Nonlinear Systems and Control Lecture # 15 Positive Real Transfer Functions & Connection with Lyapunov Stability. p. 1/?
|
|
|
- Easter Golden
- 10 years ago
- Views:
Transcription
1 Nonlinear Systems and Control Lecture # 15 Positive Real Transfer Functions & Connection with Lyapunov Stability p. 1/?
2 p. 2/? Definition: A p p proper rational transfer function matrix G(s) is positive real if poles of all elements of G(s) are in Re[s] 0 for all real ω for which jω is not a pole of any element of G(s), the matrix G(jω) + G T ( jω) is positive semidefinite any pure imaginary pole jω of any element of G(s) is a simple pole and the residue matrix lim s jω (s jω)g(s) is positive semidefinite Hermitian G(s) is called strictly positive real if G(s ε) is positive real for some ε > 0
3 p. 3/? Scalar Case (p = 1): G(jω) + G T ( jω) = 2Re[G(jω)] Re[G(jω)] is an even function of ω. The second condition of the definition reduces to Re[G(jω)] 0, ω [0, ) which holds when the Nyquist plot of of G(jω) lies in the closed right-half complex plane This is true only if the relative degree of the transfer function is zero or one
4 p. 4/? Lemma: A p p proper rational transfer function matrix G(s) is strictly positive real if and only if G(s) is Hurwitz G(jω) + G T ( jω) > 0, ω R G( ) + G T ( ) > 0 or lim ω ω2(p q) det[g(jω) + G T ( jω)] > 0 where q = rank[g( ) + G T ( )]
5 p. 5/? Scalar Case (p = 1): G(s) is strictly positive real if and only if G(s) is Hurwitz Re[G(jω)] > 0, ω [0, ) G( ) > 0 or lim ω ω2 Re[G(jω)] > 0
6 p. 6/? Example: G(s) = 1 s has a simple pole at s = 0 whose residue is 1 [ ] 1 Re[G(jω)] = Re = 0, ω 0 jω Hence, G is positive real. It is not strictly positive real since 1 (s ε) has a pole in Re[s] > 0 for any ε > 0
7 p. 7/? Example: G(s) = 1, a > 0, is Hurwitz s + a Re[G(jω)] = a ω 2 > 0, ω [0, ) + a2 lim ω ω2 Re[G(jω)] = lim ω Example: G(s) = G is not PR ω 2 a ω 2 = a > 0 G is SPR + a2 1 s 2 + s + 1, Re[G(jω)] = 1 ω 2 (1 ω 2 ) 2 + ω 2
8 p. 8/? Example: G(s) = G(jω) + G T ( jω) = s+2 s+1 1 s+2 G( ) + G T ( ) = 1 s+2 2 s+1 is Hurwitz 2(2+ω 2 ) 2jω 1+ω 2 4+ω 2 2jω 4 4+ω 2 1+ω 2 [ ] > 0, ω R, q = 1 lim ω ω2 det[g(jω) + G T ( jω)] = 4 G is SPR
9 p. 9/? Positive Real Lemma: Let G(s) = C(sI A) 1 B + D where (A, B) is controllable and (A, C) is observable. G(s) is positive real if and only if there exist matrices P = P T > 0, L, and W such that PA + A T P = L T L PB = C T L T W W T W = D + D T
10 p. 10/? Kalman Yakubovich Popov Lemma: Let G(s) = C(sI A) 1 B + D where (A, B) is controllable and (A, C) is observable. G(s) is strictly positive real if and only if there exist matrices P = P T > 0, L, and W, and a positive constant ε such that PA + A T P = L T L εp PB = C T L T W W T W = D + D T
11 p. 11/? Lemma: The linear time-invariant minimal realization ẋ = Ax + Bu y = Cx + Du with G(s) = C(sI A) 1 B + D is passive if G(s) is positive real strictly passive if G(s) is strictly positive real Proof: Apply the PR and KYP Lemmas, respectively, and use V (x) = 1 2 xt Px as the storage function
