International coordination for continuity and interoperability: a CGMS perspective
|
|
|
- Tobias Lane
- 9 years ago
- Views:
Transcription
1 International coordination for continuity and interoperability: a CGMS perspective Peng Zhang, CGMS WG-III Co-Chair NSMC/CMA In Cooperation with Suzanne Hilding, CGMS WG-III Co-Chair OPPA/NESDIS/NOAA 1
2 WMO space-based component of WIGOS reliable and sustained observation in operation Free, timely and standardized access 2
3 Outline CGMS, especially WG III Continuity Interoperability Challenges 3
4 1. CGMS and WG III Coordination Group for Meteorological Satellites Established in 1972, 16 members and 6 observers currently Operational or R&D satellite operators contributing to WMO and WMOsupported programmes (e.g. WWW, GAW, GCOS, JCOMM..) WMO and IOC representing global user communities 4
5 CGMS Objectives & HLPP CGMS provides technical coordination of satellite missions: Orbits, sensors, calibration Data formats, downlink frequencies Dissemination standards and techniques Cooperative mission planning and mutual back-up in case of system failure High Level Priority Plan (HLPP) endorsed in 2012, covering: 1. Coordination of observing systems and protection of assets 2. Data dissemination, direct read out services and contribution to the WIS product development 3. Enhance the quality of satellite-derived data and products 4. Outreach and training activities 5. Cross-cutting issues and new challenges 5
6 CGMS Working Groups Working Group I: Global issues on satellite systems and telecommunication coordination Working Group II: Satellite data and products Working Group III: Operational continuity and contingency planning Working Group IV: Global data dissemination WG III monitors the risk of discontinuity in key data services for weather forecasting and climate monitoring, and deals with contingency action planning to mitigate such risks: global satellite planning supplemented by bilateral agreements based on the help your neighbour concept. 6
7 2. Continuity The CGMS baseline: in-principle commitments of CGMS satellite operators to implement operational missions contributing to the WMO Vision for 2025 Geostationary missions Sun-synchronous orbit missions on 3 orbital planes Other LEO missions on sun-synchronous or other orbits Intercalibration Back-up capability and contingency plan Near-real-time dissemination 7
8 CGMSBaseline : (1) Geostationary At least 6 geostationary satellites at evenly distributed locations, with redundancy, and performing: a) Multispectral Vis/IR imagery every 15 min b) IR sounding (some of them hyperspectral) c) Lightning detection d) Data collection e) Other missions as appropriate, e.g. ERB, high spectral resolution UV sounding, Space Environment Monitoring, data dissemination. Routine intercalibration against reference instruments or calibration sites 8
9 CGMS Baseline: (2) Sun-synchronous (SSO) A constellation of operational SSO satellites deployed around 3 orbital planes and performing : f) Visible, Infrared and Microwave imagery g) Microwave sounding h) Infrared hyperspectral sounding (at least am and pm) i) Wind scatterometry over oceans j) Radio-occultation sounding (at least am-pm, plus dedicated constellation) k) Broadband VIS/IR for Earth radiation balance (at least am-pm) l) Total Solar Irradiance (at least one spacecraft) m) Space environment monitoring n) Data collection o) Direct Broadcast p) Other missions as appropriate, e.g. atmospheric composition Routine intercalibration against reference instruments or calibration sites 9
