Angelika Mader Veri cation of Modal Properties Using Boolean Equation Systems EDITION VERSAL 8
|
|
|
- Warren Fowler
- 10 years ago
- Views:
Transcription
1 UsingBooleanEquationSystems VericationofModalProperties AngelikaMader EDITIONVERSAL8
2 Band1:E.Kindler:ModularerEntwurf Herausgeber:WolfgangReisig Lektorat:RolfWalter EDITIONVERSAL Band2:R.Walter:PetrinetzmodelleverteilterAlgorithmen. verteiltersystememitpetrinetzen Band4:K.Schmidt:SymbolischeAnalysemethoden Band3:D.Gomm:ModellierungundAnalyse mitpetrinetzen verzogerungs-unabhangigerschaltungen BeweistechnikundIntuition Band5:M.Kohn:FormaleModellierung Band6:D.Barnard:TemporalLanguageofTransitions furalgebraischepetrinetze asynchronersysteme Band8:A.Mader:VericationofModalProperties Band7:U.Jaeger:EventDetectionin UsingBooleanEquationSystems ActiveDataBases andclient-serversystems
3 UsingBooleanEquationSystems VericationofModalProperties AngelikaMader DieterBertzVerlag
4 Systems/AngelikaMader.{Berlin:Bertz,1997 Mader,Angelika: VericationofModalPropertiesUsingBooleanEquation (EditionVersal;Bd.8) Zugl.:Munchen,Techn.-Univ.,Diss.,1997 DieDeutscheBibliothek{CIPEinheitsaufnahme NE:GT ISBN n-x AlleRechtevorbehalten GorlitzerStr.37, c1996bydieterbertzverlag,berlin
5 Abstract expressionscontainingleastandgreatestxpoints.fixpoint-equation model-checking. Themodal-calculuscontainsxpoint-operatorswhichgivegreatexbraicallyweintroducexpoint-equationsystemsasanextensionopressivepower.Inordertotreatthemodel-checkingproblemalge- systemsexpressedinthemodal-calculus.thisapproachiscalled Thethesisisconcernedwithvericationofpropertiesofconcurrent and presentanewalgorithm,similartogaueliminationforlinearequationsystems. BooleanlatticesarecalledBooleanequationsystems.Modelcheck- solvingnitebooleanequationsystems.wediscussexistingmodelcheckingalgorithmsfromtheperspectiveofbooleanequationsystems systemsinterpretedoverthebooleanlatticeoraninniteproductof Asanapplicationweinvestigatealgorithmssolvingtheproblemof ingforsystemswithnitestatespacesisshowntobeequivalentto mutualexclusion,constructformulaeforlivenesspropertiesandverify lencetoanautomata-theoreticproblembygoingviabooleanequa- tionsystems.thereexistedareductionofmodel-checkingtoagame wepresentanalgorithm,similartothegaueliminationalgorithmfor equivalence. Forthecaseofinnitestatespaceswealsoshowthatmodel-checkingis thenitecase. equivalenttosolvinginnitebooleanequationsystems.additionally, themwithanimplementationofthegaueliminationalgorithm. Model-checkinginthemodal-calculushasalreadybeentreatedin automatatheoryandgametheory.weareabletoshowanewequiva- theoreticproblem.usingbooleanequationsystemswecanprovethe
6
7 environmentheprovidedforus,andhisliberalattitudes,whichmade acarefreeandconcentratedwayofworkingpossible. fortheconstantsupportofmyallactivitieshere,thecomfortable IamindebtedtomyproofreadersJulianBradeld,EdBrinksmaand EkkartKindler.Theircommentsandcarefulcriticismwereofgreat Acknowledgement helpformeinndingoutwhatiwasdoing,inimprovingmywork, Intherstplace,IwouldliketothankmysupervisorWilfriedBrauer ereeandformostlyilluminatingdiscussions,julianbradeldforhis commentsonpartsofthethesis. IamverygratefultopeopleinEdinburgh:ColinStirlingforbeingref- and,whatisperhapsevenmorevaluable,theyincreasedthefuni hadwhenwritingup.thanksalsotochristinerocklwhogaveuseful EdBrinksmaandPeterRossmanithsupportedmeinndinganexponentialexampleformyversionoftheGaualgorithmanddelivered scienticatmosphereandthegreatvarietyofsinglemaltscontributed enormouslytomyenjoymentofmyvisitstoedinburgh. Kaivolaforclarifyingautomata-theoreticconcepts.Theimpressive forhertheoreticalandpracticalhelpconcerninggames,androope hisinsightinbooleanequationsystemswithme,perditastevens friendshipandpleasantcooperation,kyriakoskalorkoti,whoshared sharptongueofdominikgomm. liketoacknowledgeallpeopleofthegrouphere,andthosewholeftto Berlin.Ispentagoodtimewiththem.Particularly,Iammissingthe Gaualgorithmwasextremlyhelpfultome.Furthermore,Iwould pleasuretome.hisneverendingengagementinimplementingthe mefromalong-termpassion.infrankwallnerifoundacolleague ManythanksgotoBarbaraRoemerwhogavevaluablehintsconcerninglayout. whowasnotafraidofxpointsanddiscussionswithhimwereagreat WithoutGerhard'ssupportIcouldnothavedonethisworkandmany (Sonderforschungsbereich342)forfundingmypositionattheTU. IthankFa.Siemens,ZFE,andtheDeutscheForschungsgemeinschaft otherthingsatthesametimewhilehavingachild.manythanksalso
8 todavidforconsistentlyrelativizingallupsanddownsconcerningmy workandforallthenightshesleptthrough. >FromEd,myparents,familyandfriendsIreceivedvaluablesupport ofvariouskindsduringallthetime,forwhichiowethemgreatthanks.
9 Contents 2Basics. 1Introduction. 2.2Fixpointsandtheirproperties.::::::::::::::22 1.1Generalintroduction.::::::::::::::::::::11 2.1Ordersandlattices.:::::::::::::::::::::19 1.2Synopsis.:::::::::::::::::::::::::: Simplexpoints.:::::::::::::::::: Themodal-calculus. 3Fixpoint-equationsystems. 3.1Fixpoint-equationsystemsforcompletelattices.::::28 4.1Syntaxandsemantics.:::::::::::::::::::45 3.2Booleanequationsystems.::::::::::::::::: Nestedxpoints.::::::::::::::::::24 4.3Propertiesofthemodal-calculus.::::::::::::51 4.2Basicformulae.::::::::::::::::::::::: SolvingBooleanequationsystems. 5Booleanequationsystemsformodelchecking. 5.3ReductionofBooleanequationsystems.:::::::::62 5.1Reductionofthemodelcheckingproblem.::::::::56 5.2Representationandcomplexity.::::::::::::::59 6.1PlainBooleanequationsystems.:::::::::::::
10 106.4Gauelimination.::::::::::::::::::::::81 6.3Tableaux.::::::::::::::::::::::::::76 6.2Approximation.::::::::::::::::::::::: Complexityforthegeneralcase.::::::::: Complexityforsubclasses.::::::::::::: Globalandlocalalgorithm.::::::::::::82 CONTENTS 7Peterson'smutexalgorithm. 8Equivalenttechniques. 6.5Complexity.:::::::::::::::::::::::::94 7.2FairnessandLiveness.::::::::::::::::::: Graphgames.:::::::::::::::::::::::: Alternatingautomata.::::::::::::::::::: ExperimentalResults.::::::::::::::::::: Modellingthealgorithm.:::::::::::::::::: InniteBooleanequationsystems. 9.6Conclusion.::::::::::::::::::::::::: Examples.:::::::::::::::::::::::::: Eliminationmethod.:::::::::::::::::::: Equivalencetothemodelcheckingproblem.::::::: Denitions.::::::::::::::::::::::::: SetbasedBooleanequationsystems.::::::::::: AAppendix 10Conclusion. A.3ProofsofChapter8.::::::::::::::::::::161 A.2ProofsofChapter5.::::::::::::::::::::158 A.1ProofsofChapter3.:::::::::::::::::::: Innitestatespacemodelchecking:::::::::::: Finitestatespacemodelchecking::::::::::::: Bibliography A.4ProofsofChapter9.::::::::::::::::::::
11 Chapter1 Introduction. 1.1Generalintroduction. be,itispossiblethatitshouldbe... Yet,fromtheproposition`itmaybe' Whenitisnecessarythatathingshould fromthatitfollowsthatitisnotnecessary;itcomesaboutthereforethatthe itfollowsthatitisnotimpossible,and ianstoicsalsodealtwithmodallogics,introducingatimebasedinter- pretation:possibleisjustwhateitherisorwillbe;athingisnecessary onlyifitisnowtrueandalwayswillbetrue. Leibnizgaveasemanticmodelforlogicsincludingthemodalities`nec- Aristotle,Hermeneia1 ThebeginningofmodallogicdatesbacktoAristotlewhowasalready concernedwiththelogicofnecessityandpossibility.later,themegar- be;whichisabsurd... thingwhichmustnecessarilybeneednot essarily'and`possibly':heassumedasetofworldsanddeneda propositionbeingnecessarilytrueifitistrueinallworlds,andbeing possiblytrueifthereexistssomeworldwhereitistrue.inaddition, 1see[Boc70]
12 tury.nowadaysphilosophers,logicians,linguistsandcomputerscien- tistsshareaninterestinthesubject,andvarioussystemsofmodal Formalmathematicaltreatmentofmodallogicstartedinthiscen- logichavebeendeveloped. 12 Infurtherdevelopment,morestructurewasgiventothemodelof heprovedthatweliveinthebestofallpossibleworlds. Chapter1.Introduction. worlds.whendecidingwhethersomepropositionpisnecessaryin areorderedlinearlyintime. oneworldonlyaspeciedsetofworldsmayberelevant,whichneed Incomputersciencemodalandtemporallogicplayaroleinthevericationofsystems.Here,thetaskistoshowthatasystemmeets itsspecicationwhichmayconsistofsetofpropertiesexpressedas systems.theyconsistofasetofstates(representingtheworlds)and formulaeofalogic. ModelsformodallogicareKripkestructures,alsocalledtransition transitionsbetweenthestates(theaccessibilityrelation).atransition pinballmachine.transitionsmaycarryalabelidentifyinganaction (write1toamemorycell,shootthepinball)ormodellingjustthe systemmodelsthedierentstatesanarbitrarysystemcanenter,and actionsleadingfromonestatetoanother.astatecanrepresente.g. on-goingofasystemastimepasses.thelattercaseprovidesamodel fortemporallogic. Propositionsareaboutstatesorpathsofamodel,e.g.forthepinball thecontentofamemory,thevalueofaprogramcounter,astateofa machineinitiallytheonlypossibleactionistoinsertacoin;thereexists arunofthepinballmachine,whereialwaysgetafreegame,or,ifi rolldown. oneworldmeansthatpbeingtrueinallworldsaccessiblefromthe currentone.temporallogicisthendenedasamodallogic,where accessibilitybetweenworldsrepresentstimepassingby,andtheworlds anaccessibilityrelationbetweenworlds,andpisnecessarilytruein notincludeeveryworldinthemodel.thisfeatureisrepresentedby hitthepinballmachineinnitelyoftenthentheballwilleventually
13 tiveprograms.provingcorrectnessforaprogramwastoshowthat [MP69],Park[Par70]andHoare[Hoa69]wereimportantdevelopments givenaspeciedinputtheprogramwouldterminateandproduce aspeciedoutput.theworksoffloyd[flo67],mannaandpnueli Intherstperiod,objectsofvericationweresequentialandimpera- inthiscontext. 1.1.Generalintroduction. 13 Therstmodallogicsforvericationweredynamiclogicsintroduced bypratt[pra76],andmostlyusedinthepropositionalversion.propositionaldynamiclogic(pdl)isbuiltupfrompropositionallogic extendedbythemodalitieshi,whereaprogramisaregularexpressionoverasetofatomicprograms.theformulahipistrueata state,whereitispossiblefortheprogramtoexecuteandresultin astatesatisfyingp.variousrestrictionsandextensionsofpdlhave acteristicsofprograms:terminationandresultsproducedwerenot longernecessaryfeatures,buton-goingandinteractionwithanenvironmentbecamerelevant.pnuelicalledthem\reactivesystems". andpdl-[str81]whereaninniteloop-operatorisaddedtopro- beeninvestigated.themostfamousonesarepdlwithtestprogams, gramexpressions. Theintroductionofconcurrencycausedchangeconcerningthechar- Clarke,EmersonandSistla[CES86],andothersstartedwithanew approach,calledmodel-checking.here,vericationfornitestatesystemsisperformedautomaticallyand,incontrasttoderivingaproof, Pnueli[MP83]foundthattemporallogicissuitableinthiscontext. Theyappliedaproof-theoreticstyleofverication:foragivenprogramtheyderivedasetoftemporalpropertiesandshowedthatthe Provingcorrectnesshererequiredmoreexpressivelogics.Mannaand specifyingpropertywasaconsequenceofthisset(orwasnot). pinballmachinetheninnitelyoftenitwillbeinthestate\tilt"). relevantpropertiesarenot(e.g.ifinnitelyoftenaplayerhitsthe ifthepinballisshotthenitwilleventuallyrolldownagain),butsome (CTL).Inthislogicanumberofusefulpropertiesisexpressible(e.g. analgorithmreceivingaformulaandamodelasinputgivestheresult trueorfalse.thetemporallogictheyusediscomputationtreelogic
14 AnextensionofCTLthatcanexpressthe\tilt"-propertycitedabove thetacklingofthesizeofproblemsandthedenitionofmoreexpressivelogics.ofcourse,theproblemsarenotmutuallyindependentof isvericationandthesmalleristhesizeofsolvableproblems. 14 eachother;roughly,themoreexpressivealogicis,themorecomplex Insubsequentdevelopment,workwascenteredmainlyontwoissues: Chapter1.Introduction. iscalledctl*.forthistemporallogicemersonandlei[el86]presentedamodel-checkingalgorithm. MeanwhilealsovariousextensionsofCTLandCTL*havebeeninves- andthexpointoperatorsand.themodalitiesallowonetoexpresspropertiesforonenext-step,whilebymeansofleast(anddually additiontopropositionallogicitcontainsthemodalities[a]andhai modalandtemporallogicsmentionedabove:themodal-calculus.in tigatedwhicharemoreexpressive,butstillsimpleenoughformodel- checking. greatest)xpointimmediatelypropertiesoverniteandinnitepaths Kozen[Koz83]introducedaverypowerfullogic,subsumingallother canbemodelled.thebeautyofthislogicliesinitsexpressivenessin combinationwithitssimplicity.therstmodel-checkingalgorithm forthemodal-calculuswasdevelopedbyemersonandlei[el86]. However,thecomplexityoftheiralgorithmishigherthanthatforless expressivelogicssuchasctl:itisofexponentialcomplexityinthesize byso-called\symbolicmodel-checking".forearlieralgorithmsthe Concerningthesizeofproblemsconsiderableprogresshasbeenachieved thecomplexityofthisproblemhavenotyetbeendetected. -calculushavebeensuggested,yettherehasnotbeenanyessential algorithmsforctl.sincethenanumberofalgorithmsforthemodal improvementconcerningcomplexitysofar,andthelowerboundsfor oftheformulaincontrasttopolynomialcomplexityofmodel-checking model,atransitionsystem,hadtoberepresentedexplicitly.ina newapproachforctlmodel-checkingburch,clarkeandmcmillan [BCM+92]choseBinaryDecisionDiagrams(BDDs)asdata-structure, sizeofproblemsthatcouldbetreatedgrewenormously. whichallowedaverycompactencodingoftransitionsystems,andthe
15 However,thesizeofthetransitionsystemsisstillthemostlimiting probleminthisarea.especiallyforconcurrentsystemstheso-called \statespaceexplosion"makesvericationdicultorevenimpossi- 1.1.Generalintroduction. ble.reductiontechniquesfortransitionsystemshavebeeninvesti- gatedincludinge.g.abstractionsandsymmetries,whichrelativize thepurelyautomaticapproachandreintroduceelementsofproofto 15 ornoteventhesetofreachablestates,buta(hopefullysmall)subset whetherapropertyholdsofpathsstartingfromtheinitialstateofa system.showingitscorrectnessmaynotrequirethewholestatespace, setofallstatessatisfyingaproperty.usually,weareinterestedin model-checking. Themethodofmodel-checkingdescribedaboveis\global"inthesense thatthealgorithmstraversethewholestatespaceanddeterminethe StirlingandWalker[SW89]informofatableausystem. ofit.algorithmsbasedonthisideaarecalled\local".alocalmodelcheckingalgorithmforthemodal-calculuswasrstintroducedby grammars. sistanceisapossibility.bradeldandstirling[bs90,bra92]developed modelsdenede.g.bysomepetri-netclasses[en94],orcontext-free automaticmethods.however,provingpropertieswithcomputeras- atableaumethodallowingcomputer-aidedvericationforformulaeof themodal-calculus.otherworkhasbeendoneinthisareaforinnite Inthecaseofgeneralinnitestate-spacesthereisnohopeforfully Booleanequationsystems.Infact,wecanshowthatthetwoproblems formedtotheproblemofsolvingaclassofequationsystems,called -calculus.theapproachisanalgebraicone:model-checkingistrans- showtheirrelationstoothertechniques,inautomatatheoryandgame areequivalent,forthecaseofnitesystemsaswellasforinniteones. Basedonthisequivalencewediscussmodel-checkingalgorithmsand Alsointhiswork,weareconcernedwithmodel-checkingforthemodal theory.thefollowingsectiongoesontooutlinethisinmoredetail.