12 p. 12/? u T y V (Ax + Bu) x = u T (Cx + Du) x T P(Ax + Bu) = u T Cx ut (D + D T )u 1 2 xt (PA + A T P)x x T PBu = u T (B T P + W T L)x ut W T Wu xt L T Lx εxt Px x T PBu = 1 2 (Lx + Wu)T (Lx + Wu) εxt Px 1 2 εxt Px In the case of the PR Lemma, ε = 0, and we conclude that the system is passive; in the case of the KYP Lemma, ε > 0, and we conclude that the system is strictly passive
13 p. 13/? Connection with Lyapunov Stability Lemma: If the system ẋ = f(x, u), y = h(x, u) is passive with a positive definite storage function V (x), then the origin of ẋ = f(x, 0) is stable Proof: u T y V x f(x, u) V x f(x, 0) 0
14 p. 14/? Lemma: If the system ẋ = f(x, u), y = h(x, u) is strictly passive, then the origin of ẋ = f(x, 0) is asymptotically stable. Furthermore, if the storage function is radially unbounded, the origin will be globally asymptotically stable Proof: The storage function V (x) is positive definite u T y V x f(x, u) + ψ(x) V x f(x, 0) ψ(x) Why is V (x) positive definite? Let φ(t; x) be the solution of ż = f(z, 0), z(0) = x
15 p. 15/? V (φ(τ, x)) V (x) V ψ(x) τ 0 V (φ(τ, x)) 0 V (x) V ( x) = 0 τ 0 ψ(φ(t; x)) dt, τ [0, δ] τ 0 ψ(φ(t; x)) dt ψ(φ(t; x)) dt = 0, τ [0, δ] ψ(φ(t; x)) 0 φ(t; x) 0 x = 0
16 p. 16/? Definition: The system ẋ = f(x, u), y = h(x, u) is zero-state observable if no solution of ẋ = f(x, 0) can stay identically in S = {h(x, 0) = 0}, other than the zero solution x(t) 0 Linear Systems ẋ = Ax, y = Cx Observability of (A, C) is equivalent to y(t) = Ce At x(0) 0 x(0) = 0 x(t) 0
17 p. 17/? Lemma: If the system ẋ = f(x, u), y = h(x, u) is output strictly passive and zero-state observable, then the origin of ẋ = f(x, 0) is asymptotically stable. Furthermore, if the storage function is radially unbounded, the origin will be globally asymptotically stable Proof: The storage function V (x) is positive definite u T y V x f(x, u) + yt ρ(y) V x f(x, 0) yt ρ(y) V (x(t)) 0 y(t) 0 x(t) 0 Apply the invariance principle
18 p. 18/? Example ẋ 1 = x 2, ẋ 2 = ax 3 1 kx 2 + u, y = x 2, a, k > 0 V (x) = 1 4 ax x2 2 V = ax 3 1 x 2 + x 2 ( ax 3 1 kx 2 + u) = ky 2 + yu The system is output strictly passive y(t) 0 x 2 (t) 0 ax 3 1 (t) 0 x 1(t) 0 The system is zero-state observable. V is radially unbounded. Hence, the origin of the unforced system is globally asymptotically stable
Lecture 13 Linear quadratic Lyapunov theory
EE363 Winter 28-9 Lecture 13 Linear quadratic Lyapunov theory the Lyapunov equation Lyapunov stability conditions the Lyapunov operator and integral evaluating quadratic integrals analysis of ARE discrete-time
Stability. Chapter 4. Topics : 1. Basic Concepts. 2. Algebraic Criteria for Linear Systems. 3. Lyapunov Theory with Applications to Linear Systems
Chapter 4 Stability Topics : 1. Basic Concepts 2. Algebraic Criteria for Linear Systems 3. Lyapunov Theory with Applications to Linear Systems 4. Stability and Control Copyright c Claudiu C. Remsing, 2006.