10 CGMS Baseline : (3) Other LEO missions The following missions shall be performed on an operational basis by Low Earth Orbit satellites on appropriate orbits : r) Ocean surface topography reference mission (high-precision, inclined orbit, in addition to the 2 altimeters on SSO) s) Radio-Occultation sounding (constellation of sensors on appropriate orbits) t) Narrow-band VIS/NIR imagers (at least one SSO am spacecraft) for ocean colour, vegetation, aerosol monitoring u) High-resolution multi-spectral VIS/IR imagers (constellation of SSO satellites, preferably in am) for land surface imaging v) Infrared imagery for reference high-accuracy SST (one am spacecraft) All passive instruments should be inter-calibrated on a routine basis against reference instruments or calibration sites. 10
11 Continuity requirements and implications on architecture Baseline should define for each mission : nominal coverage (spatial/temporal sampling ) back-up provisions if relevant (contingency planning) First thing is to secure long-term funding and nominal planning Contingency planning approach Risk analysis: for each mission, impact of degraded or no data? Criteria for contingency situation? Mitigation strategy? Cooperative decision framework for mutual support? 11
12 CGMS Global Contingency Plan Recalls baseline GEO/LEO configurations for «weather missions» Risk management recommendations for programme implementation Including back-up provisions Contingency criteria based on critical mission continuity requirements GEO imagery, LEO sounding/ imagery, Data access, Tropical Cyclone regions Framework for mutual support in case of contingency on GEOs «Help-your-neighbour!» aproach, supported by bilateral agreements Climate missions addressed in referring to GCOS Climate Monitoring Principles for satellites: avoid drift of ECT (LEO), launch on schedule with overlap, ground-truth for calibration 12
13 Different «continuity» approaches (a) Classical «operational» continuity with on-orbit back-up 13
14 Different «continuity» approaches (a) Classical «operational» continuity with on-orbit back-up (b) Launch upon failure Launch readiness Launch 14
15 Different «continuity» approaches (a) Classical «operational» continuity with on-orbit back-up (b) Launch upon failure (c) Overlap for cross-calibration and product validation 15
16 Different «continuity» approaches (a) Classical «operational» continuity with on-orbit back-up (b) Launch upon failure (c) Overlap for cross-calibration and product validation (d) Consecutive missions with reference for consistent calibration Reference Reference 16
17 Different «continuity» approaches (a) Classical «operational» continuity with on-orbit back-up (b) Launch upon failure (c) Overlap for cross-calibration and product validation (d) Consecutive missions with reference for consistent calibration (e) Recurrent missions as anchor observations for model validation Modelling supported by recurrent space missions 17
18 3. Interoperability Interoperability is a key requirement which entails comparable observations standardized metadata Interoperability should cover all the components for EO 18
19 Components for EO Satellite NRT Calibration Instrument Space-Ground Communication Data format for storage and delivery Retrieval Algorithm SDR EDR Inter Calibration & Re-calibration Validation Re-analysis FCDR TCDR Sensor-dependent, weather and environmental usage Sensor-dependent or sensorindependent, climate usage 19
20 Interoperability Data access data format convertible metadata standardization Direct Broadcast standards (CCSDS ) Preprocessing Software package Satellite and Instrument overlap requirement during transition (TBC) backward compatibility to the predecessor Satellite Data Record (SDR) Calibration with on-orbit calibration system Validation to show the uncertainty of data Measurement reference standards (in-orbit, at surface, on Moon) for data inter-calibration and traceability 20