16 16 1.2Synopsis. Inthebeginningwegiveabriefcollectionofrelevantdenitionsand factsfromlatticetheoryandthexpointtheoremswhicharestructures Incomputersciencemainlyleastxpointshavebeenconsidered.Propositionsforexpressionscontainingleastandgreatestxpointoperators donotgobeyonddualityargumentssofar.chapter3containstherst contributionofthiswork:anintroductionofxpoint-equationsystems entailsanextensivecollectionofpropertiesofxpoint-equationsystems.thedierencebetweenmoretraditionalequationsystemsand xpoint-equationsystemsconsistsoftheadditionalstructuregivento thelatter:thereisanorderdenedontheequationsandeachequationisequippedwithaminimalityormaximalitycondition.because ofthisstructureknownresultsforsolutionsofequationsystemsover latticesdonotapplyforthexpoint-equationsystems.inthiswork xpoint-equationsystemswillbeinterpretedoverthebooleanlattice fornitestatespacemodel-checkingaswellasoveraninniteproduct ofbooleanlatticesformodel-checkingofinnitestatespaces.section 3.2containsdenitionsandpropertiesforthenitecase,extending Booleanequationsystems. Chapter4containsanintroductiontothemodal-calculus,including propertiesforxpoint-equationsystemsoverarbitrarylattices.the interpretedinthiswayarecalledbooleanequationsystemsandinnite syntax,semantics,basicnotationsandfacts. Themainpointofchapter5istheequivalenceofthemodel-checking innitecasewillbetreatedinchapter9.fixpoint-equationsystems problemfornitestatespacesandtheproblemofsolvingboolean equationsystems.reductionstobooleanequationsystemsforthecase ofnon-alternating-calculusexpressionshavealreadybeentreatedby applyingdirectlytothegeneralcase.thesizeofabooleanequation otherpeople.theextensiontothegeneralcasecouldbedonebythe andfactsbasicforthewholework. Chapter1.Introduction. asageneralizationofnestedandalternatingxpoint-expressions.it well-knownxpointtheorems.here,insection5,wegiveareduction
17 equationsystem,weconstructaformulaofthemodal-calculusanda Section5.2showsthereductionintheotherdirection.GivenaBoolean simpleformforequationshastobedenedfollowingknowntechniques. systemlinearinthesizeoftheoriginalmodel-checkingproblemaa 1.2.Synopsis. systemderivedislinearinthesizeofthemodelandlinearinthesize oftheformula.inordertogetarepresentationofabooleanequation 17 relatingittothe\classical"versionofbooleanequationsystemswithoutorderontheequationsandwithoutsideconditionsforxpoints. thethemodelsatisestheformula.thesizeofthemodelisquadratic inthesizeofthebooleanequationsystem,thesizeoftheformulais linear. Chapter6dealswithmethodsforsolvingBooleanequationsystems, localaswellasglobalones.westartwithadiscussionoftheproblem, model,suchthatthebooleanequationsystemhasthesolutiontruei inationforlinearequationsystems.itleadstoboth,alocalanda BooleanequationsystemsbeinginNP\co-NP,andaccordingtothe techniqueforbooleanequationsystemswhichissimilartogauelim- Theknownmethodssolvingthemodel-checkingproblemaretheapproximationtechniqueandatableaumethod.Weinterpretethem equivalenceresultsalsothemodel-checkingproblemiscontainedin globalalgorithm.thelastsectioncontainsasimpleproofforsolving onbooleanequationsystems.inadditionwepresentanewsolving thisclass,whichisaknownresult. Examplesforapplicationarepresentedinchapter7.Here,wefocus inotherframeworks:thereexistreductionstoproblemsinautomata- algorithmsolvingtheproblemofmutualexclusion.theseproperties providenon-trivialexamplesfor-calculusformulae.theyareveri- edwithanimplementationofgaueliminationforbooleanequation systems. Themodel-checkingproblemforthemodal-calculushasbeentreated oncomposingandprovingdierentlivenesspropertiesforpeterson's andgame-theory.intherstcaseallautomataderivedaretree- automata.insection8.1weshowtheequivalenceofmodel-checking andthenon-emptiness-problemofalternatingautomataoninnite
18 playerhasawinningstrategyforagameandsolvingabooleanequationsystem.thereductionofbooleanequationsystemstomodelcheckinggivesimmediatelyareductionfromamodel-checkinggame games.insection8.2,weshowtheequivalenceofdecidingwhethera Themodel-checkingproblemhasalsobeenreducedtomodel-checking wordsoverasingle-letteralphabetwithaparityacceptancecondition. Chapter1.Introduction. 18 xpoint-equationsystemsinterpretedovera(possiblyinnite)productofbooleanlattices.theequivalenceofinnitebooleanequation systemsandthemodel-checkingproblemforinnitestatespacesis Sofarwehaveonlybeenconsideringnitestatespaces.Inchapter toamodel-checkingproblem,whichhasbeenanopenquestion. case.booleanequationsystemsastheyareusedherearederivedfrom provedbyreductionsinbothdirections.theseresultsareonlyuseful whenhavinganiterepresentationoftheproblemwhichisgivenby 9,thetheoryofBooleanequationsystemsisextendedtotheinnite setbasedequationsystems.wepresentaneliminationmethodusing ideasfromgaueliminationforthenitecaseandfromthetableau examplesdemonstratethetechnique. Thethesisendswithconcludingremarksputtingourresultsinageneralframework. methodofbradeldandstirling.itsolvessetbasedequationsystemsandalsothemodel-checkingproblemfortheinnitecase.small
19 Chapter2 Basics. xpointoperatorsofmodallogichavetobedenedviacontinuous interpretedasanorderpreservingfunctionbetweentwolattices.the functions.therefore,wecollectheretherelevantdenitionsandfacts. iscompletelattice.thesemanticofaformulaofmodallogiccanbe 2.1Ordersandlattices. Thebasicstructureinthisworkarelattices;formulaeofmodallogic withimplicationorderformalattice,thepowersetofastatespace Adetailedintroductionintolatticesandorderscanbefound[DP90]. Asetequippedwithapartialorderiscalledanorderedset. (transitivity)xyandyzimplyxz (antisymmetry)xyandyximplyx=y ifforallx;y;z2p: (reexivity) Denition2.1AbinaryrelationonasetPisapartialorder greatestelementofqisa2qifaxforallx2q.dually,the Denition2.2GivenanorderedsetPandasubsetQofPthe xx leastelementofqisa2qifaxforallx2q.
20 20Denition2.3LetPbeanorderedset.Thegreatestelementof P,ifitexists,iscalledthetopelementofPandwritten>.Dually, Proposition2.4GivenanorderedsetPanysubsetQPisan Pandwritten?. theleastelementofp,ifitexists,iscalledthebottomelementof Chapter2.Basics. orderedset. Proposition2.5Let(P1;1);:::;(Pn;n)beorderedsets.Their productp1:::pncanbeequippedwithapartialorderbypointwisedenition:(x1;:::;xn)(y1;:::;yn)ixiiyifor1in. Denition2.6LetPandQbeorderedsets.Thesetoffunctions fromptoqisdenotedby(p!q).foreachfunctionf2(p!q) Onthesetoffunctions(P!Q)anorderisinheritedfromthe p1p2itisthecasethatf(p1)f(p2). thedomainispandthecodomainisq. Afunctionf2(P!Q)ismonotone,ifforallp1;p22Pwith ThesetofallmonotonefunctionsisdenotedbyhP!Qi. f(a)g(a)foralla2a. orderontheircodomainq:letf;g2(p!q).thenfgif Denition2.7LetPbeanorderedsetandSbeasubsetofP. Thenx2PisanupperboundofS,ifsxforalls2S.Dually x2pisalowerboundofs,ifxsforalls2s. AllupperboundsofSarecollectedinaset"S,thelowerbounds TinsteadofWandV,and[and\insteadof_and^. inmumvfx;yg.whenspeakingaboutpowersetswewillusesand Notation:ForthesupremumWfx;ygwewritex_y,andx^yforthe VS.TheyarealsocalledthesupremumandinmumofS. upperboundofs,anddenotedbyws.thegreatestelementof #Sifitexists,iscalledgreatestlowerboundofS,anddenotedby inaset#s.theleastelementof"s,ifitexists,iscalledleast
21 2.1.Ordersandlattices. Denition2.8LetPbeanon-emptyorderedset.Pisalattice, ifx_yandx^yexistforallx;y2p.pisacompletelattice,if WSandVSexistforallsubsetsSP. Proposition (5)IfPandQare(complete)latticesthenalsothesetsoffunctions (4)ForanysetXitspowersetP(X)equippedwiththesetinclusion (1)InalatticeWSandVSexistforallnitesubsetsSP. (2)Everynitelatticeiscomplete. (3)Inacompletelatticethebottomelement?andthetopelement inmumareobtainedpointwise. (P!Q)andhP!Qiare(complete)lattices.Supremumand orderisacompletelattice. >exist. fop(k1) theoperationssupremum_andinmum^,andasetofoperators sions.thesearebuiltupbyvariablesxfromasetofvariablesx, theoperatorop(ki) Inmostcaseswethinkoffunctionsasrepresentedbyfunctionexpres- f::=xjf_fjf^fjop(ki) monotonefunction,andspsuchthatwsandvsexistin Proposition2.10LetPandQbeorderedsets,f:P!Qa 1;:::;Op(kn) P,andWf(S),Vf(S)existinQ.Thenf(WS)Wf(S)and ngforsomen2in,wherekidenotesthearityof f(vs)wf(s). i. i(f;:::;f) directed,ifeverynitesubsetfofshasanupperboundins. Proposition2.11Productsofcompletelatticesequippedwitha partialorderasinproposition2.5arecompletelattices. Denition2.12Anon-emptysubsetSofanorderedsetPis
22 22Thenf:P!QiscontinuousifforeverydirectedsetinPitisthe casethatf(wd)=wf(d). Denition2.13LetPandQbecompletelattices. Afunctionthatpreserves?,i.e.f(?)=?iscalledstrict. Chapter2.Basics. Proposition2.14LetPandQbecompletelattices.Thenevery 2.2Fixpointsandtheirproperties. Denition2.15GivenalatticePandafunctionf:P!P.An elementx2pisaxpointoffiff(x)=x. monotonefunctionf:p!qisalsocontinuous. TheverybasictheoremcomesfromTarski[Tar55](seealso[LNS82]). Thissectionisacollectionofvariouspropertiesofxpointswhichcan befoundintheliterature.itstartswithpropertiesofsimplexpoints, bothleastandgreatest.thenwelookatthemoregeneralcasewhere xpointoperatorsofpossiblydierenttypearenested. Itguaranteestheexistenceofaleastandgreatestxpointforamonotonefunctionoveracompletelattice Simplexpoints. Wewillusewhenreferringtoeitheror. Thenextproperties(formonotonef)canbefounde.g.in[Koz83]. notemptyandthesystem(p;)isacompletelattice;inparticular theleastxpointisx:f(x)=vfa2ajf(a)agandthe monotonefunction,andpthesetofallxpointsoff.thenpis Theorem2.16Let(A;)beacompletelattice,f:A!Aa greatestxpointisx:f(x)=wfa2ajf(a)ag.
23 2.2.Fixpointsandtheirproperties. Proposition2.17 (1)f(X:f(X))=X:f(X) (2)Iff(a)athenX:f(X)a. (3)Iff(a)athenX:f(X)a. (4)Iff(a)g(a)foralla2AthenX:f(X)X:g(X). 23 Thefollowingpropertyisknownasthereductionlemma,seeforexample[Koz83],[Win89]. Lemma2.18aX:f(X)iaf(X:(f(X)_a)) (6)X:f(X)=X:f(f(X)) (5)Iff(a)=f(b)foralla;b2AthenX:f(X)=f(X). generalversion,usingtransniteiteration(see[lns82]). butnoconstructivemethodtoyieldit.thisisthesubjectofthenext Tarski'stheoremshowstheexistenceofaleastandgreatestxpoint, well-knowntheorembasedonapproximants.itispresentedhereinits Denition2.19Let(A;)beacompletelatticeand or,dually,ax:f(x)iaf(x:(f(x)^a)). term,whereisanordinal.theapproximanttermsaredenedby +1X:f(X)def transniteinduction: f:a!aamonotonefunction.thenx:fisanapproximant X:f(X)def X:f(X)def 0X:f(X)def 0X:f(X)def =^<X:f(X) =_<X:f(X) => =f(x:f(x)) =? whereisalimitordinal.