Lecture 7: Finding Lyapunov Functions 1
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski Lecture 7: Finding Lyapunov Functions 1
19 LINEAR QUADRATIC REGULATOR
19 LINEAR QUADRATIC REGULATOR 19.1 Introduction The simple form of loopshaping in scalar systems does not extend directly to multivariable (MIMO) plants, which are characterized by transfer matrices instead
Understanding Poles and Zeros
MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.14 Analysis and Design of Feedback Control Systems Understanding Poles and Zeros 1 System Poles and Zeros The transfer function
Example 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum. asin. k, a, and b. We study stability of the origin x
Lecture 4. LaSalle s Invariance Principle We begin with a motivating eample. Eample 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum Dynamics of a pendulum with friction can be written
Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL Dr Glenn Vinnicombe HANDOUT 3. Stability and pole locations.
Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL Dr Glenn Vinnicombe HANDOUT 3 Stability and pole locations asymptotically stable marginally stable unstable Imag(s) repeated poles +
Linear Control Systems
Chapter 3 Linear Control Systems Topics : 1. Controllability 2. Observability 3. Linear Feedback 4. Realization Theory Copyright c Claudiu C. Remsing, 26. All rights reserved. 7 C.C. Remsing 71 Intuitively,
UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2010 Linear Systems Fundamentals
UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2010 Linear Systems Fundamentals FINAL EXAM WITH SOLUTIONS (YOURS!) You are allowed one 2-sided sheet of
A Passivity Measure Of Systems In Cascade Based On Passivity Indices
49th IEEE Conference on Decision and Control December 5-7, Hilton Atlanta Hotel, Atlanta, GA, USA A Passivity Measure Of Systems In Cascade Based On Passivity Indices Han Yu and Panos J Antsaklis Abstract
Using the Theory of Reals in. Analyzing Continuous and Hybrid Systems
Using the Theory of Reals in Analyzing Continuous and Hybrid Systems Ashish Tiwari Computer Science Laboratory (CSL) SRI International (SRI) Menlo Park, CA 94025 Email: [email protected] Ashish Tiwari
Chapter 13 Internal (Lyapunov) Stability 13.1 Introduction We have already seen some examples of both stable and unstable systems. The objective of th
Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A. Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology 1 1 c Chapter
4 Lyapunov Stability Theory
4 Lyapunov Stability Theory In this section we review the tools of Lyapunov stability theory. These tools will be used in the next section to analyze the stability properties of a robot controller. We
1 Norms and Vector Spaces
008.10.07.01 1 Norms and Vector Spaces Suppose we have a complex vector space V. A norm is a function f : V R which satisfies (i) f(x) 0 for all x V (ii) f(x + y) f(x) + f(y) for all x,y V (iii) f(λx)
2.3 Convex Constrained Optimization Problems
42 CHAPTER 2. FUNDAMENTAL CONCEPTS IN CONVEX OPTIMIZATION Theorem 15 Let f : R n R and h : R R. Consider g(x) = h(f(x)) for all x R n. The function g is convex if either of the following two conditions
First, we show how to use known design specifications to determine filter order and 3dB cut-off
Butterworth Low-Pass Filters In this article, we describe the commonly-used, n th -order Butterworth low-pass filter. First, we show how to use known design specifications to determine filter order and
V(x)=c 2. V(x)=c 1. V(x)=c 3
University of California Department of Mechanical Engineering Linear Systems Fall 1999 (B. Bamieh) Lecture 6: Stability of Dynamic Systems Lyapunov's Direct Method 1 6.1 Notions of Stability For a general
EVENT-TRIGGERED REAL-TIME SCHEDULING OF STABILIZING CONTROL TASKS PAULO TABUADA
EVENT-TRIGGERED REAL-TIME SCHEDULING OF STABILIZING CONTROL TASKS PAULO TABUADA Abstract. In this note we revisit the problem of scheduling stabilizing control tasks on embedded processors. We start from
15 Limit sets. Lyapunov functions
15 Limit sets. Lyapunov functions At this point, considering the solutions to ẋ = f(x), x U R 2, (1) we were most interested in the behavior of solutions when t (sometimes, this is called asymptotic behavior
State Feedback Stabilization with Guaranteed Transient Bounds
State Feedback Stabilization with Guaranteed Transient Bounds D. Hinrichsen, E. Plischke, F. Wirth Zentrum für Technomathematik Universität Bremen 28334 Bremen, Germany Abstract We analyze under which
The dynamic equation for the angular motion of the wheel is R w F t R w F w ]/ J w
Chapter 4 Vehicle Dynamics 4.. Introduction In order to design a controller, a good representative model of the system is needed. A vehicle mathematical model, which is appropriate for both acceleration
CONTROLLABILITY. Chapter 2. 2.1 Reachable Set and Controllability. Suppose we have a linear system described by the state equation
Chapter 2 CONTROLLABILITY 2 Reachable Set and Controllability Suppose we have a linear system described by the state equation ẋ Ax + Bu (2) x() x Consider the following problem For a given vector x in
T ( a i x i ) = a i T (x i ).