21 Environmental Data Record (EDR) Retrieval algorithm comparable Validation with in-situ, space-based baseline product and model output to show the uncertainty Fundamental /Thematic Climate Data Records (FCDR and TCDR) Gap analysis and planning coordination for continuity Comparability of new sensors with heritage datasets Consistency and traceability through reference standards and inter-calibration procedures Generation and preservation of archived SDR and EDR through the recalibration and reanalysis procedure 21
22 4. Challenges The WMO Vision for 2040 should specify continuity and interoperability requirements CGMS will consider updating its baseline in response to future WMO Vision for 2040 (SDR & EDR) Should encompass continuity of climate observation to support the GCOS ECVs (FCDR & TCDR) Be open to allow use of new satellite and instrument technology, such as new R&D satellite, cube satellite Big Data Information Technology, such as cloud computing 22
23 Special thanks to Dr. Jerome Lafeuille for His excellent work as rapporteur of CGMS WG-III ; Support and discussions for this slides 23
Hyperspectral Satellite Imaging Planning a Mission
Hyperspectral Satellite Imaging Planning a Mission Victor Gardner University of Maryland 2007 AIAA Region 1 Mid-Atlantic Student Conference National Institute of Aerospace, Langley, VA Outline Objective
http://www.isac.cnr.it/~ipwg/
The CGMS International Precipitation Working Group: Experience and Perspectives Vincenzo Levizzani CNR-ISAC, Bologna, Italy and Arnold Gruber NOAA/NESDIS & Univ. Maryland, College Park, MD, USA http://www.isac.cnr.it/~ipwg/
Ensuring the Preparedness of Users: NOAA Satellites GOES R, JPSS Laura K. Furgione
Ensuring the Preparedness of Users: NOAA Satellites GOES R, JPSS Laura K. Furgione U.S. Permanent Representative with the WMO Deputy Director, NOAA s s National Weather Service WMO Executive Council 65
SYSTEMATIC OBSERVATION REQUIREMENTS FOR SATELLITE-BASED DATA PRODUCTS FOR CLIMATE. 2011 Update
WORLD METEOROLOGICAL ORGANIZATION INTERGOVERNMENTAL OCEANOGRAPHIC COMMISSION SYSTEMATIC OBSERVATION REQUIREMENTS FOR SATELLITE-BASED DATA PRODUCTS FOR CLIMATE 2011 Update Supplemental details to the satellite-based
Copernicus Atmosphere Monitoring Service (CAMS) Copernicus Climate Change Service (C3S)
Vincent-Henri Peuch ECMWF, Head of Copernicus Atmosphere Monitoring Service Copernicus Atmosphere Monitoring Service (CAMS) Copernicus Climate Change Service (C3S) European Centre for Medium-Range Weather
The USGS Landsat Big Data Challenge
The USGS Landsat Big Data Challenge Brian Sauer Engineering and Development USGS EROS [email protected] U.S. Department of the Interior U.S. Geological Survey USGS EROS and Landsat 2 Data Utility and Exploitation
CGMS-36, NOAA-WP-14 Prepared by C. Cao Agenda Item: II/2 Discussed in WG II
Prepared by C. Cao Agenda Item: II/2 Discussed in WG II A Web-based Interface for Near Real-time Instrument Performance Monitoring In response to CGMS Action 35.18 (GSICS GCC to propose a web-based interface
Report to 8 th session of OOPC. By Dr. Alan R. Thomas, Director, GCOS Secretariat
Report to 8 th session of OOPC By Dr. Alan R. Thomas, Director, GCOS Secretariat The GCOS is comprised of the climate components of the domain based observing systems including both satellite and in situ
Update on EUMETSAT ocean colour services. Ewa J. Kwiatkowska
Update on EUMETSAT ocean colour services Ewa J. Kwiatkowska 1 st International Ocean Colour Science meeting, 6 8 May, 2013 EUMETSAT space data provider for operational oceanography Operational data provider
Copernicus Atmosphere Monitoring Service