24 24X:f(X)=^ X:f(X)=_ functionf:a!a Proposition2.20Foracompletelattice(A;)andamonotone 2OrdX:f(X) 2OrdX:f(X) Chapter2.Basics. and,dually, thatofasuchthatfor: X:f(X)=X:f(X) Moreoverthereexistsanordinalofcardinalitylessorequalto whereordistheclassofallordinals. andgaremonotoneinbotharguments.asarststepwewilldene wherexandyarevariablesoverlattices(a;)and(b;),andf 2.2.2Nestedxpoints. Wenowwanttoconsidernestedxpoints,suchasX:f(X;Y:g(X;Y)) X:f(X)=X:f(X): theirdomainsareinterpretedindierentways.fortechnicalreasons weassumefromnowonthattherearenottwodierentvariablesina nestedxpointexpressionhavingthesamenames. abusenotationanddonotintroducenewnamesforfandgwhen theinnerxpointy:g(x;y)asafunctiong0fromatob.wewill andthegreatestxpointis Y:g(X;Y)def Y:g(X;Y)def monotonefunctiononabtob.thentheleastxpointwith respecttobisafunctionfromatob Denition2.21Let(A;)and(B;)becompletelattices,ga =Wfg02(A!B)jg(X;g0(X))g0(X)g. =Vfg02(A!B)jg(X;g0(X))g0(X)g
25 2.2.Fixpointsandtheirproperties. Proof:straightforward g0(a)=y:g(a;y)(g0(a)=y:g(a;y))foreverya2a,where isamonotonefunctiong0:a!banditisthecasethat Proposition2.22Theleast(greatest)xpointofg:AB!B g(a;y):b!aandy:g(b;y)followsdenition forwardly.intheremarkbelowg0mightbeavectoroffunctions Themonotonicityofg0impliesthatf(X;g0(X))isamonotonefunction fromatoaanditsxpointsarewelldenedaccordingtodenition (possiblyempty)productsofcompletelattices. resultingfrominnerxpointsandalldomainscouldbeinterpretedas 2.16.Theapplicationtoarbitrarynestingofxpointsworksstraight- Remark2.23Wewanttopointout,thatthereexisttwobasicallydierentinterpretationsoftheinnerxpointswhichhave g0(a)def morecommonone:g0asafunctiononatobisdenedpointwise, consequencesforalgorithmscalculatingthem.therstoneisthe canexplicitlycalculatethefunctiong0,notinapointwisemanner, functiong(a;y)onbtobandtheapplicationofaxpointoperator Yiswelldened.Thisinterpretationgivesrisetotheapproximationbasedalgorithms.Evaluationofg0ataisdonebyasimple Theotherinterpretationfocusesonthefact,thatinsomecaseswe approximationofy:g(a;y)asinproposition2.20. =Y:g(a;Y).Foreveryargumenta2Awegetthesimple howasimultaneousxpointcanbetransformedtoanestedxpoint expression. Bekic'stheorem[Bek84]foreliminationofsimultaneousxpointsshows butasafunctionexpressionwithafreevariabley.heretheevaluationofg0(a)consistsofasimplefunctionevaluationandnotofan f:ab!aandg:ab!bmonotonefunctions. Theorem2.24Let(A;)and(B;)becompletelattices, approximation. a=x:f(x;y:g(x;y)),andb=y:g(a;y): Then(X;Y):(f(X;Y);g(X;Y))=a;b,where
26 26 Chapter2.Basics.
27 Chapter3 Fixpoint-equation systems. pretedoverarbitrarycompletelattices.fortheissueofthisworkthe caseofxpoint-equationsystemsisinvestigated,wheretheyareinter- propertiesofxpoint-equationsystems.intherstsectionthegeneral nitionsofsyntaxandsemanticsitcontainsanextensivecollectionof technicalbasisfortherestofthework.therefore,apartfromde- Weintroducexpoint-equationsystemsextendingthenotionofnested requireddomainsarethebooleanlatticeandapossiblyinniteprod- xpointexpressions.theintentionofthischapteristoprovidethe uctofbooleanlattices.thesecondsectionfocusesonthexpoint- equationsystemsoverthebooleanlattice,booleanequationsystems. Forthiscasesomedenitionssimplifyandwegetanumberoffurther properties.proofsofthischapterareshiftedtotheappendix.
28 3.1Fixpoint-equationsystemsfor 28 fromxpointexpressionstoxpointequationsystems.themainpart Firstsyntaxandsemantics1aredened,thenwegiveatranslation completelattices. Chapter3.Fixpoint-equationsystems. ineachfunction.insteadofperformingexplicitlythesubstitutionin environment.;1;:::willrangeoverenvironments,whereeachis equationsystems. Inthefollowingweconsidersequencesoffunctionsf1;f2;:::overalattice(A;).Often,freevariableswillbesubstitutedbythesamevalues eachfunctionwecollectthevaluesofthevariablesinavaluation,called ofthissectioncontainsanextensivecollectionofpropertiesofxpoint- fby(x).by[x=a]wedenotetheenvironmentthatcoincideswith afunction:x!a. Afunctionfcanbeappliedtoanenvironment,andtheresultf() isthevalueofthefunctionfaftersubstitutingeachfreevariablexof forallvariablesexceptx,i.e.(y)=([x=a])(y)fory6x,and Theorderonalattice(A;)extendsnaturallytoanorderonenvironmentsoverA(seeDeniton2.6).Wehave12iforallvariables latticeoperations_and^canbeappliedalsotoenvironmentswhen ments(foraxedsetofvariablesx)formsalattice.obviously,the ([X=a])(X)=a.Intheremainder[X=a]haspriorityoverallother interpretingthempointwise. operations,and[x=a]alwaysstandsfor([x=a]). X2Xitisthecasethat1(X)2(X).Thusthesetofenviron- pointedmetoitforthespecialcaseofxpoint-equationsystemsovertheboolean Axpoint-equationsystemoverAisanitesequenceofequations oftheform(x=f),wheref:an!aforsomen2inisa Denition3.1Let(A;)beacompletelattice. lattice.itturnedouttobemorecompactthanearlierversions. monotonefunction. Theemptysequenceisdenotedby. 1TheversionofnotationusedherewasinspiredfromVergauwen[Ver95]who
29 rightsideofanequationofearecollectedinthesetrhs(e).variables whichappearonthelefthandsideofanequationofearecollectedin thesetlhs(e),i.e.lhs((x=f)e)def equationsystemehavethesamelefthandsidevariable.variables Fortechnicalreasonsweassumethatnotwoequationsofaxpoint- 3.1.Fixpoint-equationsystemsforcompletelattices. InthefollowingE;E0;E1;:::willrangeoverxpoint-equationsystems. =fxg[lhs(e).variablesonthe 29 ofrhs(e)whicharecontainedinlhs(e)arecalledbound.variables whicharenotboundarefree,free(e)def axpoint-equationsystemeisasetofconsecutiveequationsofeall havingthesamexpointoperatorinfront. Theorderdenedbelowreectsthelinearorderofequationsina xpoint-equationsystem.itwillbeappliedtobothequationsand variables. Denition3.2Let(X=f)Ebeaxpoint-equationsystemand =rhs(e)nlhs(e).ablockin respecttoe,iffree(e0)free(e). systeme,ifforeachpairofequationswith(xx=fx)c(yy=fy) Axpoint-equationsystemE0isasubsystemofaxpoint-equation AsubsystemE0ofaxpoint-equationsystemEiscalledclosedwith ine0bothequationsarecontainedineandorderedinthesameway. AsusualXEYabbreviates(XCYorX=Y). 0Y=ganequationofE.ThenX=fC0Y=gandalsoXCY. Denition3.3Let(A;)beacompletelattice,(X=f)Ea Thesolutionofaxpoint-equationsystemrelativetoisan environmentdenedbystructuralinduction: xpoint-equationsystemovera,and:x!aanenvironment. [(X=f)E]def [(X=f)E]def []def X:f([E])=Wfajaf([E][X=a])g X:f([E])=Vfajaf([E][X=a])g where=[e][x=x:f([e])] = =[E][X=X:f([E])]
30 holdsforallenvironments1;2. Note,thatifallvariablesofrhs(E)arebound,then[E]1=[E]2 30Denition3.4Givenaxpoint-equationsystemEwedenea lexicographicordereonenvironments. 12i1=2 Chapter3.Fixpoint-equationsystems. Thereexistsanalternativecharacterizationofthesolutionofaxpointequationsystem,whichinsomecontextswillbemoresuitable. 1E2i1(X)>2(X)or1(X)=2(X)and1E02. LetE(X=f)E0. Proposition3.5Thesolutionof[]is. Dually,ifE(X=f)E0,then 1E2i1(X)<2(X)or1(X)=2(X)and1E02. Thesolutionof[(X=f)E]isthelexicographicallyleast(w.r.t (2)1isthesolutionof[E][X=1(X)]. (X=f)E)environment1satisfying: Denition3.6ForE=(1X1=f1)(2X2=f2):::(nXn=fn) (1)f(1)=1(X)and lete(i)def X2)(X4=X1_X3)beaxpoint-equationsystemoverIB. Example:Let(X1=X2^X4)(X2=X3_X1)(X3=X4^ Thecharacterizationofthesolutionwillbeillustratedbyanexample overthebooleanlatticeib=ffalse;trueg,wherefalse<true. Corollary3.7If[E]=0then[E(i)]0=0for1in. =(ixi=fi):::(nxn=fn)for1in. Startingfromthexpoint-equationsystemconsistingonlyofthelast equationx4=x1_x3wewillselectstepwiseallenvironmentsful- equationsystemwithoneequationmore. llingpoint(2)ofproposition3.5,thenthosefulllingpoint(1),and inthenextsteptheremainingenvironmentsareconsideredforthe
31 3.1.Fixpoint-equationsystemsforcompletelattices. Forreadabilitywewriteanenvironmenthereasavector(b1;b2;b3;b4), FortheequationsystemconsistingofthelastequationE(4)(X4= meaninganenvironmentwhere(xi)=bi. X1_X3),itisthecasethat [E(4)](true;false;false;true)=(true;false;false;true) 31 [E(4)](true;true;true;true)=(true;true;true;true) [E(4)](true;true;false;true)=(true;true;false;true) [E(4)](true;false;true;true)=(true;false;true;true) [E(4)](false;true;true;true)=(false;true;true;true) [E(4)](false;false;true;true)=(false;false;true;true) followingdo: notallofthemfulllpoint(1),i.e.,theequationx3=x4^x2;the NowwegoonwithE(3)(X3=X4^X2)(X4=X1_X3) Eachoftheenvironmentsabovefulllpoint(2)ofproposition3.5,but [E(4)](false;false;false;false)=(false;false;false;false) [E(4)](false;truefalse;false)=(false;truefalse;false) (true;false;false;true) equationx2=x3_x1.theseare: Notethatforallthesefourenvironmentsitis [E(3)]=[(X3=X4^X2)(X4=X1_X3)]= Thenextstepistoselecttheseenvironmentswhichfulllalsothe (false;false;false;false) (true;true;true;true) (false;true;true;true) Buthereitisthenotthecasethateachofthesesatises [E(2)]=[(X2=X3_X1)(X3=X4^X2)(X4=X1_X3)]=. (false;false;false;false) (true;true;true;true) (false;true;true;true)
32 For(true;true;true;true)wehave 32=[(X2=X3_X1)(X3=X4^X2)(X4=X1_X3)] =[(X2=X3_true)(X3=X4^X2)(X4=true_X3)] [E(2)](true;true;true;true) Chapter3.Fixpoint-equationsystems. Bothfulllpoint(1)and(2)ofproposition3.5.Hencesolutionis onlythelexicographicllysmalleronewithrespecttoe(2),whichis incideinthefreevariableofe(2),whichisx1andequalstofalse. Ontheotherhand,(false;true;true;true)and(false;false;false;false)co- =(true;true;true;true) =[(X2=true)(X3=X4^X2)(X4=true](true;true;true;true) (true;true;true;true) (false;false;false;false)(becauseofthemu-xpointintheequationof systemisnotveryintuitive,andaninterestingquestionis,whether X2). Bothenvironments(true;true;true;true)and(false;false;false;false)fulll (true;true;true;true)(becauseofthe-xpointofx1)isthesolutionof theequationsystem. Unfortunately,thedenitionofthesolutionofaBooleanequation equationx1=x2^x4andthelexicographicallysmallerone,here selectoneenvironmentasthesolution. thereexistsamoreilluminatingcharacterization. Anaturalideaistodeterminethesetofallenvironmentsthatfulllall equations(xi)=fi(),andthen,accordingtothexpointoperators, C relatedtothemethodswhichdeterminethesolution.thiswillbe Unfortunatelythisapproachcannotwork.Counterexamplescanbe xpointexpressionstoxpoint-equationsystemsandshowthatthe nestedxpointexpressions.wenowdeneatransformationfrom treatedinchapter6. Fixpointequationsystemsareintroducedasanextendednotationfor foundinsection6.1andalsosomemorediscussionofthispoint. semanticispreserved. Thequestionforaclearercharacterizationofthesolutionisclosely
33 3.1.Fixpoint-equationsystemsforcompletelattices. Thetransformationisdividedintotwofunctions.One,E,mapsthe tree-likestructureofaxpointexpressiontoasequenceofexpressions. withanexampleandgivetheformaldenitionafterwards. Example: E(X:((Y:X_Y)^(Z:X^Z))) Theotherone,E0turnsexpressionsintoxpointequations.Westart 33 =(X=E0(Y:X_Y)^E0(Z:X^Z))E(Y:X_Y)E(Z:X^Z) =(X=E0((Y:X_Y)^(Z:X^Z))) =(X=Y^Z)(Y=E0(X_Y))(Z=E0(X^Z)) =(X=Y^Z)(Y=X_Y)(Z=X^Z) Denition3.8LetX:fbeaxpointexpressionoveralattice (A;),wherefisamonotonefunctiononAconsistingofconstants, variables,xpointexpressions,thelatticeoperations_and^and E((Y:X_Y)^(Z:X^Z)) eachvariableisboundonlyoncebyaxpointoperator.emaps X:ftoaxpoint-equationsystemandisdenedasfollows: Op(ki) additionallyasetofmonotoneki-aryoperationsona,denotedby iforsomei2in.assumethatinx:fnamesareunique,i.e. E(Op(ki) i(f1;:::;fki))=e(f1):::e(fki) E(f1_f2)=E(f1)E(f2) E(f1^f2)=E(f1)E(f2) E(X:f)=(X=E0(f))(E(f)) E(X)= E(a)= E0(Op(ki) i(f1;:::;fki))=op(ki) E0(f1_f2)=E0(f1)_E0(f2) E0(f1^f2)=E0(f1)^E0(f2) E0(X:f)=X E0(X)=X E0(a)=ai(E0(f1);:::;E0(fki))
34 34 Theproofofthispropositionrequiresthefollowinglemma: Proposition3.9LetX:fbeaxpointexpressionoveralattice Then(X:f)()=([E(X:f)])(X). (A;)andanarbitraryenvironment. Chapter3.Fixpoint-equationsystems. that lhs(e1)\lhs(e2)=;, lhs(e1)\rhs(e2)=;, Lemma3.10LetE1andE2bexpoint-equationsystems,such Booleanequationsystemsinthecontextof-calculusmodelchecking systemtoa(nested)xpointexpressionisnotalwayspossible.for Notethatastraightforwardtransformationbackfromaxpoint-equation wewillshowamethodinsection5.2.ingeneral,axpoint-equation lhs(e2)\rhs(e1)=;. sions.forexample(x=y)(u=v)isaxpoint-equationsystem, systemcanbetransformedbacktoasetof(nested)xpointexpres- Then[E1][E2]=[E1E2] andx:yandu:vare(theonlysensible)xpointexpressionscorrespondingtoit. Anotherexampleis(X=Z)(Y=X)(Z=Y).Itmightcorrespond totheexpressionx:z:y:x,butthetransformationofthisexpressiontoaxpoint-equationsystemgives(x=z)(z=y)(y=x). monotoneoperatoronenvironments. solutions.therstonestatesthataxpoint-equationsystemisa tionsystemswhichdescribeequivalenceandorderrelationsontheir Inthefollowingwepresentacollectionofpropertiesofxpointequa- ItiseasytoseethatinthelemmaaboveonlyforvariablesXthatare freeineweneedthecondition1(x)2(x).hencetheorderof theenvironmentsdenedpointwiseonallvariablescanberestricted tothevariableswhicharefreeine. Lemma3.11If12then[E]1[E]2.