Chapter 2 Defn 1. (p. 65) Let V and W be vector spaces (over F ). We call a function T : V W a linear transformation form V to W if, for all x, y V and c F, we have (a) T (x + y) = T (x) + T (y) and (b)
On diffusion driven oscillations in coupled dynamical systems
On diffusion driven oscillations in coupled dynamical systems Alexander Pogromsky Department of Electrical Engineering Linköping University S-581 83 Linköping Sweden [email protected] Torkel Glad Department
Controllability and Observability
Chapter 3 Controllability and Observability In this chapter, we study the controllability and observability concepts. Controllability is concerned with whether one can design control input to steer the
t := maxγ ν subject to ν {0,1,2,...} and f(x c +γ ν d) f(x c )+cγ ν f (x c ;d).
1. Line Search Methods Let f : R n R be given and suppose that x c is our current best estimate of a solution to P min x R nf(x). A standard method for improving the estimate x c is to choose a direction
8. Linear least-squares
8. Linear least-squares EE13 (Fall 211-12) definition examples and applications solution of a least-squares problem, normal equations 8-1 Definition overdetermined linear equations if b range(a), cannot
Nonlinear Algebraic Equations. Lectures INF2320 p. 1/88
Nonlinear Algebraic Equations Lectures INF2320 p. 1/88 Lectures INF2320 p. 2/88 Nonlinear algebraic equations When solving the system u (t) = g(u), u(0) = u 0, (1) with an implicit Euler scheme we have
VERTICES OF GIVEN DEGREE IN SERIES-PARALLEL GRAPHS
VERTICES OF GIVEN DEGREE IN SERIES-PARALLEL GRAPHS MICHAEL DRMOTA, OMER GIMENEZ, AND MARC NOY Abstract. We show that the number of vertices of a given degree k in several kinds of series-parallel labelled
MATH 425, PRACTICE FINAL EXAM SOLUTIONS.
MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator
Fuzzy Differential Systems and the New Concept of Stability
Nonlinear Dynamics and Systems Theory, 1(2) (2001) 111 119 Fuzzy Differential Systems and the New Concept of Stability V. Lakshmikantham 1 and S. Leela 2 1 Department of Mathematical Sciences, Florida
WARM UP EXERCSE. 2-1 Polynomials and Rational Functions
WARM UP EXERCSE Roots, zeros, and x-intercepts. x 2! 25 x 2 + 25 x 3! 25x polynomial, f (a) = 0! (x - a)g(x) 1 2-1 Polynomials and Rational Functions Students will learn about: Polynomial functions Behavior
Conic optimization: examples and software
Conic optimization: examples and software Etienne de Klerk Tilburg University, The Netherlands Etienne de Klerk (Tilburg University) Conic optimization: examples and software 1 / 16 Outline Conic optimization
Review of First- and Second-Order System Response 1
MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING 2.151 Advanced System Dynamics and Control Review of First- and Second-Order System Response 1 1 First-Order Linear System Transient
Design Methods for Control Systems
Design Methods for Control Systems Okko H. Bosgra Delft University of Technology Delft, The Netherlands Huibert Kwakernaak Emeritus Professor University of Twente Enschede, The Netherlands Gjerrit Meinsma
October 3rd, 2012. Linear Algebra & Properties of the Covariance Matrix
Linear Algebra & Properties of the Covariance Matrix October 3rd, 2012 Estimation of r and C Let rn 1, rn, t..., rn T be the historical return rates on the n th asset. rn 1 rṇ 2 r n =. r T n n = 1, 2,...,
1 2 3 1 1 2 x = + x 2 + x 4 1 0 1
(d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which
SOLVING A STABILITY PROBLEM BY POLYA S FOUR STEPS
INTERNATIONAL JOURNAL OF ELECTRONICS MECHANICAL AND MECHATRONICS ENGINEERING Volume. Number. pp.(9-8) SOLVING A STABILITY PROBLEM BY POLYA S FOUR STEPS Cengiz Alacacı Murat Doğruel Bilent University Graduate
LOOP TRANSFER RECOVERY FOR SAMPLED-DATA SYSTEMS 1
LOOP TRANSFER RECOVERY FOR SAMPLED-DATA SYSTEMS 1 Henrik Niemann Jakob Stoustrup Mike Lind Rank Bahram Shafai Dept. of Automation, Technical University of Denmark, Building 326, DK-2800 Lyngby, Denmark
Date: April 12, 2001. Contents
2 Lagrange Multipliers Date: April 12, 2001 Contents 2.1. Introduction to Lagrange Multipliers......... p. 2 2.2. Enhanced Fritz John Optimality Conditions...... p. 12 2.3. Informative Lagrange Multipliers...........
College Algebra - MAT 161 Page: 1 Copyright 2009 Killoran
College Algebra - MAT 6 Page: Copyright 2009 Killoran Zeros and Roots of Polynomial Functions Finding a Root (zero or x-intercept) of a polynomial is identical to the process of factoring a polynomial.
Controller Design in Frequency Domain
ECSE 4440 Control System Engineering Fall 2001 Project 3 Controller Design in Frequency Domain TA 1. Abstract 2. Introduction 3. Controller design in Frequency domain 4. Experiment 5. Colclusion 1. Abstract
/SOLUTIONS/ where a, b, c and d are positive constants. Study the stability of the equilibria of this system based on linearization.
echnische Universiteit Eindhoven Faculteit Elektrotechniek NIE-LINEAIRE SYSEMEN / NEURALE NEWERKEN (P6) gehouden op donderdag maart 7, van 9: tot : uur. Dit examenonderdeel bestaat uit 8 opgaven. /SOLUIONS/
Stability Analysis for Systems of Differential Equations
Stability Analysis for Systems of Differential Equations David Eberly Geometric Tools, LLC http://wwwgeometrictoolscom/ Copyright c 1998-2016 All Rights Reserved Created: February 8, 2003 Last Modified:
NOV - 30211/II. 1. Let f(z) = sin z, z C. Then f(z) : 3. Let the sequence {a n } be given. (A) is bounded in the complex plane
Mathematical Sciences Paper II Time Allowed : 75 Minutes] [Maximum Marks : 100 Note : This Paper contains Fifty (50) multiple choice questions. Each question carries Two () marks. Attempt All questions.
Availability of a system with gamma life and exponential repair time under a perfect repair policy
Statistics & Probability Letters 43 (1999) 189 196 Availability of a system with gamma life and exponential repair time under a perfect repair policy Jyotirmoy Sarkar, Gopal Chaudhuri 1 Department of Mathematical
Section 13.5 Equations of Lines and Planes
Section 13.5 Equations of Lines and Planes Generalizing Linear Equations One of the main aspects of single variable calculus was approximating graphs of functions by lines - specifically, tangent lines.