Martin Suttie [email protected] Copernicus Atmosphere Monitoring Service Atmosphere Monitoring Service MISSION Supporting the European strategy "Living well within the boundaries of Turning our planet"
NCDC s SATELLITE DATA, PRODUCTS, and SERVICES
**** NCDC s SATELLITE DATA, PRODUCTS, and SERVICES Satellite data and derived products from NOAA s satellite systems are available through the National Climatic Data Center. The two primary systems are
Joint Polar Satellite System (JPSS)
Joint Polar Satellite System (JPSS) John Furgerson, User Liaison Joint Polar Satellite System National Environmental Satellite, Data, and Information Service National Oceanic and Atmospheric Administration
Satellite Remote Sensing of Volcanic Ash
Marco Fulle www.stromboli.net Satellite Remote Sensing of Volcanic Ash Michael Pavolonis NOAA/NESDIS/STAR SCOPE Nowcasting 1 Meeting November 19 22, 2013 1 Outline Getty Images Volcanic ash satellite remote
Sentinel-1 Mission Overview
Sentinel-1 Mission Overview Pierre Potin Sentinel-1 Mission Manager, ESA Advanced Course on Radar Polarimetry ESRIN, Frascati, 19 January 2011 Global Monitoring for Environment and Security GMES is established
Overview of progress towards a data quality assurance strategy to facilitate interoperability. WGCV May 27 th, 2009
Overview of progress towards a data quality assurance strategy to facilitate interoperability WGCV May 27 th, 2009 Overview Origin of QA4EO and current status What QA4EO is and what is not Key Guidelines
8. Communications Subsystem
PM-1.1-03 Rev C 8. Communications Subsystem The GOES-NOP spacecraft communications subsystem provides requisite conditioning, transmission, reception, and routing of mission data signals and telemetry
China Earth Observation
China High-resolution Earth Observation China Earth Observation System (CHEOS) and its Lastest Development The Earth Observation System and Data Center, CNSA 2014-2 Outlines 1 Introduction 2 The composition
GCOS science conference, 2 Mar. 2016, Amsterdam. Japan Meteorological Agency (JMA)
GCOS science conference, 2 Mar. 2016, Amsterdam Status of Surface Radiation Budget Observation for Climate Nozomu Ohkawara Japan Meteorological Agency (JMA) Contents 1. Background 2. Status t of surface
World Data Center for Remote Sensing of the Atmosphere, WDC-RSAT
World Data Center for Remote Sensing of the Atmosphere, WDC-RSAT Michael Bittner http://wdc.dlr.de Folie 1 WDC-RSAT Mission Provide a portal for free and simplified access to atmosphere related satellite
RS platforms. Fabio Dell Acqua - Gruppo di Telerilevamento
RS platforms Platform vs. instrument Sensor Platform Instrument The remote sensor can be ideally represented as an instrument carried by a platform Platforms Remote Sensing: Ground-based air-borne space-borne
GSICS Working Group on Data Management
GSICS Working Group on Data Management Chair Report Volker Gärtner [email protected] lide: 1 GDWG Chair report, 19 February 2008 Topics for GDWG-II Discussion GSICS Cooperation Servers Data
Nanosat 4 Competition
Nanosat 4 Competition NMSUSat2 Team New Mexico State University College of Engineering Presented by Jeremy Bruggemann Topics Competition Overview Mission Overview Design Concept Tests and Analyses Hardware
Clouds and the Energy Cycle
August 1999 NF-207 The Earth Science Enterprise Series These articles discuss Earth's many dynamic processes and their interactions Clouds and the Energy Cycle he study of clouds, where they occur, and
DATA ACCESS AT EUMETSAT
1 EUM/OPS/VWG/15/793789 v1a DATA ACCESS AT EUMETSAT Copernicus Climate Data Store Workshop ECMWF 3-6 March 2015 Harald Rothfuss Overview of Presentation 1. Introduction to EUMETSAT 2. EUMETSAT Data Access
NASA Earth System Science: Structure and data centers
