbon Treaty (2009) gives the European Union an explicit
How To Measure Solar Spectral Irradiance
Accurate Determination of the TOA Solar Spectral NIR Irradiance Using a Primary Standard Source and the Bouguer-Langley Technique. D. Bolsée, N. Pereira, W. Decuyper, D. Gillotay, H. Yu Belgian Institute
REMOTE SENSING OF CLOUD-AEROSOL RADIATIVE EFFECTS FROM SATELLITE DATA: A CASE STUDY OVER THE SOUTH OF PORTUGAL
REMOTE SENSING OF CLOUD-AEROSOL RADIATIVE EFFECTS FROM SATELLITE DATA: A CASE STUDY OVER THE SOUTH OF PORTUGAL D. Santos (1), M. J. Costa (1,2), D. Bortoli (1,3) and A. M. Silva (1,2) (1) Évora Geophysics
REMOTE SENSING AND ENVIRONMENTAL MONITORING. P. M. Mather School of Geography, The University of Nottingham, U.K.
REMOTE SENSING AND ENVIRONMENTAL MONITORING P. M. Mather School of Geography, The University of Nottingham, U.K. Keywords: Earth observation, image processing, lidar, pattern recognition, radar Contents
SATELLITE IMAGES IN ENVIRONMENTAL DATA PROCESSING
SATELLITE IMAGES IN ENVIRONMENTAL DATA PROCESSING Magdaléna Kolínová Aleš Procházka Martin Slavík Prague Institute of Chemical Technology Department of Computing and Control Engineering Technická 95, 66
Payload-Mass Trends for Earth- Observation and Space-Exploration Satellites
Payload-Mass Trends for Earth- Observation and Space-Exploration Satellites satellite payload-mass trends M. Rast, G. Schwehm & E. Attema ESA Directorate for Scientific Programmes, ESTEC, Noordwijk, The
An Airborne A-Band Spectrometer for Remote Sensing Of Aerosol and Cloud Optical Properties
An Airborne A-Band Spectrometer for Remote Sensing Of Aerosol and Cloud Optical Properties Michael Pitts, Chris Hostetler, Lamont Poole, Carl Holden, and Didier Rault NASA Langley Research Center, MS 435,
The USGS Landsat Big Data Challenge
The USGS Landsat Big Data Challenge Brian Sauer Engineering and Development USGS EROS [email protected] U.S. Department of the Interior U.S. Geological Survey USGS EROS and Landsat 2 Data Utility and Exploitation
Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction
Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction Content Remote sensing data Spatial, spectral, radiometric and
EUMETSAT Satellite Programmes
EUMETSAT Satellite Programmes Nowcasting Applications Developing Countries Marianne König [email protected] WSN-12 Rio de Janeiro 06-10 August 2012 27 Member States & 4 Cooperating States Member
Resolutions of Remote Sensing
Resolutions of Remote Sensing 1. Spatial (what area and how detailed) 2. Spectral (what colors bands) 3. Temporal (time of day/season/year) 4. Radiometric (color depth) Spatial Resolution describes how
Best practices for RGB compositing of multi-spectral imagery
Best practices for RGB compositing of multi-spectral imagery User Service Division, EUMETSAT Introduction Until recently imagers on geostationary satellites were limited to 2-3 spectral channels, i.e.
SATELLITE OBSERVATION OF THE DAILY VARIATION OF THIN CIRRUS
SATELLITE OBSERVATION OF THE DAILY VARIATION OF THIN CIRRUS Hermann Mannstein and Stephan Kox ATMOS 2012 Bruges, 2012-06-21 Folie 1 Why cirrus? Folie 2 Warum Eiswolken? Folie 3 Folie 4 Folie 5 Folie 6
Corso di Fisica Te T cnica Ambientale Solar Radiation
Solar Radiation Solar radiation i The Sun The Sun is the primary natural energy source for our planet. It has a diameter D = 1.39x10 6 km and a mass M = 1.989x10 30 kg and it is constituted by 1/3 of He
How To Make An Orthophoto
ISSUE 2 SEPTEMBER 2014 TSA Endorsed by: CLIENT GUIDE TO DIGITAL ORTHO- PHOTOGRAPHY The Survey Association s Client Guides are primarily aimed at other professionals such as engineers, architects, planners
Satellite remote sensing using AVHRR, ATSR, MODIS, METEOSAT, MSG
Satellite remote sensing using AVHRR, ATSR, MODIS, METEOSAT, MSG Ralf Meerkötter, Luca Bugliaro, Knut Dammann, Gerhard Gesell, Christine König, Waldemar Krebs, Hermann Mannstein, Bernhard Mayer, presented
Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius
Evaluation of the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius F.-L. Chang and Z. Li Earth System Science Interdisciplinary Center University
'Developments and benefits of hydrographic surveying using multispectral imagery in the coastal zone
Abstract With the recent launch of enhanced high-resolution commercial satellites, available imagery has improved from four-bands to eight-band multispectral. Simultaneously developments in remote sensing
Sentinel-1 Mission Overview
Sentinel-1 Mission Overview Pierre Potin Sentinel-1 Mission Manager, ESA Advanced Course on Radar Polarimetry ESRIN, Frascati, 19 January 2011 Global Monitoring for Environment and Security GMES is established
Space Work Programme 2015
Space Work Programme 79 billion from 2014 to 2020 2 There is a place for SPACE everywhere 3 Space in Horizon 2020 Four objectives (specific programme) 1. Enhance competitiveness, non-dependence, and innovation
Electromagnetic Radiation (EMR) and Remote Sensing
Electromagnetic Radiation (EMR) and Remote Sensing 1 Atmosphere Anything missing in between? Electromagnetic Radiation (EMR) is radiated by atomic particles at the source (the Sun), propagates through
Preface. Ko Ko Lwin Division of Spatial Information Science University of Tsukuba 2008
1 Preface Remote Sensing data is one of the primary data sources in GIS analysis. The objective of this material is to provide fundamentals of Remote Sensing technology and its applications in Geographical
Comparison of NOAA's Operational AVHRR Derived Cloud Amount to other Satellite Derived Cloud Climatologies.