Mathematics Course 111: Algebra I Part IV: Vector Spaces
Mathematics Course 111: Algebra I Part IV: Vector Spaces D. R. Wilkins Academic Year 1996-7 9 Vector Spaces A vector space over some field K is an algebraic structure consisting of a set V on which are
Lecture 11. 3.3.2 Cost functional
Lecture 11 3.3.2 Cost functional Consider functions L(t, x, u) and K(t, x). Here L : R R n R m R, K : R R n R sufficiently regular. (To be consistent with calculus of variations we would have to take L(t,
Optimization in R n Introduction
Optimization in R n Introduction Rudi Pendavingh Eindhoven Technical University Optimization in R n, lecture Rudi Pendavingh (TUE) Optimization in R n Introduction ORN / 4 Some optimization problems designing
Digital Signal Processing IIR Filter Design via Impulse Invariance
Digital Signal Processing IIR Filter Design via Impulse Invariance D. Richard Brown III D. Richard Brown III 1 / 11 Basic Procedure We assume here that we ve already decided to use an IIR filter. The basic
Loop Analysis. Chapter 7. 7.1 Introduction
Chapter 7 Loop Analysis Quotation Authors, citation. This chapter describes how stability and robustness can be determined by investigating how sinusoidal signals propagate around the feedback loop. The
9 More on differentiation
Tel Aviv University, 2013 Measure and category 75 9 More on differentiation 9a Finite Taylor expansion............... 75 9b Continuous and nowhere differentiable..... 78 9c Differentiable and nowhere monotone......
ANALYSIS OF A MODEL OF TWO PARALLEL FOOD CHAINS. Sze-Bi Hsu. Christopher A. Klausmeier. Chiu-Ju Lin. (Communicated by the associate editor name)
Manuscript submitted to AIMS Journals Volume X, Number 0X, XX 00X Website: http://aimsciences.org pp. X XX ANALYSIS OF A MODEL OF TWO PARALLEL FOOD CHAINS Sze-Bi Hsu Department of Mathematics National
3 Signals and Systems: Part II
3 Signals and Systems: Part II Recommended Problems P3.1 Sketch each of the following signals. (a) x[n] = b[n] + 3[n - 3] (b) x[n] = u[n] - u[n - 5] (c) x[n] = 6[n] + 1n + (i)2 [n - 2] + (i)ag[n - 3] (d)
Some probability and statistics
Appendix A Some probability and statistics A Probabilities, random variables and their distribution We summarize a few of the basic concepts of random variables, usually denoted by capital letters, X,Y,
(Quasi-)Newton methods
(Quasi-)Newton methods 1 Introduction 1.1 Newton method Newton method is a method to find the zeros of a differentiable non-linear function g, x such that g(x) = 0, where g : R n R n. Given a starting
The Heat Equation. Lectures INF2320 p. 1/88
The Heat Equation Lectures INF232 p. 1/88 Lectures INF232 p. 2/88 The Heat Equation We study the heat equation: u t = u xx for x (,1), t >, (1) u(,t) = u(1,t) = for t >, (2) u(x,) = f(x) for x (,1), (3)
Cyber-Physical Systems Design Using Dissipativity and Symmetry
Cyber-Physical Systems Design Using Dissipativity and Symmetry Panos J. Antsaklis Dept. of Electrical Engineering University of Notre Dame, USA Science Keynote CPS PI Meeting, Washington DC October 3-5,
HEAVISIDE CABLE, THOMSON CABLE AND THE BEST CONSTANT OF A SOBOLEV-TYPE INEQUALITY. Received June 1, 2007; revised September 30, 2007
Scientiae Mathematicae Japonicae Online, e-007, 739 755 739 HEAVISIDE CABLE, THOMSON CABLE AND THE BEST CONSTANT OF A SOBOLEV-TYPE INEQUALITY Yoshinori Kametaka, Kazuo Takemura, Hiroyuki Yamagishi, Atsushi
Numerical methods for American options
Lecture 9 Numerical methods for American options Lecture Notes by Andrzej Palczewski Computational Finance p. 1 American options The holder of an American option has the right to exercise it at any moment