35 tionsorderedbyrespectively,forallenvironments.itextendsthe 3.1.Fixpoint-equationsystemsforcompletelattices. equationsystems,relatingthosethathavethesamesolution,orsolu- Wedeneanequivalencerelationandanorder-onxpoint- Corollary3.12[E]1_[E]2[E](1_2),and [E]1^[E]2[E](1^2). 35 equivalencerelationdenedin[ver95]forbooleanequationsystems. thisresultwasstatedin[ver95]. Equivalenceandorderingofxpoint-equationsystemsispreservedfor prexingofequations.forequivalenceonbooleanequationsystems Denition3.13 Lemma3.14IfE1E2thenEE1EE2. DeneE1E2i[E1]=[E2]forallenvironments. DeneE1-E2i[E1][E2]forallenvironments. Denition3.15Letforsomen2IN E1(1X1=f1):::(nXn=fn), E2(1X1=g1):::(nXn=gn). ThenE1E2ifigi. IfE1-E2thenEE1-EE2. E1_E2def E1^E2def Lemma3.16IfE1E2thenalsoE1-E2 Corollary3.17[E1]_[E2][E1_E2],and =(1X1=f1_g1):::(nXn=fn_gn), =(1X1=f1^g1):::(nXn=fn^gn), [E1]^[E2][E1^E2].
36 X3)(X2=X3)(X3=X2) systemse1(x1=x2)(x2=x2)(x3=x1)ande2(x1= greaterone: Example:Againthelatticeis(IB;).Considertwoxpoint-equation casethatbothsystemshavethesamesolutiontheirdisjunctionhasa Thiscorollarywillbeillustratedbyanexample,whereeveninthe 36 Chapter3.Fixpoint-equationsystems. Thereareothersimple,desirablepropertieswhichsurprisinglydonot X1_X2)is(true;true;true). hold.wedemonstratehereoneofthem. IfE1-E2thenE_E1-E_E2andE^E1-E^E2 solutionoftheirdisjunction(x1=x2_x3)(x2=x2_x3)(x3= Bothhavethesamesolution(false;false;false)forany.However,the Counterexample:LetE;E1;E2bexpoint-equationsystemsoverthe Booleanlattice(IB;). C E1(X1=X1)(X2=X2)(X3=X3) E^E1. (false;false;true),e2^ehas(false;false;false)assolution.heree^e2- E1hasthesolution(false;true;true)andE2hasthesolution(true;true;true). ThesolutionofEis(false;false;true).E1^Ehasalsothesolution HenceE1-E2. E2(X1=X2)(X2=X3)(X3=X2) E(X1=X2)(X2=X1)(X3=X3) ThefollowinglemmaextendsapropertyforBooleanequationsystems in[ver95]toxpoint-equationsystems. Lemma3.18If([(X=f)E])(X)=([(X=g)E])(X) then[(x=f)e]=[(x=g)e]: C ingandreductionmethodsforxpoint-equationsystems. theequationsystempreservingthesolution.thisallowsstepwisesolv- knowingpartsofthesolutionthenthesepartsmaybe\removed"from Thenextbothlemmatadealwithaquitenaturalproperty:when
37 3.1.Fixpoint-equationsystemsforcompletelattices. Lemma3.19Let EE1(X=f)E2, ([E])(X)=a,and E0E1(X=a)E2. 37 pointoperator,fromto,ortheotherwayround.frombekic's equationsystemwheninterchangingequationsorswitchingthex- Thefollowinglemmatadescribepropertiesofthesolutionofaxpoint- Lemma3.20[E1(X=a)E2]=[E1E2][X=a]. Then[E]=[E0]. whichreferstolexicographicordering(proposition3.5). slightlysurprisinghavinginmindthecharacterizationofasolution pliesdierentsolutionswhichareorderedpointwise.thispropertyis Theorem2.24itfollowsthatinterchangingsubsequentequationswith thesamexpointoperatordoesnotinuencethesolution.thesame holdsforequationswithdierentxpointoperatorsifthevariablesof bothequationsaredierent.otherwiseinterchangingequationsim- Lemma3.21Let 1def 2def Then1=2. Lemma3.22If X1isnotfreeinf2, =[E1(X1=f1)(X2=f2)E2], X2isnotfreeinf1, =[E1(X2=f2)(X1=f1)E2]. 1def 2def Then1=2. =[E1(1X1=f1)(2X2=f2)E2] =[E1(2X2=f2)(1X1=f1)E2]
38 38Lemma3.23Let 1def 2def Thenitis12,andmoreover,iftheinequalityisstrictthen 1(X1)<2(X1)and1(X2)<2(X2). =[E1(X1=f1)(X2=f2)E2], =[E1(X2=f2)(X1=f1)E2]. Chapter3.Fixpoint-equationsystems. Lemma3.24Let 1def 2def =[E1(X=f)E2], _or^.everyxpoint-equationsystemcanbetransformedintosuch tems,whereeachrighthandsidecontainsatmostoneoftheoperators Oftenweneedsomestandardrepresentationofxpoint-equationsys- Thenitis12,andmoreover,iftheinequalityisstrictthen 1(X)<2(X). =[E1(X=f)E2]. aformbyintroductionofadditional\fresh"variables. ([(X=f1_f2)E])(Y)=([(X=f1_X0)(0X0=f2)E])(Y), ([(X=f1^f2)E])(Y)=([(X=f1^X0)(0X0=f2)E])(Y), wherex0isanewvariable,i.e.(*)x0doesnotoccurontheright handsideofeorinf1orf2,and(**)y6=x0. Lemma3.25 withinablockduplicateequationsmayberemoved. Forreductionofxpoint-equationsystemsthenextpropertyisuseful: Lemma3.26Let 1def 02def 2def Then1=2. =[E1(X1=f)(X2=f)E2] =[E1[X1=X2](X2=f[X1=X2])E2[X1=X2]] =02[X1=02(X2)]
39 3.2.Booleanequationsystems. nedinsection3applyalsotobooleanequationsystems.however, 3.2Booleanequationsystems. WenowintroduceBooleanequationsystemsasaspecialcaseofxpointequationsystems,wheretheunderlyinglatticeistheBooleanlattice 39 ftrue;falsegwithfalse<true.ofcourse,syntaxandsemanticsasdeexpressions.analogouslytodenition3.1wedene: ordertodistinguishthebooleancasealsosyntacticallywechoose[[]] LetXbeasetofBooleanvariables,andf;g;:::rangeoverBoolean andwewillreintroducesyntaxandsemanticsforthisspecialcase.in interpretedoverthebooleanlatticedealingwithxpointsgetssimpler, insteadof[]assemanticbrackets. ABooleanequationisoftheformX=f,where2f;g,Xisa acountablesetofvariablesxisdenotedbyib+(x). Denition3.27ThesetofnegationfreeBooleanexpressionsover DealingwithxpointsgetsmuchsimplerovertheBooleanlattice. Thefollowingtwolemmatashowthattheleastandgreatestxpoints equationandeisabooleanequationsystem,then(x=f)eisalso ABooleanequationsystemisasequenceofBooleanequations.The emptysequenceisabooleanequationsystem;ifx=fisaboolean abooleanequationsystem. BooleanvariableX2X,andf2IB+(X). pointwise.(seealsodenition2.21andremark2.23.) ofbooleanfunctionscanberepresentedasfunctionsthemselves.in contrasttostandarddenitionsitisnotnecessarytoevaluatethem Lemma3.29Supposef(X1;:::;Xn)isamonotoneBooleanfunctionfromIBntoIB.Thenitsleastandgreatestxpointswith respecttox1arex1:f(x1;:::;xn)=f(false;x2;:::;xn)and X1:f(X1;:::;Xn)=f(true;X2;:::;Xn)andbotharemonotone singlevariablex.thenx:f(x)=f(false)andx:f(x)=f(true). Lemma3.28Supposef(X)isamonotoneBooleanfunctioninthe functionfromibn 1toIB.
40 40Proposition3.30LetEbeaBooleanequationsystem,X=fa Booleanequation,anenvironment,b=falseandb=true.Then forthesolutionofabooleanequationsystemitisthecasethat: [[(X=f)E]]=[[E]][X=f([[E]][X=b])]: [[]]= Chapter3.Fixpoint-equationsystems. Example:ConsidertheequationsystemX1=X1andarbitrary. itsvariablesandthesizeofallitsright-handsideexpressions, HencethesolutionofthisBooleanequationsystemisX1=true.C ThesizeofaBooleanequationsystemEisdenedasthenumberof [[X1=X1]]=[[]][X1=(X1)([[]][X1=true])] jjdef =[X1=(X1)([X1=true])] =[X1=true] ThesizeofanegationfreeBooleanexpressionjfjisthenumberof variablesandconstantscontainedinf. expressionconsistsofconjunctions,ordisjunctions,orasinglevariable ABooleanequationsystemEisinsimpleform,ifeachright-handside j(x=f)ejdef =0 oraconstant. =1+jfj+jEj: expressionsto2.thisgivesrisetothefollowingdenitionofastandard Insomecontextsitisusefultorestrictthesizeoftheright-handsize formforbooleanequationsystems. ABooleanequationsystemEisinstandardform,if lhs(e)=fx1;:::;xngforsomen2in ifxicxjtheni<j eachright-handsideexpressionconsistsofadisjunctionxi_xj,a conjunctionxi^xj,asinglevariablexioraconstanttrueorfalse.
41 3.2.Booleanequationsystems. ABooleanequationsystemcanbedevidedintoblocks.Ablockis abooleanequationsysteme0instandardformandarenaming function,suchthat([[e]])(x)=([[e0]])((x)),ande0hassize Proposition3.31ForeachBooleanequationsystemEthereexists linearinthesizeofe. 41 depthandalternationdepthforbooleanequationsystems.. operatorinfront.hencewecandistinguish-blocksand-blocks. Booleanequationsystem.Wenowdeneactivevariables,nesting systemextendsnaturallytoanordereandcontheblocksofa ThelinearorderingsEandContheequationsofaBooleanequation denedasasetofconsecutiveequationsofehavingthesamexpoint Denition3.32Let EbeaBooleanequationsystem, XX=fX,YY=fYbeequationsofE, XX=fXCYY=fY thereisafreeoccurrenceofxinyy=fy,or ThenXisactiveinYY=fYi somevariablezisfreeinyy=fy,xczcyandxisactive Whendeningthenestingdepthandalternationdepthofxpoint AvariableXisactiveinablockEj,ifitisactiveinanyequationof Ej. AblockEiisactiveinablockEj,ifsomevariableXinanequation XX=fXofEiisactiveinEj. inzz=fz. mulaorderisapartialorder.inthecaseofbooleanequationsystems wehavejustalinearorderontheequations.however,thepartialorder isreectedbythepossibleapplicationsoflemma3.22tointerchange operatorsforexpressionswehavetotakeintoaccountthatthesubfor- equations.
42 42EistheminimalnumberofblocksofallBooleanequationsystems Denition3.33ThenestingdepthofaBooleanequationsystem accordingtolemma3.22. Denition3.34Let thatcanbederivedfromeby(repeated)interchangingofequations Chapter3.Fixpoint-equationsystems. EbeaBooleanequationsystem, 1X1=f1C:::CnXn=fnachainofBooleanequationsof Section3containsanumberofpropertiesofxpointequationsystems, maximallength,suchthatforevery1i<n whichare,ofcourse,alsovalidforthespecialcaseofbooleanequation systems.inadditiontothesethereexistmorepropertiesforboolean ThenEhasalternationdepthn,i.e.ad(E)=n. (2)Xnisfreeinfn,and (3)i6=i+1, (1)Xiisactiveini+1Xi+1=fi+1, ductivelyasfollows: ThecomplementationEofaBooleanequationsystemisdenedin- equationsystems,whichwillbeneededinlaterchapters. where= (X=f)E=(X=f)E; false=true true=false X=XforX2X = = Thecomplementofanenvironmentisdenedas(X)=(X). ThecomplementationlemmaforBooleanequationsystemsis: Lemma3.35([[E]])(X)=falsei([[E]])(X)=true. f1^f2=f1_f2 f1_f2=f1^f2
43 3.2.Booleanequationsystems. ThenextisaverystrongpropertyaboutareductionofBooleanequationsystemspreservingtheirsolution.HavingaBooleanequatiotionsofE0.IneveryequationofEwithadisjunctionontheright-hand orconstantsontheirright-handsideareunchangedandbecomeequationsysteme0inthefollowingway:allequationshavingconjunctions 43 systemeinstandardformwecanconstructanewbooleanequa- asystemisinconjunctiveform.theorderofvariablesineande0 sideonedisjunctisselectedasthenewright-handsidefortheequation ine0.notethate0containsnoproperdisjunctionsandwesay,such isthesame.fromdenition3.15andlemma3.16weknowalready thereexistsachoiceofdisjuncts,suchthateande0havethesame solution.thedualpropertyholdswhenchoosingconjunctsinsteadof disjuncts. thatforeveryenvironmentthesolutionofe0islowerorequaltothe solutionofe.thefollowingpropositionsaysevenmore:forevery Proposition3.36GivenaBooleanequationsystemEandan environmentthereexistbooleanequationsystemse0ande00with theproperties: E0isinconjunctiveform, E0E,and [[E0]]=[[E]]. mentthereexistsabooleanequationsysteme0withthefollowing ForE00thedualpropertieshold: E00isindisjunctiveform, E00E,and [[E00]]=[[E]]. Corollary3.37ForBooleanequationsystemEandanenviron- properties: [[E]]=[[E0]],and E0isderivedfromEbyselectingineveryequationonevariable oftherighthandexpression.
44 conjunctivecase. Proof:Applyproposition3.36forthedisjunctiveandthenforthe 44 Chapter3.Fixpoint-equationsystems.