SUPPLEMENT MATERIALS NASA Earth System Science: Structure and data centers NASA http://nasa.gov/ NASA Mission Directorates Aeronautics Research Exploration Systems Science http://nasascience.nasa.gov/
The Benefits and Challenges in Global Meteorological Satellite Data Sharing
The Benefits and Challenges in Global Meteorological Satellite Data Sharing Ninghai Sun and Fuzhong Weng Center for Satellite Applica0ons and Research Na0onal Oceanic and Atmospheric Administra0on Presented
Remote Sensing Satellite Information Sheets Geophysical Institute University of Alaska Fairbanks
Remote Sensing Satellite Information Sheets Geophysical Institute University of Alaska Fairbanks ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer AVHRR Advanced Very High Resolution
ENVIRONMENTAL MONITORING Vol. I - Remote Sensing (Satellite) System Technologies - Michael A. Okoye and Greg T. Koeln
REMOTE SENSING (SATELLITE) SYSTEM TECHNOLOGIES Michael A. Okoye and Greg T. Earth Satellite Corporation, Rockville Maryland, USA Keywords: active microwave, advantages of satellite remote sensing, atmospheric
ANALYSIS OF DATA EXCHANGE PROBLEMS IN GLOBAL ATMOSPHERIC AND HYDROLOGICAL NETWORKS SUMMARY REPORT 1. June 2004
ANALYSIS OF DATA EXCHANGE PROBLEMS IN GLOBAL ATMOSPHERIC AND HYDROLOGICAL NETWORKS SUMMARY REPORT 1 June 2004 Global Climate Observing System (GCOS) Secretariat 1 This summary report is based on a study
CONCEPTUAL DESIGN OF DATA ARCHIVE AND DISTRIBUTION SYSTEM FOR GEO-KOMPSAT-2A
CONCEPTUAL DESIGN OF DATA ARCHIVE AND DISTRIBUTION SYSTEM FOR GEO-KOMPSAT-2A In Jun Kim, Won Chan Jung, Byoung-Sun Lee, Do-Seob Ahn, Taeyoung Kim, Jaedong Jang, Hyunjong Oh ETRI, 218 Gajeong-ro, Yuseong-gu,
NOAA Direct Broadcast Real-Time Network: Current Status and Plans for Delivering Sounder Data to DRARS
NOAA Direct Broadcast Real-Time Network: Current Status and Plans for Delivering Sounder Data to DRARS Liam Gumley (NOAA DB Demonstration Technical Manager), Bruce Flynn, Heath Skarlupka, David Santek,
NASA s Big Data Challenges in Climate Science
NASA s Big Data Challenges in Climate Science Tsengdar Lee, Ph.D. High-end Computing Program Manager NASA Headquarters Presented at IEEE Big Data 2014 Workshop October 29, 2014 1 2 7-km GEOS-5 Nature Run
Clear Sky Radiance (CSR) Product from MTSAT-1R. UESAWA Daisaku* Abstract
Clear Sky Radiance (CSR) Product from MTSAT-1R UESAWA Daisaku* Abstract The Meteorological Satellite Center (MSC) has developed a Clear Sky Radiance (CSR) product from MTSAT-1R and has been disseminating
16 th IOCCG Committee annual meeting. Plymouth, UK 15 17 February 2011. mission: Present status and near future
16 th IOCCG Committee annual meeting Plymouth, UK 15 17 February 2011 The Meteor 3M Mt satellite mission: Present status and near future plans MISSION AIMS Satellites of the series METEOR M M are purposed
IMPACTS OF IN SITU AND ADDITIONAL SATELLITE DATA ON THE ACCURACY OF A SEA-SURFACE TEMPERATURE ANALYSIS FOR CLIMATE
INTERNATIONAL JOURNAL OF CLIMATOLOGY Int. J. Climatol. 25: 857 864 (25) Published online in Wiley InterScience (www.interscience.wiley.com). DOI:.2/joc.68 IMPACTS OF IN SITU AND ADDITIONAL SATELLITE DATA
The RapidEye optical satellite family for high resolution imagery
'Photogrammetric Week 01' D. Fritsch & R. Spiller, Eds. Wichmann Verlag, Heidelberg 2001. Scherer, Krischke 139 The RapidEye optical satellite family for high resolution imagery STEFAN SCHERER and MANFRED
Chapter Contents Page No
Chapter Contents Page No Preface Acknowledgement 1 Basics of Remote Sensing 1 1.1. Introduction 1 1.2. Definition of Remote Sensing 1 1.3. Principles of Remote Sensing 1 1.4. Various Stages in Remote Sensing
Monitoring Soil Moisture from Space. Dr. Heather McNairn Science and Technology Branch Agriculture and Agri-Food Canada [email protected].