L 2 : x = s + 1, y = s, z = 4s + 4. 3. Suppose that C has coordinates (x, y, z). Then from the vector equality AC = BD, one has
The line L through the points A and B is parallel to the vector AB = 3, 2, and has parametric equations x = 3t + 2, y = 2t +, z = t Therefore, the intersection point of the line with the plane should satisfy:
REVIEW EXERCISES DAVID J LOWRY
REVIEW EXERCISES DAVID J LOWRY Contents 1. Introduction 1 2. Elementary Functions 1 2.1. Factoring and Solving Quadratics 1 2.2. Polynomial Inequalities 3 2.3. Rational Functions 4 2.4. Exponentials and
Lecture 4: AC 0 lower bounds and pseudorandomness
Lecture 4: AC 0 lower bounds and pseudorandomness Topics in Complexity Theory and Pseudorandomness (Spring 2013) Rutgers University Swastik Kopparty Scribes: Jason Perry and Brian Garnett In this lecture,
Practice with Proofs
Practice with Proofs October 6, 2014 Recall the following Definition 0.1. A function f is increasing if for every x, y in the domain of f, x < y = f(x) < f(y) 1. Prove that h(x) = x 3 is increasing, using
CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY
January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION 1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics.
Nonlinear Programming Methods.S2 Quadratic Programming
Nonlinear Programming Methods.S2 Quadratic Programming Operations Research Models and Methods Paul A. Jensen and Jonathan F. Bard A linearly constrained optimization problem with a quadratic objective
Lecture 7 Circuit analysis via Laplace transform
S. Boyd EE12 Lecture 7 Circuit analysis via Laplace transform analysis of general LRC circuits impedance and admittance descriptions natural and forced response circuit analysis with impedances natural
Homework #2 Solutions
MAT Spring Problems Section.:, 8,, 4, 8 Section.5:,,, 4,, 6 Extra Problem # Homework # Solutions... Sketch likely solution curves through the given slope field for dy dx = x + y...8. Sketch likely solution
ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS
ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS DANIEL RABAYEV AND JACK SONN Abstract. Let f(x) be a monic polynomial in Z[x] with no rational roots but with roots in Q p for
ECE 3510 Final given: Spring 11
ECE 50 Final given: Spring This part of the exam is Closed book, Closed notes, No Calculator.. ( pts) For each of the time-domain signals shown, draw the poles of the signal's Laplace transform on the
Lecture 1: Introduction to Dynamical Systems
Lecture 1: Introduction to Dynamical Systems General introduction Modeling by differential equations (inputs, states, outputs) Simulation of dynamical systems Equilibria and linearization System interconnections
FUNCTIONAL ANALYSIS LECTURE NOTES CHAPTER 2. OPERATORS ON HILBERT SPACES
FUNCTIONAL ANALYSIS LECTURE NOTES CHAPTER 2. OPERATORS ON HILBERT SPACES CHRISTOPHER HEIL 1. Elementary Properties and Examples First recall the basic definitions regarding operators. Definition 1.1 (Continuous
MATH 52: MATLAB HOMEWORK 2
MATH 52: MATLAB HOMEWORK 2. omplex Numbers The prevalence of the complex numbers throughout the scientific world today belies their long and rocky history. Much like the negative numbers, complex numbers
SECTION 19 CONTROL SYSTEMS
Christiansen-Sec.9.qxd 6:8:4 6:43 PM Page 9. The Electronics Engineers' Handbook, 5th Edition McGraw-Hill, Section 9, pp. 9.-9.3, 5. SECTION 9 CONTROL SYSTEMS Control is used to modify the behavior of
Manual for SOA Exam MLC.
Chapter 5. Life annuities. Extract from: Arcones Manual for the SOA Exam MLC. Spring 2010 Edition. available at http://www.actexmadriver.com/ 1/114 Whole life annuity A whole life annuity is a series of
MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set.