45 Chapter4 places,suchas[sti93]and[eme91].herewewillbrieyreviewthe logicanditspropertiesandwegiveassociateddenitionsrelevantto Thischaptergivesanintroductiontothemodal-calculusaccording beenwidelystudiedanddetailedintroductionscanbefoundinseveral tokozen'spropositional-calculus[koz83].themodal-calculushas Themodal-calculus. ourwork. ofthemodal-calculusisanexpressionoftheform: labelsandadenumerablesetzofpropositionalvariables.aformula ofatomicpropositionsincludingtrueandfalse,anitesetlofaction Thesyntaxofthemodal-calculusisdenedwithrespecttoasetQ 4.1Syntaxandsemantics. standardconventionsforthederivedoperatorsandabbreviationsare: occurrenceofzinfallsunderanevennumberofnegations.the wherez2z,q2qanda2l,andwhereinz:everyfree ::=ZjQj:j^j[a]jZ:; 1_2def hkidef [K]def haidef =Wa2Khai =:[a]: =Va2K[a] =:(:1^:2)
46 wherekl,and[z=:z]meansthesyntacticalsubstitutionof 46 everyoccurrenceofzinby:z. [ K]def Z:def [ ]def =[LnK] =[L] =:Z::[Z=:Z]; Chapter4.Themodal-calculus. mulacanbetransformedsyntacticallyintopositivenormalformby usingthederivedoperators,applyingthedemorganrulesandrenamingvariables.therefore,wecanrestrictthesetofformulaetothe positivefragmentassumingthatforeveryatomicpropositionq2q thenegationofqisalsoanatomicproposition,i.e.anelementofq. Inthissense,anequivalentdenitionofthesyntaxis: ::=ZjQj^j_j[a]jhaijZ:jZ: subsetofxpointfreeformulaeby0. Aformulaisinpositivenormalform,ifnegationsapplyonlyto Wedenotethesetofallmodal-calculusformulaebyL,andthe atomicpropositionsandnovariableisquantiedtwice.everyfor- by!def andassumethattheyareinnormalform. Formulaeofthemodal-calculuswiththesetLofactionlabelsare a2labinaryrelationonstates.theunionofallrelationsisdenoted Inthefollowingwewillreferonlytoformulaeofthepositivefragment interpretedrelativetoalabelledtransitionsystemt=(s;fa!ja2 Lg),whereSisapossiblyinnitesetofstatesanda!SSforevery formulaisthesetofstatesjjjjtv.astatessatisesaformula, modelmofthemodal-calculus.thesemanticsofeach-calculus holdforeverystateinv(q)andv(z).thepairtandviscalleda writtenassj=m,is2jjjjtv,whichisdenedinductivelyasfollows: propositionqinqandpropositionalvariablezinzasetofstates V(Q)SandV(Z)SmeaningthatpropositionQandvariableZ =Sa2La!.AvaluationfunctionVassignstoeveryatomic jjqjjtv=v(q) jjzjjtv=v(z)
47 4.1.Syntaxandsemantics. jj1^2jjtv=jj1jjtv\jj2jjtv jj1_2jjtv=jj1jjtv[jj2jjtv jjz:jjtv=\fs0sjjjjjtv[z=s0]s0g jjhaijjtv=hhaiitjjjjtv jj[a]jjtv=[[a]]tjjjjtv 47 where[[a]]ts0def jjz:jjtv=[fs0sjs0jjjjtv[z=s0]g numberoftransitions,jtjdef Examplesfor-calculusformulaewillbegivenbelow.Firstwewant tointroducesometechnicalterms. Thesizeofatransitionsystemincludesthenumberofstatesandthe hhaiits0def =fsj9s02s0:sa!s0g =fsj8s02s:ifsa!s0thens02s0g Thebranchingdegreej-Rjisthemaximalnumberofsuccessorsthat anystateofthetransitionsystemhas,j-rjdef AnupperboundforthebranchingdegreeisthenumberofstatesjSj. Thesizeofaformulajjisdenedasfollows: =jsj+j!j. j1_2j=j1j+j2j j1^2j=j1j+j2j jzj=jqj=1 =maxs2sjfs0js!s0gj. jz:j=1+jj jz:j=1+jj jhaij=1+jj j[a]j=1+jj Denition4.1Asusual,subformulaeofaformulaaredened inductivelyonthestructureof.if writee,andc ifitisapropersubformula. isasubformulaofwewill
48 48 WenowwanttointroducethenotionsofnestingdepthandalternationdepthofxpointoperatorsforformulaeofL.Thelatter subformulaof.anoccurrenceofavariablewhichisnotboundis Zisbound.AnoccurrenceofXinisbound,ifitisboundinany Denition4.2InaformulaZ: calledfree. eachoccurrenceofthevariable Chapter4.Themodal-calculus. Kaivola[Kai96].Thereamoredetaileddiscussionoftheseconcepts AlternationdepthwasdenedbyEmersonandLei[EL86]andisa withaminorextension.itsdenitionbasedonactivevariablesfollows willbedenedviaactivevariablesasintroducedbykozen[koz83]. relevantsizeformanymodelcheckingalgorithms.niwinski[niw86] gaveamoresensibledenitionforalternationdepthwhichwewilluse alternationdepthis2,whereaswewantittobe1. theemerson-leialternationdepthofx:y:z:xis3,itsniwinski canbefound.asmallexamplefordemonstratingthedierencesis: beaformula, E1X1: Denition4.3Let Thenhasnestingdepthn,i.e.nd()=n. beamodal-calculusformula, Denition4.4Let mallength. 1C:::CnXn: nachainofsubformulaeofmaxi- Zavariable. ThenZisactivein thereisafreeoccurrenceofzin somevariablez0isfreein inz0: beasubformulaof,i.e.e 0. i,ez0:,or,and0e,andzisactive
49 4.2.Basicformulae. beaformula, E1X1: Denition4.5Let mallength,suchthatforevery1i<n (1)Xiisactiveini+1Xi+1: 1C:::CnXn: nachainofsubformulaeofmaxi- i+1, 49 LeavingitoutwouldgiveNiwinskialternationdepth. Notethatourextensionconsistsofpoint(2)inthepreviousdenition. Thenhasalternationdepthn,i.e.ad()=n. (3)i6=i+1. (2)Xnisfreein n,and Therstaspecttomakeclearisthedierencebetweenthemodalities builtup,andwewanttoexplainthemhere. [a]andhai.theformula[a]istrueatastateforwhichnecessarily ever,thereareonlyafewbasicstructures,fromwhichformulaeare Itneedssomepracticetoreadandcreate-calculusformulae.How- 4.2Basicformulae. possiblythea-successorsfulll. thea-successorsfulll,theformulahaiistrueatastateforwhich Forthersttransitionsystem,wehaves0j=haiQands0j=[a]Q.For s0 ccc as3 bs2j=q s1j=qt0 ccc at3 bt2j=:q t1j=q Q,butt06j=[a]Q,ast0alsohasana-successorfullling:Q.Inthe thesecondoneitist0j=haiq,becauset0hasana-successorfullling u0b thirdtransitionsystemwegetu06j=haiq,duetotheabsenceofanasuccessor,butu0j=[a]q,becausethereisnoa-successornotfullling u3 Q.
50 eral,leastxpointsdescribenitebehaviour,greatestxpointsaddi- tionalyalsoinnitebehaviour.inthetransitionsystemsbelowwe Crucialisthedierencebetweenleastandgreatestxpoints.Ingen- 50 assume:qateachstate,wheretheoppositeisnotstatedexplicitly. Chapter4.Themodal-calculus. v1av2j=q pathonwhicheventuallyqwillhold".itholdsbothstatesv1and TheformulaZ:haiZ_Qstandsfortheproperty\thereexistsana- w1a aw2aw3j=q a w1.theuniversalcounterpart\onallpathseventuallyqwillhold", w1isnotcontained,andhenceisnotanelementoftheleastxpoint, jj[a]x_qjjtv[z=fw3g]=[[a]]tfw3g[fw3g=;[fw3gfw3g Itfollowsthatintheintersectionofallsetssatisfyingtheinequality thesubsetfw3gsatisestheinequality: expressedbyz:[a]z_q,holdsforv1,butnotforw1,becauseon whichcoincideswiththeinformalargumentationabove. Consideringthesemanticdenitionofaleastxpoint,wehavethat theinnitepathw1w2w1w2:::theatomicpropositionqneverholds. Withagreatestxpoint,theproposition\onalla-pathsalwaysQ Combiningleastandgreatestxpointsallowsustoexpressmorecomplicatedproperties.TheformulaZ:X:(([a]Z^Q)_[a]X)corresponds holds"canbeformulatedasz:[a]z^q.inthetransitionsystems aboveitonlyholdsatw3. totheproposition\onallinnitea-pathsinnitelyoftenqholds".to makethestructureplausible,considerthetwofragmentsoftheformulax:(([a]z^q)_[a]x)saying\eventually([a]z^q)willhold" andz:([a]z^q)saying\alwaysqwillhold".combiningthemin oneformulagives\always,eitherqholds,or,ifitdoesnot,theneventuallyqwillhold"whichisequivalenttotherstexplanationabove. Aslastexampleconsidertheproperty\eventuallyQwillalwayshold", existentialversionz:x:((haiz^q)_haix)holdsalsoforw1. Inthetransitionsystemsabove,thisformulasatisesv1andw3.The
51 expressedbytheformulax:z:(([a]z^q)_[a]x).here,theleast xpointistheoutermostandthedierencetothepreviousformula 4.3.Propertiesofthemodal-calculus. liesintheorderof\alwayseventually"and\eventuallyalways". Inchapter7weusesomemoresophisticatedformulae,buttheyare explainablewiththebasicexamplesdiscussedinthissection. 51 theonlywayoflookingatthenextstatewithinapath.itstandsin allsuccessorsorsomesuccessormaybeconsidered.infact,thisis Themodal-calculusisabranchingtimelogic,inthatateachstate ofrunsandineachrunthereisoneuniquesuccessorforeachstate.a contrasttolineartime(temporal)logic.there,themodelsaresets 4.3Propertiesofthemodal-calculus. branchingtimepropertywhichcannotbeexpressedinlineartimeis: itisalwayspossibletocontinueinsuchawaythateventuallyqholds. Expressiveness Themodal-calculussubsumesmanyothertemporallogics,suchas PropositionalDynamicLogic(PDL)[FR79],PDL-[Str82],ComputationTreeLogic(CTL)[CE81],itsextendedversionsCTL*[EH86], However,translationsfromtheselogics(apartfromHennessy-Milner andectl*[vw83],hennessy-milnerlogic[hm85],andlineartime exponential,forectl*thetranslationissingle-exponential[dam92], logic)intomodal-calculusarenon-trivial,e.g.forctl*isitdouble- asitisalsoforlineartime-calculus. lowc2denotesaformulathatisclosedandgeneratedbythegrammar. wasshowntobeexactlyasexpressiveasectl*.inthedenitionbe- L2includesL1andallowsconjunctionsand[a]-operatorsinarestricted eralcase,constants,variablesandthexpointoperators.thefragment form:theymaybeappliedonlytoclosedsubformulae.in[ejs93]l2 ThefragmentL1ofthemodal-calculusconsistsofformulaewhich containonlydisjunctions,diaanextstepoperators,and,asinthegen-
52 Foralongtimeitwasnotknown,whetheralternationdepthofmore than3increasestheexpressivenessofthemodal-calculus.bradeld ThesetofformulaeofL2isdenedas: [Bra96]showedthestrictnessofthealternationhierarchybytransformingittothemu-arithmetichierarchy.Independently,Lenzi[Len96] relations:inmodallogicwithoutxpointsrstorderpropertiescanbe 522::=QjZj2_2j2^c2jhai2j[a]c2jZ:2jZ:2 Chapter4.Themodal-calculus. provedthesameresult. Comparingmodallogicswithpropositionallogicgivesthefollowing ittobeequi-expressivetosns. monadicsecondordertheoryofnsuccessors.in[hut90]huttelshowed rstandsecondorderlogic. KozenandParikh[KP83]reducedthemodal-calculustoSnS,the expressivepowerbeyondrstorder:themodal-calculusliesbetween expressed,butmodallogicliesstrictlybetweenpropositionallogicand Axiomatization rstorderlogic.addingxpointoperatorstomodallogicshiftsthe pendentlyalsohartonas[har95],bymeansofmodaldualitytheory. andbonsangue([akm95],[bk95])provedthesameresult,andindezationforthefullmodal-calculus.ambler,kwiatkowska,measor Walukiewicz[Wal95b]showedthecompletenessofKozen'saxiomatizationforthefullmodal-calculuswasanopenquestion. -calculus(theaconjunctivefragment).foralongtimetheaxiomati- Kozen[Koz83]gaveanaxiomatizationforafragmentofthemodal doesthereexistamodelforit? Fromthereductionofthemodal-calculustoSnS[KP83]thedecidabilityfollowsgivinganon-elementarydecisionprocedure. Thequestionofdecidabilityis:givenaformulaofthemodal-calculus, Decidability model.healsogivesanonelementarydecisionprocedure. calculus,sayingthateveryformulahavingamodelhasalsoanite In[Koz88]Kozenprovedanitemodeltheoremforthemodal-
53 In[EJ88]EmersonandJutlashowedthatdecidabilityofthemodalcalculushasdeterministicexponentialtimecomplexity.Byareduction fromalternatingpolynomialspaceturingautomataitfollowsthatthe 53 problemisexptimecomplete[eme96]. ModelChecking Themodelcheckingproblemis:Givenamodelandaformulaofthe 4.3.Propertiesofthemodal-calculus. case. ThesizeofthemodelcheckingproblemisdenedasjjjTj,where dealwithnitestatespacemodelchecking,chapter9withtheinnite modelswithbothniteandinnitestatespaces.chapters5to8will modal-calculusdoesinitialstateofthetransitionsystemsatisfythe isaformulaandtatransitionsystem. formula? Zhang,SokolskyandSmolka[ZSS94]showedthatnitestatespace Manyauthorsrestrictthemodelstoniteones.Wewanttoconsider triviallybeexpressedasasetofbooleanequations(withanyxpoint Kalorkoti[Kal96]pointedoutthatamonotoneBooleancircuitcan operators),andp-hardnessfollowsfromtheequivalenceofthemodel checkingisp-complete. modelcheckingisp-hard,evenforthealternationfreefragment.it followsfromemersonandlei's[el86]polynomialalgorithmforfragmentswithrestrictedalternationdepththatforthesefragmentsmodel provedinchapter5. checkingproblemandsolvingbooleanequationsystems,whichwillbe ThebestknownupperboundformodelcheckingintheunrestrictedcalculusisNP\co-NP,provedbyEmerson,JutlaandSistla[EJS93]. Thesetof-calculusformulaeLfactorizedbytheequivalencerelation,formsalattice,whereformulaeareorderedbyimplication, Ingure4.1below,weillustratethemodelcheckingproblem. Section6.5containsaproofofthisresultinourframework. formula.thepowersetp(s)isacompletelattice. monotoneandmapseachformulatothesetofstatesthatsatisfythe [[]]:L!P(S) knownasthelindenbaumalgebraofl.thesemanticfunction
54 54 SSSSSSSS (0/,,)) true S Chapter4.Themodal-calculus. SSSSSSSS false kktv (P(S),) S oneexamplefornon-continuityis[a],wherejj[a]jjtv=[[a]]tjjjjtvand wouldalsobeacompletelattice.however,thisisnotthecase,and IfjjjjTVwerecontinuous,wecouldimmediatelyderivethat(L=,) Figure4.1.Latticesofthemodal-calculusanditssemantics ; whethertheinitialstateisanelementofthisset.thisapproachis calledglobalmodelchecking.thestrategyoflocalmodelchecking setofstatesforwhichtheformulagivenholds,andthentocheck degree(see[sti93]p.499). Onestrategytosolvethemodelcheckingproblemistodeterminethe [[a]]tisonlycontinuousfortransitionsystemswithnitebranching triestoanswerthequestiondirectlyfortheinitialstate.