Monitoring Soil Moisture from Space Dr. Heather McNairn Science and Technology Branch Agriculture and Agri-Food Canada [email protected] What is Remote Sensing? Scientists turn the raw data collected
USING THE GOES 3.9 µm SHORTWAVE INFRARED CHANNEL TO TRACK LOW-LEVEL CLOUD-DRIFT WINDS ABSTRACT
USING THE GOES 3.9 µm SHORTWAVE INFRARED CHANNEL TO TRACK LOW-LEVEL CLOUD-DRIFT WINDS Jason P. Dunion 1 and Christopher S. Velden 2 1 NOAA/AOML/Hurricane Research Division, 2 UW/CIMSS ABSTRACT Low-level
The Sentinel-4/UVN instrument on-board MTG-S
The Sentinel-4/UVN instrument on-board MTG-S Grégory Bazalgette Courrèges-Lacoste; Berit Ahlers; Benedikt Guldimann; Alex Short; Ben Veihelmann, Hendrik Stark ESA ESTEC European Space Technology & Research
'Developments and benefits of hydrographic surveying using multispectral imagery in the coastal zone
Abstract With the recent launch of enhanced high-resolution commercial satellites, available imagery has improved from four-bands to eight-band multispectral. Simultaneously developments in remote sensing
Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction
Digital Remote Sensing Data Processing Digital Remote Sensing Data Processing and Analysis: An Introduction and Analysis: An Introduction Content Remote sensing data Spatial, spectral, radiometric and
MSG MPEF Products focus on GII Simon Elliott Meteorological Operations Division [email protected]
MSG MPEF focus on GII Simon Elliott Meteorological Operations Division [email protected] MSG Application Workshop, 15-19 March 2010, Alanya, Türkiye Slide: 1 1. What is the MPEF? Meteorological
Evaluating GCM clouds using instrument simulators
Evaluating GCM clouds using instrument simulators University of Washington September 24, 2009 Why do we care about evaluation of clouds in GCMs? General Circulation Models (GCMs) project future climate
Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data
Estimating Firn Emissivity, from 1994 to1998, at the Ski Hi Automatic Weather Station on the West Antarctic Ice Sheet Using Passive Microwave Data Mentor: Dr. Malcolm LeCompte Elizabeth City State University
IMPLEMENTATION PLAN FOR THE GLOBAL OBSERVING SYSTEM FOR CLIMATE IN SUPPORT OF THE UNFCCC (2010 UPDATE)
WORLD METEOROLOGICAL ORGANIZATION INTERGOVERNMENTAL OCEANOGRAPHIC COMMISSION IMPLEMENTATION PLAN FOR THE GLOBAL OBSERVING SYSTEM FOR CLIMATE IN SUPPORT OF THE UNFCCC (2010 UPDATE) August 2010 GCOS-138
European Space Agency EO Missions. Ola Gråbak ESA Earth Observation Programmes Tromsø, 17 October 2012
European Space Agency EO Missions Ola Gråbak ESA Earth Observation Programmes Tromsø, 17 October 2012 Europe and Space, A POLICY Article 189 of the Lisbon Treaty (2009) gives the European Union an explicit
Visualizing Wireless Transfer of Power: Proposal for A Five-Nation Demonstration by 2020. ISDC2012: Washington DC, May 26, 2012
Visualizing Wireless Transfer of Power: Proposal for A Five-Nation Demonstration by 2020 Don Flournoy Ohio University Brendan Dessanti & Narayanan Komerath Georgia Institute of Technology ISDC2012: Washington
REDUCING UNCERTAINTY IN SOLAR ENERGY ESTIMATES
REDUCING UNCERTAINTY IN SOLAR ENERGY ESTIMATES Mitigating Energy Risk through On-Site Monitoring Marie Schnitzer, Vice President of Consulting Services Christopher Thuman, Senior Meteorologist Peter Johnson,
The European GNSS Programmes EGNOS and Galileo