Comparison of NOAA's Operational AVHRR Derived Cloud Amount to other Satellite Derived Cloud Climatologies. Sarah M. Thomas University of Wisconsin, Cooperative Institute for Meteorological Satellite Studies
Clouds and the Energy Cycle
August 1999 NF-207 The Earth Science Enterprise Series These articles discuss Earth's many dynamic processes and their interactions Clouds and the Energy Cycle he study of clouds, where they occur, and
The National Strategy, Current Activities for Space Technology Development and Application
14-18 November 2011, Putrajaya, Malaysia The National Strategy, Current Activities for Space Technology Development and Application Lai Anh Khoi Space Technology Institute, VAST, Vietnam Bief History Space
Towards assimilating IASI satellite observations over cold surfaces - the cloud detection aspect
Towards assimilating IASI satellite observations over cold surfaces - the cloud detection aspect Tuuli Perttula, FMI + Thanks to: Nadia Fourrié, Lydie Lavanant, Florence Rabier and Vincent Guidard, Météo
Lake Monitoring in Wisconsin using Satellite Remote Sensing
Lake Monitoring in Wisconsin using Satellite Remote Sensing D. Gurlin and S. Greb Wisconsin Department of Natural Resources 2015 Wisconsin Lakes Partnership Convention April 23 25, 2105 Holiday Inn Convention
NCDC s SATELLITE DATA, PRODUCTS, and SERVICES
**** NCDC s SATELLITE DATA, PRODUCTS, and SERVICES Satellite data and derived products from NOAA s satellite systems are available through the National Climatic Data Center. The two primary systems are
Efficiency, Dispersion and Straylight Performance Tests of Immersed Gratings for High Resolution Spectroscopy in the Near Infra-red
Changing the economics of space Efficiency, Dispersion and Straylight Performance Tests of Immersed Gratings for High Resolution Spectroscopy in the Near Infra-red J. Fernandez-Saldivar 1, F. Culfaz 1,
DEOS. Deutsche Orbitale Servicing Mission. The In-flight Technology Demonstration of Germany s Robotics Approach to Service Satellites
DEOS Deutsche Orbitale Servicing Mission The In-flight Technology Demonstration of Germany s Robotics Approach to Service Satellites B. Sommer, K. Landzettel, T. Wolf, D. Reintsema, German Aerospace Center
LANDSAT 8 Level 1 Product Performance
Réf: IDEAS-TN-10-QualityReport LANDSAT 8 Level 1 Product Performance Quality Report Month/Year: January 2016 Date: 26/01/2016 Issue/Rev:1/9 1. Scope of this document On May 30, 2013, data from the Landsat
L'apport du «big data» et des données satellitaires d'observation de la Terre facilement accessibles au service de la Géologie et de l'environnement
L'apport du «big data» et des données satellitaires d'observation de la Terre facilement accessibles au service de la Géologie et de l'environnement The contribution of "big data" and satellite observation
STAR Algorithm and Data Products (ADP) Beta Review. Suomi NPP Surface Reflectance IP ARP Product
STAR Algorithm and Data Products (ADP) Beta Review Suomi NPP Surface Reflectance IP ARP Product Alexei Lyapustin Surface Reflectance Cal Val Team 11/26/2012 STAR ADP Surface Reflectance ARP Team Member
Data Processing Developments at DFD/DLR. Stefanie Holzwarth Martin Bachmann, Rudolf Richter, Martin Habermeyer, Derek Rogge
Data Processing Developments at DFD/DLR Stefanie Holzwarth Martin Bachmann, Rudolf Richter, Martin Habermeyer, Derek Rogge EUFAR Joint Expert Working Group Meeting Edinburgh, April 14th 2011 Conclusions
Obtaining and Processing MODIS Data
Obtaining and Processing MODIS Data MODIS is an extensive program using sensors on two satellites that each provide complete daily coverage of the earth. The data have a variety of resolutions; spectral,
Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing
LA502 Special Studies Remote Sensing Electromagnetic Radiation (EMR) Dr. Ragab Khalil Department of Landscape Architecture Faculty of Environmental Design King AbdulAziz University Room 103 Overview What
Remote Sensing an Introduction
Remote Sensing an Introduction Seminar: Space is the Place Referenten: Anica Huck & Michael Schlund Remote Sensing means the observation of, or gathering information about, a target by a device separated
How Do You Make a Weather Satellite?