55 Chapter5 checking. systemsformodel Booleanequation equationsystemsforthecaseofsimplexpoints.onereasonis,that Themaininterestofthischapteristoshowtheequivalenceofthe andlevi[vl94]andothers.however,theymainlyderiveboolean theapproximationschemeusingbacktracking,themostwellknown ofsolvingbooleanequationsystems.severalauthorshavereduced modelcheckingproblemforthemodal-calculusandtheproblem algorithmgivingasolutionto(nested)xpointexpressions,requires andcrubille[ac88],andersen[and92],larsen[lar92],vergauwen subsequentlysolvingsimplexpointexpressions.therefore,thereis themodelcheckingproblemintobooleanequationsystems:arnold noneedfordeningxpoint-equationsystemswithnestedandalternatingxpointoperators.incontrasttothiswewanttoinvestigatethrithm.existingmodelcheckingalgorithmscannowbeinterpretedas generalcaseofbooleanequationsystemsindependentlyfromanyalgo- algorithmsforsolvingbooleanequationsystemsandviceversa.furthermore,wehaveanumberofusefulpropertiesofxpoint-equation
56 problemwillbeshown,astheycanbefoundinautomatatheoryand gametheory(chapter8). Section5containsthereductionofthemodelcheckingproblem.Itconsistsofasyntacticalmappingfroma-calculusformulaandamodeover,theequivalencetootherframeworkssolvingthemodelchecking andhelptogiveaclearerunderstandingofthebasicproblem.more- systemscollectedinchapter3.theyallowustoderivenewalgorithms 56 Chapter5.Booleanequationsystemsformodelchecking. inthesizeoftheformulaaswellasinthesizeofthetransitionsystem.apolynomialreductionfrombooleanequationsystemstomodel systemderivedhasthesolutiontrueforacorrespondingvariable.in section5.2itwillbeshownthatthereexistsareductionwhichislinear attheinitialstateofthetransitionsystem,ithebooleanequation toabooleanequationsystem,andtheproofthattheformulaholds 5.1Reductionofthemodelchecking checkingproblemsispresentedinsection5.2. modal-calculusformulaandamodelmtoabooleanequation ThetransformationfunctionEmapsapair(;M)consistingofa system. EreferstoasetoffunctionsfE1;:::Eng,whereeachEi,for1in, RoughlythefunctionEisresponsibleforthelinearizationofanested isrelatedtostatesiofthetransitionsystem. problem. xpointformula,whereasthefunctioneimapsamodal-calculus argumentmofewhenitisclearfromthecontext.note,thatthe formulatoabooleanexpressionatstatesi.wewillomitthesecond equivalentformulax:byadditionofaneectlessxpointoperator, transformationisdenedforformulaehavingaxpointasoutermost operator.aformulanotinthisformcaneasilytransformedtoan wherexisnotfreein(seeproposition2.17(5)).
57 5.1.Reductionofthemodelcheckingproblem. E(1^2)=E(1)E(2) E(X)= E(Q)= 57 E(1_2)=E(1)E(2) E(X:)=(X1=E1()):::(Xn=En())E() E(hai)=E() E([a])=E() Ei(1_2)=Ei(1)_Ei(2) Ei(1^2)=Ei(1)^Ei(2) andfor1in Ei(X)=Xi Ei(Q)=(trueifsi2V(Q) Ei(hai)=_ Ei([a])=^ falseotherwise ForavaluationVtheenvironmentVisdenedas:V(Xi)=truei Thefollowingreductiontheoremshowsthatthetransformationpreservesthesemantics,i.e.apropertysatisesastateinamodelithe Ei(X:)=Xi sia!sjej() si2v(x). correspondingvariableinthebooleanequationsystemderivedhasthe solutiontrue. ThenforallenvironmentsVitisthecasethat sij=mx:i([[e((x=);m)]]v)(xi)=true. M=(T;V)amodelandsiastateofT. Theorem5.1LetX:beaformulaofthemodal-calculus,
58 proveis\onsomeinnitea-pathqholdsin- Aproofcanbefoundintheappendix.Amotivationforitwillbeafter 58 thefollowingexample. Example:Considerthetransitionsystemdepicted,andletQholdfors2,butnotfors1, i.e.v(q)=fs2g.thepropositionwewantto Chapter5.Booleanequationsystemsformodelchecking. E(X:Y:hai((Q^X)_Y)) nitelyoften",x:y:hai((q^x)_y).the reductiontoabooleanequationsystemis: =(X1=E1(Y))(X2=E2(Y))E(Y:hai((Q^X)_Y) =(X1=Y1)(X2=Y2)(Y1=E1(hai((Q^X)_Y))) s1as2 =::: (Y2=E2(hai((Q^X)_Y)))E(hai((Q^X)_Y)) (Y1=E2((Q^X)_Y)))(Y2=E1((Q^X)_Y))) =(X1=Y1)(X2=Y2)(Y1=X2_Y2)(Y2=Y1) (Y1=(true^X2)_Y2)))(Y2=(false^X1)_Y1))) E((Q^X)_Y) Theproofoftheorem5.1willtakeseveralintermediatesteps.Roughly a-calculusformulahastobemappedtoa-calculusequationsystem. Thenthelatterismappedtoaequationsystemonthepowersetof thestatespace,wheremodaloperatorsaremappedtosetoperators etc.thelaststepreectstheisomorphismbetweensetsandboolean vectors.forthebasecaseofexpressionsthesituationcanbeillustrated C orderingformalattice(0=,;)),thelindenbaumalgebraof0. themodal-calculus,i.e.,theexpressionsofthepropositionalmodal logic.theequivalenceclassesof0togetherwiththeimplication asfollows:recallthat0isthesetofxpoint-freeexpressionsof
59 5.2.Representationandcomplexity. SSSSSS (M/,,)) true S kktv! SSSSSS (P(S),) I= SSSSSS (true,:::,true) 59 Figure5.1.Latticesformodal-calculus,statespaceandBooleanvectorspace false ; (false,:::,false) (IBjSj,) ThepowersetofthestatespaceS=fs1;:::;sngwiththeinclusion orderformsacompletelattice(p(s);).theevaluationfunction isomorphicto(p(s);).thelaststepleadsfromavectorexpression falsetruethebooleanlattice(ibjsj;jsj)withpointwiseorderingis theevaluationfunctionfrom0toexpressionsover0mapsmodal wegetanexpressionoverthepowersetofthestatespace.dening variablesandthelogicaloperators^;_tothesetoperators\;[.thus kktv:0!p(s)ismonotone(andcontinuous).theextensionof inibntoabooleanequationsystem;avectorexpressionissplitinto nexpressionsandtheoperators[[a]]t;hhaiitareevaluated. operators[a];haitosetoperators[[a]]t;hhaiit,modalvariablestoset 5.2Representationandcomplexity. forsomeindexsetsi1;:::;il.obviouslythesizeofthisexpressionis modaloperators.theproblemisdiscussedine.g.[and92]:anequationinl1oftheformixi=hai[a]:::hai[a]xjwithlmodaloperators Booleanequationsystemofexponentialsizeinthenestingdepthof istransformedtojsjequationsoftheformwi1vi2:::wil 1VIlXk AstraightforwardapplicationofthetransformationEmayleadtoa boundedbyj-rjl,wherej-rjisthebranchingdegreeoftheunderlyingtransitionsystem.theupperboundforthebranchingdegreeis
60 tionisdonebyintroductionofadditionalvariables.forthegeneral handsideconsistsofadisjunctxi_xjoraconjunctxi^xjorone modaloperatorinfrontofavariable[a]xorhaix.thetransforma- thesizeofthestatespacejsj. 60 InordertoavoidsuchblowupArnoldandCrubille[AC88]suggested totransform-calculusequationsintosimpleform,i.e.eachright Chapter5.Booleanequationsystemsformodelchecking. caseofnestedxpointoperatorsinproposition3.25thecorrectness ofintroducingnewvariablesandequationsisprovedfordisjunctions andconjunctions.thecorrectnessofintroducingnewvariablesand fromthetransformationefromamodal-calculusformulaanda lemma3.25. UsingthistechniquethesizeofaBooleanequationsystemresulting equationsformodaloperatorscanbeshownsimilarlytotheproofof stateexistsana-transitiontoeachotherstate(nottoitself).the assumptionsforthisresultcanbefoundinandersen[and92].the thenalsoinsimpleformasdenedinsection3.2. Example:Consideratransitionsystemwithkstatesandfromeach -calculusformulaisx:[a]haix. Booleanequationsystemderivedfromamodelcheckingproblemis model(t;v)isboundbyo(jjjtj).adiscussionoftherepresentation kaaaaaa!!! aaaaaaaaa ::: 1 2 HHH Figure5.2.Transitionsystem
61 anuntransformedequation X=[a]haiX TheBooleanequationsystemderivedfrom hassizeofo(k2): 5.2.Representationandcomplexity. X1=k^j=2k_ i=1;i6=jxi simpleformequations (X=[a]X0)(X0=haiX) 61 Xk=k 1 ::: hassizeofo(k): ^j=1k_ i=1;i6=jxi X01=k_j=2Xj X1=k^j=2X0j CItisobviousthatnestingdepthandalternationdepthofaBoolean X0k=k 1 Xk=k 1 :::_j=1x0j ^j=1x0j depthoftheunderlying-calculusformula.independencyofthe modelthesenumberscandecreaseasthefollowingexamplewillshow: equationsystemarenotgreaterthannestingdepthandalternation X:haiY:[b]X^[a]Y Egives: (X1=Y2)(X2=Y1)(Y1=Y2)(Y2=Y1) Example:Considerthe-calculusformula andthetransitionsystemdepicted. TransformationtoaBooleanequationsystem hasnestingdepthandalternationdepth2. Ehasnestingdepth2andalternationdepth1.s1as2
62 Inordertoshowthatthemodelcheckingproblemandtheproblemof 5.3ReductionofBooleanequation solvingabooleanequationsystemareequivalentwealsohavetogivea 62systems. Chapter5.Booleanequationsystemsformodelchecking. ofetheyhavethesamesolution.roughly,aftersomereorderingof transformationintheotherdirection.foranyclosedbooleanequation dividedintoblocks.wedeneatransitionsystemthatconsistsofas manystatesasthelargestblockcontainsequations.transitionsare equationsandintroductionofnewequationsanequationsystemis systemewewillconstructaformulaofthemodal-calculusanda modelm,suchthateande(;m)areequivalent,i.e.forallvariables denedstraightforwardlyinsuchaway,thatthetransformatione producestherequiredexpressions. allx2lhs(e)andenvironments suchthatforavariablerenamingfunctiononthevariablesofe, apropositionofthemodal-calculusandamodelm=(t;v), Theorem5.2ForaclosedBooleanequationsystemEthereexists standardform. Proof:Theconstructionofandatransitionsystemisperformed insevensteps.weassumethatthebooleanequationsystemeisin Itisad(E)ad(),TisofsizeO(jEj2)andisofsizeO(jEj2). ([[E]])(X)=([[E(;M)]])((X)): (2)Withineachblockmovealldisjunctionstothetopandtheconjunctionstothebottomaccordingtotheorem3.21.Nowdivide eachblockintotwonewblocks,suchthatonecontainsnodis- (1)DivideEintoblocks,suchthatconsecutiveblockshavedierent noconjunctions(calleddisjunctiveblock). operator. junctions(calledconjunctiveblock)andtheotheronecontains xpointoperatorsandwithinoneblockthereisauniquexpoint
63 (4)TransformtheBooleanequationsystemintoanequivalentone,E0 5.3.ReductionofBooleanequationsystems. (3)IntroduceanewvariableforeachblockandifXisthevariable functionwhichmapsan\old"variabletoa\new"one. ofablockrenamealltheleft-handsidevariablesofthisblock tox1;:::;xjforsomej2in.letbetheinjectiverenaming 63 sequentblock.thenintroduceanewvariablex0,transformthe isnotavariableofthesameblockasyandnotofthedirectlysubatorofthisblock.continuewithintroductionofnewvariables ontherighthandsideofanequationy=f,whereyexandx equationabovetoy=f[x=x0]andaddtheequation0x0=x tothedirectlysubsequentblock,where0isthexpointoper- inthefollowingway.assumethereisoccurrenceofavariablex sequent,butnotdirectlysubsequentblock.choosenamesofnew variables,suchthatwithinoneblockthereisstillauniquevariablenameandconsequentvariablesarenumberedbyconsequent indices.thetransformationiscorrectaccordingtolemmata3.25 and3.22.theadditionalblow-upofthebooleanequationsystem isnotmorethano(n2)forndef untilthereisnooccurrenceofavariablewhichbelongstoasub- (5)Ifnisthehighestindexappearinginoneoftheblocksthencreate (block)variables(x;y)thereexistsauniquelabelxy.transform cannotbeaddedmoreequationsthanthenumberofright-hand sidevariablesintheprecedingblocksofe. Deneasetofactionlabels,suchthatforeachorderedpairof atransitionsystemtconsistingofnstatesnumbered1ton. =jej,becauseineachblockofe0 forequationsofaconjunctiveblock, theequationsandaddlabelledtransitionstothetransitionsystem asfollows.let1i;j;kn. forequationsofadisjunctiveblock, ixi=yj_zk ixi=yj^zk ixi=hxyiy_hxzizixy ixi=[xy]y^[xz]zixy!j;ixz addtottransition(s) ixy ixy!j!k!k
64 (6)Createasequenceofexpressions,oneforeachblock.Foreach 64disjunctiveblockwithvariablesX1;:::;Xkdene Thetransformationdoesnotincreasethesizeoftheequationsystem(apartfromadditionofmodalities). Xdef Chapter5.Booleanequationsystemsformodelchecking. Dually,foreachconjunctiveblockwithvariablesX1;:::;Xkdene reducedtohxyiy).createtheexpressionx:x. appearsatmostonceinx(assumingthathxyiy_hxyiyis Notethataccordingtothechoiceofactionlabelseachvariable =k_i=1fijxi=iisanequationg: (7)Byconstructionthesequenceofexpressionshastheproperty:in ThesizeofX:XislinearinthenumberofblocksofE0. pearsatmostonceinx.createtheexpressionx:x. X:Xoccuronlyleft-handsidevariablesfromprecedingexpressionsorfromthedirectlysubsequentone.Generateanexpression Againaccordingtothechoiceofactionlabelseachvariableap- Xdef =k^i=1fijxi=iisanequationg: constructeddonotcontainatomicpropositions). temtandanarbitraryvaluation(thisis,becausetheformulae subsystemofe(;m),wheremconsistsofthetransitionsys- startingwiththerstexpressionofthesequenceandtheiterativelysubstitutingthevariablewhichisleft-handsidevariable ofthenextexpressionbythenextexpression.showthate0isa ThesizeofislinearinthesizeofallX,andhencequadratic laeconstructeddonotcontainconstants. (T;V).ThevaluationVcanbechosenarbitrarily,becausetheformu- ItiseasytoshowthatE0isasubsystemofE(;MT),whereMT= O(b2),wherebisthenumberofblocksinE,andthetransition systemthasatmostnstatesand2ntransitions,wherenisthe inthenumberofblocksofe0.then,altogether,thesizeofis numberofequationsine.