MATH 304 Linear Algebra Lecture 9: Subspaces of vector spaces (continued). Span. Spanning set. Vector space A vector space is a set V equipped with two operations, addition V V (x,y) x + y V and scalar
EECE 460 : Control System Design
EECE 460 : Control System Design PID Controller Design and Tuning Guy A. Dumont UBC EECE January 2012 Guy A. Dumont (UBC EECE) EECE 460 PID Tuning January 2012 1 / 37 Contents 1 Introduction 2 Control
EXISTENCE AND NON-EXISTENCE RESULTS FOR A NONLINEAR HEAT EQUATION
Sixth Mississippi State Conference on Differential Equations and Computational Simulations, Electronic Journal of Differential Equations, Conference 5 (7), pp. 5 65. ISSN: 7-669. UL: http://ejde.math.txstate.edu
Duality of linear conic problems
Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least
Stability Analysis of Nonlinear Systems with Linear Programming
Stability Analysis of Nonlinear Systems with Linear Programming A Lyapunov Functions Based Approach Von der Fakultät für Naturwissenschaften - Institut für Mathematik der Gerhard-Mercator-Universität Duisburg
5.3 Improper Integrals Involving Rational and Exponential Functions
Section 5.3 Improper Integrals Involving Rational and Exponential Functions 99.. 3. 4. dθ +a cos θ =, < a
CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION
No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August
054414 PROCESS CONTROL SYSTEM DESIGN. 054414 Process Control System Design LECTURE 2: FREQUENCY DOMAIN ANALYSIS
05444 PROCESS CONTROL SYSTEM DESIGN 05444 Process Control System Design LECTURE : FREQUENCY DOMAIN ANALYSIS Daniel R. Lewin Department of Chemical Engineering Technion, Haifa, Israel - Objectives On completing
0.1 Phase Estimation Technique
Phase Estimation In this lecture we will describe Kitaev s phase estimation algorithm, and use it to obtain an alternate derivation of a quantum factoring algorithm We will also use this technique to design
Linear-Quadratic Optimal Controller 10.3 Optimal Linear Control Systems
Linear-Quadratic Optimal Controller 10.3 Optimal Linear Control Systems In Chapters 8 and 9 of this book we have designed dynamic controllers such that the closed-loop systems display the desired transient
A QUICK GUIDE TO THE FORMULAS OF MULTIVARIABLE CALCULUS
A QUIK GUIDE TO THE FOMULAS OF MULTIVAIABLE ALULUS ontents 1. Analytic Geometry 2 1.1. Definition of a Vector 2 1.2. Scalar Product 2 1.3. Properties of the Scalar Product 2 1.4. Length and Unit Vectors
Figure 2.1: Center of mass of four points.
Chapter 2 Bézier curves are named after their inventor, Dr. Pierre Bézier. Bézier was an engineer with the Renault car company and set out in the early 196 s to develop a curve formulation which would
Numerisches Rechnen. (für Informatiker) M. Grepl J. Berger & J.T. Frings. Institut für Geometrie und Praktische Mathematik RWTH Aachen
(für Informatiker) M. Grepl J. Berger & J.T. Frings Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2010/11 Problem Statement Unconstrained Optimality Conditions Constrained
A Linear Time Delay Model for Studying Load Balancing Instabilities in Parallel Computations
A Linear Time Delay Model for Studying Load Balancing Instabilities in Parallel Computations C. Abdallah ECE Dept University of NewMexico Alburquerque NM 87131-1356 Nivedita Alluri, J. Douglas Birdwell,
Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm.
Chapter 4, Arithmetic in F [x] Polynomial arithmetic and the division algorithm. We begin by defining the ring of polynomials with coefficients in a ring R. After some preliminary results, we specialize
Numerical Methods for Differential Equations
Numerical Methods for Differential Equations Chapter 1: Initial value problems in ODEs Gustaf Söderlind and Carmen Arévalo Numerical Analysis, Lund University Textbooks: A First Course in the Numerical