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION U.S. DEPARTMENT OF COMMERCE How Do You Make a Weather Satellite? This booklet was adapted from the original work by Ed Koenig I'm a weather forecaster. I
Astronomical applications of the over-the-horizon radar NOSTRADAMUS
Astronomical applications of the over-the-horizon radar NOSTRADAMUS J-F. Degurse 1,2, J-Ph. Molinié 1, V. Rannou 1,S. Marcos 2 1 ONERA, Département Electromagnétisme et Radar 2 L2S Supéléc, CNRS UMR 8506,
Recent advances in Satellite Imagery for Oil and Gas Exploration and Production. DESK AND DERRICK APRIL 2016 PRESENTED BY GARY CREWS---RETIRED
Recent advances in Satellite Imagery for Oil and Gas Exploration and Production. DESK AND DERRICK APRIL 2016 PRESENTED BY GARY CREWS---RETIRED Agenda Brief review of state of the applications in 2010 Basics
RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR
RESULTS FROM A SIMPLE INFRARED CLOUD DETECTOR A. Maghrabi 1 and R. Clay 2 1 Institute of Astronomical and Geophysical Research, King Abdulaziz City For Science and Technology, P.O. Box 6086 Riyadh 11442,
A climatology of cirrus clouds from ground-based lidar measurements over Lille
A climatology of cirrus clouds from ground-based lidar measurements over Lille Rita Nohra, Frédéric Parol, Philippe Dubuisson Laboratoire d Optique Atmosphérique université de Lille, CNRS UMR 8518 Objectives
Cloud detection and clearing for the MOPITT instrument
Cloud detection and clearing for the MOPITT instrument Juying Warner, John Gille, David P. Edwards and Paul Bailey National Center for Atmospheric Research, Boulder, Colorado ABSTRACT The Measurement Of
Clear Sky Radiance (CSR) Product from MTSAT-1R. UESAWA Daisaku* Abstract
Clear Sky Radiance (CSR) Product from MTSAT-1R UESAWA Daisaku* Abstract The Meteorological Satellite Center (MSC) has developed a Clear Sky Radiance (CSR) product from MTSAT-1R and has been disseminating
RPG MWR PRO TN03 2012 09 Page 1 / 12 www.radiometer physics.de Radiometer Physics GmbH +49 2225 99981 0
Applications Tropospheric profiling of temperature, humidity and liquid water High resolution boundary layer temperature profiles, better resolution than balloons Input for weather and climate models (data
Geography 403 Lecture 7 Scanners, Thermal, and Microwave
Geography 403 Lecture 7 Scanners, Thermal, and Microwave Needs: Lect_403_7.ppt A. Basics of Passive Electric Sensors 1. Sensors absorb EMR and produce some sort of response, such as voltages differences
Validating MOPITT Cloud Detection Techniques with MAS Images
Validating MOPITT Cloud Detection Techniques with MAS Images Daniel Ziskin, Juying Warner, Paul Bailey, John Gille National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 ABSTRACT The
GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document For Low Cloud and Fog
NOAA NESDIS CENTER for SATELLITE APPLICATIONS and RESEARCH GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document For Low Cloud and Fog Corey Calvert, UW/CIMSS Mike Pavolonis, NOAA/NESDIS/STAR
SOLSPEC MEASUREMENT OF THE SOLAR ABSOLUTE SPECTRAL IRRADIANCE FROM 165 to 2900 nm ON BOARD THE INTERNATIONAL SPACE STATION
SOLSPEC MEASUREMENT OF THE SOLAR ABSOLUTE SPECTRAL IRRADIANCE FROM 165 to 2900 nm ON BOARD THE INTERNATIONAL SPACE STATION G. Thuillier1, D. Bolsee2 1 LATMOS-CNRS, France 2 Institut d Aéronomie Spatiale
Robot Perception Continued
Robot Perception Continued 1 Visual Perception Visual Odometry Reconstruction Recognition CS 685 11 Range Sensing strategies Active range sensors Ultrasound Laser range sensor Slides adopted from Siegwart
2. Typology of space value chain actors
Toulouse Space Show 2012 : IISL/IAA Space Law and Policy Symposium Session 1a : Towards effective sustainability for outer space activities ECONOMICAL SUSTAINABILITY OF THE SPACE VALUE CHAIN : ROLE OF
COASTAL WIND ANALYSIS BASED ON ACTIVE RADAR IN QINGDAO FOR OLYMPIC SAILING EVENT
COASTAL WIND ANALYSIS BASED ON ACTIVE RADAR IN QINGDAO FOR OLYMPIC SAILING EVENT XIAOMING LI a, b, * a Remote Sensing Technology Institute, German Aerospace Center (DLR), Oberpfaffenhofen, 82234, Germany