65 5.3.ReductionofBooleanequationsystems. consideringinnitebooleanequationsystemsweassumethatthe innitenumberofequations.thetransformationfortheinnite casethenworksastheoneforthenitecase,onlythetransition Remark5.3ThenumberofactionlabelsisquadraticinthenumberofblocksofE,butdoesnotdependonthesizeofblocks.When numberofblocksisnite,butwithineachblocktheremaybean 65 Example: Booleanequationsystem Z1=Z3_Z5 Z2=Z4^Z6 sizequadraticinthenumberofblocks. systemwillhaveaninnitenumberofstates.theformulahas Z4=Z2_Z5 Z3=Z1_Z6 step1: Z5=Z3^Z2 step2:blockstructure step3:renaming Z6=Z4_Z3 Z1=Z3_Z5 Z2=Z4^Z6 W1=U1_X2 X1=V1_Y1 X2=X1_W1 U1=W1_Y1 V1=X1^X2 additionalvariables step4:introductionof Z4=Z2_Z5 Z6=Z4_Z3 Z5=Z3^Z2 Z3=Z1_Z6 Y1=W1^V1 W1=U1_X2 W2=X1 U1=V2_V3 W3=X2 V1=W2^W3 W4=X3 V2=W1 X1=V1_Y1 V3=W4 X2=X1_W1 X3=Y1 Y1=W1^V1
66 step5:creatingequationsandatransitionsystem 66U1=huviV_huviV V1=[vw]W^[vw]W V2=[vw]WChapter5.Booleanequationsystemsformodelchecking. W1=hwuiU_hwxiX W2=hwxiX W3=hwxiX W4=hwxiX X1=hxviV_hxyiY V3=[vw]W w11x1x2 y1;y2; X2=hxxiX_hxwiW X3=hxyiY Y1=[yw]W^[yv]V 4 1 x21;x22;v;w u;v;w wv 2 3w step6:createoneexpressionforeachblock U:huviV step7:generateoneexpression V:[vw]W W:hwuiU_hwxiX U:huvi( X:hxviV_hxxiX_hxwiW_hxyiY Y:[yw]W^[yv]V V:[vw]( W:hwuiU_hwxi( X:hxviV_hxxiX_hxwiW_hxyi( Y:[yw]W^[yv]V ))))
67 5.3.ReductionofBooleanequationsystems. translateformulaandtransition systemcreatedbacktoa U1=V2_V3 U2=false 67 W1=U1_X2 U3=false W2=X1 U4=false W3=X2 V1=W2^W3 W4=X3 V2=W1 X1=V1_Y1 V3=W4 X2=X1_W1 V4=true X3=Y1 X4=false Y1=W1^V1 Y2=false Y3=false Y4=false C
68 68 Chapter5.Booleanequationsystemsformodelchecking.
69 Chapter6 SolvingBoolean InthischapterwewillilluminatevariousmethodsforsolvingBoolean equationsystems.allofthemareinfactmodelcheckingalgorithms. Usuallytheyarepresentedwithindierentsettings.Heretheyareall discussedwithinoneframework.thisallowsaclearerunderstanding ofconcepts. Wedistinguishtwobasicclassesofmethods,theglobalonesandthe casecomplexityoflocalalgorithmscanneverbebetterthantheone interest.(usuallyitisthevariablewhichcorrespondstotheinitial stateofthetransitionsystemandthepropertytoprove.)theworst formationtocalculatethesolutionforthesinglevariablewhichisof onestrytodetermineasubsetofequationswhichgivessucientin- andtheirresultisacompletesolutionforallvariables.thelocal localones.theglobalonesrequirethefullbooleanequationsystem ofglobalalgorithms:intheworstcasethewholeequationsystemis informationandthereforelocalmethodsmighthavebetteraverage involvedinthesolutionfortherstvariable.however,insomeaverage casecomplexity.traditionally,approximationtechniques(seesection caseitislikelythatjustasubsetoftheequationscontainssucient
70 70 6.2)belongtotheglobalalgorithms,tableaumethods(seesection6.3) tothelocalones.however,bordersbetweentheapproachesarenot strict.thereexistsanapproximationbasedalgorithmwhichworks locally;thegaueliminationalgorithm(seesection6.4)existsinboth versions. Inchapter8wewillconsiderotherframeworks,inwhichthereexist Chapter6.SolvingBooleanequationsystems. 6.1PlainBooleanequationsystems. ForthemomentweconsiderclosedBooleanequationsystemsinsimple algorithmssolvinganequivalentproblemalsosolvebooleanequation problemsequivalenttosolvingbooleanequationsystems.ofcourse, formwithoutanyminimalityandmaximalityconditions,i.e.wejust forgetaboutthes.theremainingsystemepisnotanorderedset ofbooleanequationsoftheformxi=fiforsome1in.a solutionsofthebooleanfunctionformacompletelattice.thenumber systemepcaneasilybetransformedintoabooleanfunctionofthe thatforeachequationxi=fiitisfi()=(xi).anequation formw1in(fi^x0i)_(f0i^xi)=0.itisawellstudiedareawhat Theconditionthatallfisaremonotoneensuresthatthesetofall thesolutionsofsuchafunctionare(seeforexample[rud74]). solution(orxpoint)ofepisanenvironment:lhs(ep)!ib,such FromaplainBooleanequationsystemEpwecanderivetwosortsof graphs:theordergraphtellingorderconditionsforthevariablesineverysolutionandthedependencygraphshowingtheinterdependency ofthevariablesinthesystem. Theordergraphisarepresentationoforderconditionsderivedfrom theequations.itconsistsofasetofverticesf1;:::;n;true;falseg,one ofsolutionsisingeneralexponentialinthenumberofequations. vertexforeachequationofthesystemepandtwofortheboolean constants.ifthereisanequationxi=xj^xkinepthenforevery solutionofepitisthecasethatxixjandxixk.hence therewillbetheedgesj!iandk!iintheordergraph.dually,if
71 (Xj)=trueand(Xk)=truefulllstheorderconditionsderived allvariablesinthecyclehavetobeequalineverysolution.however, 6.1.PlainBooleanequationsystems. theedgesi!jandi!k.cyclesintheordergraphindicatethat Xi=Xj_XkthenXiXjandXiXkandtheordergraphcontains butnotbeingsolutionsofthesystem.forexample(xi)=false, thereexistenvironmentsfulllingallconditionsoftheordergraph, 71 ThedependencygraphofaplainBooleanequationsystemEpalso fromxi=xj^xk,butisnotasolutionoftheequation. hastheverticesf1;:::;n;true;falseg.itisarepresentationofthe Xi=Xj^XkorXi=Xj_Xkthedependencygraphcontainsthe edgesj!iandk!i.theinformationwecangetfromthedepen- dependencyrelationsderivedformtheequations.foranequation tions.partsofthegraphwhicharenotstronglyconnectedindicate dencygraphisforexampleaboutthenestingstructureoftheequa- weaddtoourequationsystemminimalityandmaximalityconditions thattheunderlyingsystemcanbedecomposedinpartswhichcanbe (booleangraphsinhisterminology)andderivedecientalgorithms solvedoneaftertheother. Ourquestionnowiswhatisthesolutionweareinterestedin,when andorder. ForBooleanequationsystemswithonlymaximalxpointsoronly minimalxpointsandersen[and94a]investigateddependencygraphs lutionsoftheplainbooleanequationsystemistheonewewant?a fordeterminingthemaximal,orminimalresp.xpoint. rstideaisthatitisthelexicographicallyleastsolutionoftheplain system.thelexicographicorderisderivedfromthexpointoperators Forthecaseofnestedandalternatingmaximalandminimalxpoints asindenition3.4andthecharacterizationofthesolutionfromproposition3.5suggestssuchanidea.therstexamplebelowwillshow, thatthisisnotthecase.thesecondexamplewillshowthatitiseven xpointoperatorsisoneofthesolutionsoftherelatedplainboolean equationsystem.nowaninterestingquestionis,whichoneoftheso- thingsgetmorecomplicated.clearly,thesolutionofthesystemwith worse.therewepresenttwobooleanequationsystems,bothhaving
72 xpointoperatorsdonotprovideenoughinformationtoselectthesolution.allalgorithmswewilldiscussinthischapterhavetodetermine thesolutionsofthesubsystemsrst(insomeabstractview).thisis thesamexpointoperatorsinthesameorder,andbothhavingthe setofsolutionsfortheirplainversion.however,theirsolutionsdier. Chapter6.SolvingBooleanequationsystems. 72 Thisindicates,thatthesetofxpointsoftheplainsystemandthe However,thesolutionof[[X2:X2]][X1=i(X1)]isX2=trueforboth anargumentforthatthetraditionalmethodsforsolvingplainboolean environments,i=1,2.hencethesolutionofthewholesystemis1, Thereexisttwoenvironmentsfulllingthebothconditionsabove: equationsystemsdonothelpinthecasehere. i.e.x1=true;x2=true,whereasthelexicographicleastxpointis Example:Let(X1=X2)(X2=X2)beaBooleanequationsystem. 1=[X1=true][X2=true]and2=[X1=false][X2=false].Forboth, i=1,2,itis(x1)(i)=i(x1)and(x2)(i)=i(x2). thebooleanequationsystem,([[(x1=x2)(x2=x1)]])(xi)=true X1=false;X2=false. tionsystemis([[(x1=x2)(x2=x2)]])(xi)=falsefori=1;2. lutions(true;true)and(false;false).thesolutionforthebooleanequa- Example:TheplainequationsystemX1=X2,X2=X2,hastheso- TheplainequationsystemX1=X2,X2=X1alsohasthesolutions (true;true)and(false;false).however,herewehaveanothersolutionfor CalculatingtheleastxpointX:f(X)ofamonotone(andcontinuous)functionf(X)worksinthewellknownmanner:thefunctionticesisbasedontheapproximationtechniquefromproposition Approximation. Themostwellknownmethodforsolvingxpointequationsoverlat- fori=1;2. C thelatticeisnite. plicationsoffwillreachthexpointafteranitenumberofsteps,if ofthepreviousapplicationetc.,andtheincreasingchainoftheseap- isappliedrsttothebottomelementofthelattice,thentotheresult
73 6.2.Approximation. Dually,whenstartingfromthetopelement>,thegreatestxpoint?f(?)f(f(?)):::fi(?)=X:f(X)forsomei2IN beapproximatedsimultaneouslyinordertoreachtheleastxpoint. canbedetermined. Themethodeasilyextendstonestedxpoints.Fornestedxpointsof thesamekindsuchasx1:f1(x1;x2:f2(x1;x2))bothfunctionscan 73 taneouscalculationisnotpossible.whenapproximatingx1:f1each evaluationoff1requiresafullapproximationofx2:f2:?f1(?)f21(?):::fi1(?)=x1:f1(x1;x2:f2(x1;x2)) forsomei2in. ForalternatingxpointssuchasX1:f1(X1;X2:f2(X1;X2))asimul- wegetbymonotonicityargumentstheincreasingchain Forfi+1 1(?)def =f1(fi1(?);fi+1 2(?))andfi+1 2(?)def =f2(fi1(?);fi2(?)) systemsisstraightforward.fromtheexplanationsabovefollowsthat fi+1 Hencethealgorithmsbasedonthistechniqueareexponentialinthe forethealgorithmismostecientforabooleanequationsystemwhen allvariablesofoneblockcanbeapproximatedsimultaneously.there- alternationdepth. TheapplicationoftheapproximationtechniquetoBooleanequation 1(>)=f1(fi1(>);X2:f2(fi1(>);X2)). tionsystem WeassumethatBooleanequationsystemsconsideredhereareinsuch aformwherethenumberofblocksisminimal.(seealsodenitions illustratetheapproximationschemeforanalternatingdepth3equa- 3.33and3.34fornotionsofnestingdepthandalternationdepth.)Beforediscussingthevariousapproximationbasedalgorithmswetryto itistransformedtoanequivalentonewithaminimalnumberofblocks. E3:(X1;X2)!X3:f3(X1;X2;X3) E2:(X1;X3)!X2:f2(X1;X2;X3) E1:(X2;X3)!X1:f1(X1;X2;X3) Eachxpointequationdeterminesoneoftheplanes: system(x1=f1)(x2=f2)(x3=f3).thepicturesimpliesthe Inpicture6.1weconsideranalternationdepth3xpointequation actualsituationintheway,thatwedrawlatticesaslines.
74 74 > X3 (((((((((((((((((((( Chapter6.SolvingBooleanequationsystems.!!! e 1? X2 > X1 equationsystem.oneofthemisthesolutionweareinterestedin.it TheplanesE1,E2andE3intersectinsomeofthexpointsofthe Figure6.1.Visualizinganalternationdepth3approximation2 willbecharacterizedbytheorderofequations.inthepicturethereis intersectionpointofplanese3ande2.thenextstartingpointis justoneintersectionpoint,forsimplicity. thelowervalueofx2,x1=?andx3=?.againthee3-planeis that,onestepisperformedinthedirectionofx2correspondingto oneevaluationoff2.theresultisalowervalueforx2,closertothe?,x2=>andx3=?representedbyadotinthepicture.from thispointitapproximatesinthedirectionofx3thee3-plane.after Theapproximationalgorithmworksasfollows:itstartsatpointX1= approximatedindirectionofx3,followedbyastepindirectionoff2, etc..theseiterativeapproximationsaredepictedeachbyadottedline withanarrowshowingthedirectionoftheapproximation.whenthe 3
75 valueforx1whichgivesanewstartingpointfortheapproximation, illustratedbyahexagondotinthepicture. AltogetherthealgorithmmovesalongtheintersectionlineofE3and 6.2.Approximation. E2untilitreachestherstintersectionwithE1,therstxpoint, intersectionlineofe3ande2isreached,onestepindirectionofx1is performed,correspondingtoanevaluationoff3.theresultisanew 75 xpointsisperformedbythestraightforwardapplicationofproposition2.20,theexplicitcalculationofanincreasingchain.thetime complexityofthealgorithmforbooleanequationsystemswithone whichisthesolutionofthesystem. InEmersonandLei'salgorithm[EL86]theapproximationforunnested [CS91],Andersen[And92,And93]andVergauwenandLewi[VL92]. thorsdevelopedfasteralgorithmsfortheapproximationofunnested tiontechniquetobooleanequationsystemswitharbitraryalternation depththealgorithmhastimecomplexityo(jejad(e)+1)).otherau- xpoints,e.g.arnoldandcrubille[ac88],cleavelandandsteen ArnoldandCrubille'sandVergauwenandLewi'salgorithmsarebased xpointoperatoristheno(jej2).byextensionoftheapproxima- therighthandsideofitsequationistheconstanttrueoradisjunctionwhereonevariablehasthesolutiontrueoraconjunctionwhere falseunlessitis\forced"tohavethesolutiontrue.itmustbetrueif onbooleanequationsystems,andersenarguesondependencygraphs, equationsystemwithonly-operatorseveryvariablehasthesolution However,thebasicideaofallthesealgorithmisthesame:inaBoolean bothvariablesmustbetrue.theextensionofthesealgorithmstothe CleavelandandSteenon-calculusequationsystemsinsimpleform. generalcaseaccordingtotheapproximationschemathenprovidesalgorithmswhichareexponentialinthealternationdepthofthesystem withatleastalternationdepth3.theircrucialideaisvisualizedin picture6.1:thestandardapproximationtechniquewouldcontinuethe approximationofplanee3fromthenewstartpoint,whichismarked AgreataccelerationwasgainedbyLong&al[LBC+94]forsystems byahexagoninthepicture.actually,fromthepreviousapproxima- [And92,And93],[CKS92].