The European GNSS Programmes EGNOS and Galileo 6th ICG Conference Pieter De Smet European Commission 5 September 2011 1. State of Play of EGNOS 2. State of Play of Galileo 5 September, 2011 The European
Development of an Integrated Data Product for Hawaii Climate
Development of an Integrated Data Product for Hawaii Climate Jan Hafner, Shang-Ping Xie (PI)(IPRC/SOEST U. of Hawaii) Yi-Leng Chen (Co-I) (Meteorology Dept. Univ. of Hawaii) contribution Georgette Holmes
THE STRATEGIC PLAN OF THE HYDROMETEOROLOGICAL PREDICTION CENTER
THE STRATEGIC PLAN OF THE HYDROMETEOROLOGICAL PREDICTION CENTER FISCAL YEARS 2012 2016 INTRODUCTION Over the next ten years, the National Weather Service (NWS) of the National Oceanic and Atmospheric Administration
2.3 Spatial Resolution, Pixel Size, and Scale
Section 2.3 Spatial Resolution, Pixel Size, and Scale Page 39 2.3 Spatial Resolution, Pixel Size, and Scale For some remote sensing instruments, the distance between the target being imaged and the platform,
ICSU/WMO World Data Center for Remote Sensing of the Atmosphere (WDC RSAT)
ICSU/WMO World Data Center for Remote Sensing of the Atmosphere (WDC RSAT) Beate Hildenbrand (et al.) German Aerospace Center (DLR) GAW 2009, Geneva, 05 07 May 2009 http://wdc.dlr.de WDC RSAT overview
Big Data at ECMWF Providing access to multi-petabyte datasets Past, present and future
Big Data at ECMWF Providing access to multi-petabyte datasets Past, present and future Baudouin Raoult Principal Software Strategist ECMWF Slide 1 ECMWF An independent intergovernmental organisation established
Basic Climatological Station Metadata Current status. Metadata compiled: 30 JAN 2008. Synoptic Network, Reference Climate Stations
Station: CAPE OTWAY LIGHTHOUSE Bureau of Meteorology station number: Bureau of Meteorology district name: West Coast State: VIC World Meteorological Organization number: Identification: YCTY Basic Climatological
Studying cloud properties from space using sounder data: A preparatory study for INSAT-3D
Studying cloud properties from space using sounder data: A preparatory study for INSAT-3D Munn V. Shukla and P. K. Thapliyal Atmospheric Sciences Division Atmospheric and Oceanic Sciences Group Space Applications
DEOS. Deutsche Orbitale Servicing Mission. The In-flight Technology Demonstration of Germany s Robotics Approach to Service Satellites
DEOS Deutsche Orbitale Servicing Mission The In-flight Technology Demonstration of Germany s Robotics Approach to Service Satellites B. Sommer, K. Landzettel, T. Wolf, D. Reintsema, German Aerospace Center
Long Term Preservation of Earth Observation Data
Long Term Preservation of Earth Observation Data QA4EO Workshop RAL, October 18-20 th 2011 Mirko Albani and Bojan Bojkov* (ESA/ESRIN) Page 1 Outline Earth Observation data preservation: the need and the
From Whitehall to orbit and back again: using space in government
From Whitehall to orbit and back again: using space in government 18 th June 2014 Bristol 25 th June 2014 Liverpool 3 rd July 2014 -Newcastle Space for Smarter Government Programme ([email protected])
Best practices for RGB compositing of multi-spectral imagery
Best practices for RGB compositing of multi-spectral imagery User Service Division, EUMETSAT Introduction Until recently imagers on geostationary satellites were limited to 2-3 spectral channels, i.e.
SATELLITE IMAGES IN ENVIRONMENTAL DATA PROCESSING
SATELLITE IMAGES IN ENVIRONMENTAL DATA PROCESSING Magdaléna Kolínová Aleš Procházka Martin Slavík Prague Institute of Chemical Technology Department of Computing and Control Engineering Technická 95, 66
Meteorological Forecasting of DNI, clouds and aerosols
Meteorological Forecasting of DNI, clouds and aerosols DNICast 1st End-User Workshop, Madrid, 2014-05-07 Heiner Körnich (SMHI), Jan Remund (Meteotest), Marion Schroedter-Homscheidt (DLR) Overview What
Precipitation Remote Sensing
Precipitation Remote Sensing Huade Guan Prepared for Remote Sensing class Earth & Environmental Science University of Texas at San Antonio November 14, 2005 Outline Background Remote sensing technique
Obtaining and Processing MODIS Data
Obtaining and Processing MODIS Data MODIS is an extensive program using sensors on two satellites that each provide complete daily coverage of the earth. The data have a variety of resolutions; spectral,
Data Processing Developments at DFD/DLR. Stefanie Holzwarth Martin Bachmann, Rudolf Richter, Martin Habermeyer, Derek Rogge
Data Processing Developments at DFD/DLR Stefanie Holzwarth Martin Bachmann, Rudolf Richter, Martin Habermeyer, Derek Rogge EUFAR Joint Expert Working Group Meeting Edinburgh, April 14th 2011 Conclusions
Global Earth Observation Integrated Data Environment (GEO-IDE) Presentation to the Data Archiving and Access Requirements Working Group (DAARWG)
Global Earth Observation Integrated Data Environment (GEO-IDE) Presentation to the Data Archiving and Access Requirements Working Group (DAARWG) Ken McDonald Data Management Integration Architect National
SAMPLE MIDTERM QUESTIONS
Geography 309 Sample MidTerm Questions Page 1 SAMPLE MIDTERM QUESTIONS Textbook Questions Chapter 1 Questions 4, 5, 6, Chapter 2 Questions 4, 7, 10 Chapter 4 Questions 8, 9 Chapter 10 Questions 1, 4, 7
Satellite'&'NASA'Data'Intro'
Satellite'&'NASA'Data'Intro' Research'vs.'Opera8ons' NASA':'Research'satellites' ' ' NOAA/DoD:'Opera8onal'Satellites' NOAA'Polar'Program:'NOAA>16,17,18,19,NPP' Geosta8onary:'GOES>east,'GOES>West' DMSP'series:'SSM/I,'SSMIS'
5. Leadership in enabling and industrial technologies. Revised
EN HORIZON 2020 WORK PROGRAMME 2014 2015 5. Leadership in enabling and industrial technologies iii. Space Revised This Work Programme was adopted on 10 December 2013. The parts that relate to 2015 (topics,
Data Management Framework for the North American Carbon Program
Data Management Framework for the North American Carbon Program Bob Cook, Peter Thornton, and the Steering Committee Image courtesy of NASA/GSFC NACP Data Management Planning Workshop New Orleans, LA January
Overview of the IR channels and their applications
Ján Kaňák Slovak Hydrometeorological Institute [email protected] Overview of the IR channels and their applications EUMeTrain, 14 June 2011 Ján Kaňák, SHMÚ 1 Basics in satellite Infrared image interpretation
The Copernicus Atmosphere Monitoring Service (CAMS)
The Copernicus Atmosphere Monitoring Service (CAMS) Products, services and opportunities Vincent Henri Peuch Head of CAMS Vincent [email protected] Funded by the European Union Implemented by Atmospheric
Presented by Gary Davis, Director, Office of Systems Development NOAA/NESDIS/OSD. Fifty Years of Achievement
NOAA s Environmental Satellite Program: Past, Present, and Future Presented by Gary Davis, Director, Office of Systems Development NOAA/NESDIS/OSD 1 Space-Based Remote Sensors Changed Way We See Our World
EO data hosting and processing core capabilities and emerging solutions
EO data hosting and processing core capabilities and emerging solutions Andrew Groom 4 th March 2015 Contents An introduction to Airbus Defence and Space, Geo-Intelligence Elements of the C3S vision EO
Marcus A. Watkins Director of the Joint Agency Satellite Division, Science Mission Directorate, NASA HQ, Washington DC
Marcus A. Watkins Director of the Joint Agency Satellite Division, Science Mission Directorate, NASA HQ, Washington DC Leads the Joint Agency Satellite Division (JASD) at NASA HQ in Washington, DC and
II. Related Activities
(1) Global Cloud Resolving Model Simulations toward Numerical Weather Forecasting in the Tropics (FY2005-2010) (2) Scale Interaction and Large-Scale Variation of the Ocean Circulation (FY2006-2011) (3)
THE NATIONAL SPACE WEATHER PROGRAM
1 Office of the Federal Coordinator for Meteorological Services and Supporting Research (OFCM) THE NATIONAL SPACE WEATHER PROGRAM Committee on Solar and Space Physics National Research Council Space Studies