76 rivedalocalalgorithmforalternationfreexpointexpressionsbased ofthealternationdepthofthesystem. Allalgorithmsmentionedaboveareglobalones.Andersen[And92]de- 76 tioninthelowerx1-levelandmonotonicityofthefunctionsweknow thatthee3planemustlieabovethesquarepoint,whichmaybeused asthenewstartingpointthen.theiralgorithmisexponentialinhalf Chapter6.SolvingBooleanequationsystems. sentedalocalalgorithmforbooleanequationsystemsofalternation depth2whichisalsoapproximationbased.theiralgorithmhasthe complexitythantheglobalones.in[vl94]vergauwenandlewipre- samecomplexityascomparableglobalalgorithms,buttheadvantage oflocalmethodsthatitpossiblyneedsjustasmallsubsetofequations todeterminethevariableofinterest.thissubsetofequationshasthe onapproximationtechniques,buthavingaslightlyhigherworstcase temandthecomplexitymeasuresareforanadaptedversion.when collected.manyofthemwerenotintendedforbooleanequationsys- equations(uptonondeterministicchoice). Inthetablebelowcomplexityresultsofthealgorithmsmentionedare otherlocalmethodsase.g.tableauxmakeuseofthesamesubsetsof uponsolutionsofvariablesoutside.itseemstobethecasethatthe propertythatthesolutionsofvariablesofthesubsetdonotdepend InthissectionwedeneatableaumethodforsolvingBooleanequation 6.3Tableaux. ad.forthelocalmodelcheckingalgorithmin[vl94]itise=e1e2. slightlybetterbounds.thealternationdepthad(e)isabbreviatedby applieddirectlytothemodelcheckingprobleminsomecasesthereare systemcompletely.atableaugivesasolutionjustforonevariable.for systems.incontrasttoglobalmethods,whichsolveabooleanequation thispurposenotallequationsarerequired.itisthereforecalledalocal method.thetableaumethodpresentedhereistheoneofstirlingand ConsideraBooleanequationsystemEbeinginstandardformandan Walker[SW89]appliedtoBooleanequationsystems. environment.assumethesolutionis0def =[[E]].Thegoalisto
77 6.3.Tableaux. algorithmfromfragmentcomplexity [EL86] [AC88] TimeComplexityofApproximationBasedAlgorithms full O(jEjad+1) O(jEjjlhs(E)j) 77 [CS91] [CKS92] [VL92] [LBC+94] ad1 O(jEj) [And92] ad1 O(jEjad) O(ad2jEjbad=2c+1) O(jEjlog(jEj)) global showthat([[e]])(xi)=true.thesolutionforxicanonlybetrue,if [VL94] [VLAP94] ad2 full O(jE1j+jlhs(E1)jjE2j)local O(jEjcad) i.e.fi(0)=true.asubgoalisthentryingtoshowthatfigetstrue forequationixi=fitheright-handsidefiistrueatthesolution, local forthesolution.atableauforvariablexiisaprooftreewithroot rulesforconstructingatableauarecollectedbelow.rulesareapplied Xi.ThesucessorsofXiarevariablesrepresentingthesubgoals.The containingxj,andbetweennandn0thereisnonodecontaininga aresuccessful. Terminationcondition1:ThenodencontainingXjisaleafofthe tableauifonthepathfromntotherootthereisanothernoden0 whetheritissuccessfulornot.atableauissuccessfulifallitsleaves isnoruleapplicabletoanodewehavereachedaleafandcandecide untilaterminationconditionholdsforanode.inthecasethatthere Thenoden0iscalledthecompanionofn. variablexisuchthatxiisavariableofalowerblockthanxjine.
78 Tableaurules: 78 Terminationcondition2:ThenodencontainingXjisaleafofthe tableau,ifonthepathfromntotherootthereisanothernoden0 containingxj.thenoden0iscalledthecompanionofn. [^1]Xi XjXk ixi=xj^xkisanequationofe Chapter6.SolvingBooleanequationsystems. Aleafcontainingtheconstanttrueissuccessful,aleafcontainingthe [^2]Xi constantfalseisunsuccessful.forleavescontainingavariablethe [_2]Xi [_1]Xi Xk ixi=xj_xkisanequationofe isanequationofe Successcriterion2:Aleafnissuccessful,iftheleast(w.r.t.E) successcriteriondiersfortheterminationconditions: Successcriterion1:Aleafcontaininga-variableissuccessful,aleaf anditscompanionisa-variable. nisunsuccessful,iftheleast(w.r.t.e)variableatanodebetweenn containinga-variableisunsuccessful. variableatanodebetweennanditscompanionisa-variable.aleaf transitionsystem: tableau(forbothterminationconditions)whentheunderlyingtransitionsystemjustgrowslinearly. Considerthe-calculusformulaX:[a]Y:hbi(Y_X)andthefollowing ExampleThisisademonstrationoftheexponentialgrowthofa tableauwithrootx1. Proposition6.1([[E]])(X1)=trueithereexistsasuccessful 1m HHHHHH a12 11 b2mhhh a21 22 mm b3... km HHH ak1 k2 mm b1
79 6.3.Tableaux. TheBooleanequationsystemderivedis X11=true Xk=Yk1^Yk2 X1=Y11^Y12 ::: 79 Xk1=true Thetableauforthecasek=3is: Yk2=Y1_X1 Y11=Y2_X2 Yk=false Y1=false ::: Y31X3 X1Y32 Y21X1Y22 Y11 X2Y31X3 X1Y32 X1Y31X3 X1Y32 Y21X1Y22 Y12 X2 following: plewherethesubtreesarenotexactlythesame,butsimilaristhe factthatitcontainsthesamesubtreesseveraltimes.anotherexam- Itisobviousthattheexponentialsizeofthetableauisduetothe Y31X3 X1Y32 X:h iy:h ih ix^h ih iy andthetransitionsystem Example: Giventhe-calculusformula 2iii 4
80 80 TheBooleanequationsystemderivedis X1=Y2_Y3_Y4_Y5 X4=Y5 X3=Y5 X2=Y5 Chapter6.SolvingBooleanequationsystems. X5=Y1_Y2_Y3_Y4 Y2=5_i=1Xi^5_i=1Yi Y3=5_i=1Xi^5_i=1Yi Y1=X5^Y5 Y4=5_i=1Xi^5_i=1Yi maytryitbyhand. TheversionofthetableaumethodofCleavelandasimplementedin wasstoppedafterhavingcreated22millionnodes.thescepticalreader ThetableauforthisBooleanequationsystemhasanenormoussize. AnimplementationoftheoriginaltableaumethodofStirling&Walker Y5=5_i=1Xi^5_i=1Yi Theexamplespresentedherecanalsobesolvedwithoutproducing AtableaubasedmodelcheckingalgorithmwasintroducedbyLarsen theconcurrencyworkbenchcandealwithredundancyofthiskind. redundantinformationbythetechniqueof[mad92]. dierentsubtreesofthetableauthesame(orverysimilar)subgoals [Lar95]forunnestedxpointexpressions.StirlingandWalker[SW89] stratedbyexamplesinthissection.onereasonforthatisthatin andcleaveland[cle90]developedtableaumethodsforthefullmodal -calculus.winskel[win89]extractedtheprinciplesofthesetableau methodssuerfromahighworstcasecomplexity,whichwasdemon- methodsandpresentedthemasarewritesystem.unfortunatelythese
81 6.4.Gauelimination. maybecomputedrepeatedly.forunnestedxpointexpressionslarsen previouslydiscovered(failed)resultsareremembered.in[mad92]the [Lar92]presentedatableaumethodwithpolynomialworstcase.There tableaumethodsof[sw89]and[cle90]areextendedbyadditional structurewhichallowstomakemaximaluseofresultsgainedinone subtableauforlatersubtableauxduringconstruction.however,some 81 amountofredundancyisinherenttotop-downconstructions,andit sectionissimilartothegaueliminationalgorithmforlinearequationsystems.itistheonlymethodknownsofarwhichdoesnot tothegaueliminationmethodinsection Gauelimination. ThemethodforsolvingBooleanequationsystemspresentedinthis canonlybeavoidedbyabottom-upevaluation.thisapproachleads anexpressionisconstructedcontainingnooccurrenceofx.inasubsequentsubstitutionstepeachoccurrenceofxintherestofthducedbyonevariableandequationaftertheotheruntilthesolution isdetermined.thereductionconsistsoftwostepswhichareapplied iteratively.firstcomesaneliminationstep,whereforavariablex requirebacktrackingtechniques:anequationsystemisstepwisere- equations.thustheproblemofsolvingabooleanequationsystemis reducedtotheproblemofsolvingasmallerbooleanequationsystem. TheGaueliminationalgorithmisalsorelatedtothetableaumethods. Themainideahereisthattheconstructionofatableauinatop-down mannerleadstotreespossiblycontainingmanycopiesofidentical(or ingsystemcontainsnooccurrenceofxontheright-handsidesofits equationsystemissubstitutedbythex-freeexpression.theremain- involvingallequationsofthebooleanequationsystem.thecombinationofatableau-liketop-downselectionofequationsandbottom-up similar)subtrees.averynaturalwaytoovercomesuchanunnecessary blow-upistoconstructadirectedacyclicgraphinsteadofatree(i.e. atableau).thiscanbedoneinabottom-upmanner. Apurebottom-upmethodwouldagainleadtoaglobalalgorithm
82 examplewheretheexpressionscreatedhaveexponentialsize. havior,gaueliminationsolvestheprobleminlineartime.however, forthenaivealgorithmderivedfromgaueliminationthereexistsan 82 theapproximationmethodortableaumethodhaveanexponentialbe- evaluationgivesanalgorithmwhichmakesuseofthesameinformationasatableau,butavoidsredundancy.inmanyexamples,where Chapter6.SolvingBooleanequationsystems. InthecaseofGaueliminationforBooleanequationsystemsaneliminationstepinferedinlemma6.2isaconsequenceoflemma3.29.In anequationx=feachoccurrenceofxinfmaybesubstitutedby 6.4.1Globalandlocalalgorithm. dierentversionbykalorkoti[kal96]. Thealgorithmwasintroducedin[BM93,Mad95]andinaslightly Dierentproofscanbefoundin[BM93,Mad95]. Thesubstitutionstepderivedfromlemma6.3preservesthesolution justinthecasewhenwefollowtheorder:anoccurrenceofavariable maybesubstitutedbyaright-handsideexpressiononlyinalllower false,orduallyforbytrue. Theeliminationstepisbasedonthefollowinglemma. TheproofspresentedherewerepartlysuggestedbyVergauwen[Ver95]. (w.r.t.e)equations.(seealsoproposition2.21.) Lemma6.2Let [[(X=f)E2]]=[[(X=f0)E2]]: Proof:Accordingtoproposition3.14itissucienttoshowthat E1;E2beBooleanequationsystems, X=f;X=f0Booleanequations, [[(X=f)E2]]=[[E2]][X=f([[E2]][X=b])] Then[[E1(X=f)E2]]=[[E1(X=f0)E2]]. wheref0=f[x=b]. =[[E2]][X=f0([[E2]][X=b])] =[[(X=f0)E2]]
83 6.4.Gauelimination. Thefollowinglemmaisthebasisforthesubstitutionstep: Lemma6.3Let E1;E2;E3beBooleanequationsystems, 1X1=f;1X1=f0;2X2=gBooleanequations, wheref0=f[x2=g] def 02def Proof:Againfollowingproposition3.14wejustneedtoshowthatfor [[E1(1X1=f)E2(2X2=g)E3]]def [[E1(1X1=f0)E2(2X2=g)E3]]def Then1=2 =[[(1X1=f)E2(2X2=g)E3]]and=1 itisthecasethat01=02. =[[(1X1=f0)E2(2X2=g)E3]]=2. solutionof(1x1=f0)e2(2x2=g)e3.hence02islexicographically smallerthan01,because02isthesolution. Wewillshowthat01fulllsbothconditionsofproposition3.5forthe Showf0(01)=01(X1)(condition(1)ofproposition3.5) 01(X1)=f(01) g(01)=01(x2) =f(01[x2=01(x2)]) =f(01[x2=g(01)]) lexicographicallysmallerthan02. Show[[E2(2X2=g)E3]]01=01(condition(2)ofproposition3.5): 3.5forthesolutionof(1X1=f)E2(2X2=g)E3,andhence01is followsfromproposition3.7 Analogously,thedualholds:02fulllsbothconditionsofproposition f(02)=02(x1)(condition(1)ofproposition3.5): =f0(01) analogously [[E2(2X2=g)E3]]02=02(condition(2)ofproposition3.5) Altogetherwecanconcludethat01=02.
84 84 Basedonthesebothlemmataisthefollowingalgorithminpseudo code. i:=n; Inputare(1X1=f1):::(nXn=fn)and Chapter6.SolvingBooleanequationsystems. whilenot(f1trueorf1false) doinstantiatexiinfitobi; Figure6.2.GlobalVersionoftheGauEliminationAlgorithm odi:=i-1; f1:=eval(f1);:::;fi 1:=Eval(fi 1);(evaluationstep) SubstitutefiforXiinf1;:::;fi 1;(substitutionstep) (eliminationstep) expressionsappliedinthefunctionevalofthealgorithmingure datastructureforbooleanexpressions.theretheevaluationrulesare Inanimplementationbinarydecisiondiagramswerechosenas performedimplicitlywitheverysubstitutionandeliminationstep.in theexamplesdonebyhandthefollowingsetofbooleanlawswasused AcrucialpointinthealgorithmaretheevaluationrulesforBoolean forevaluationẋ^true=x (X^Y)_(X^Z)=X^(Y_Z) X_(X^Y)=X X^(X_Y)=X X^false=false X_false=X X_true=true Inmostcontextsweareonlyinterestedintherstcomponentofthe (X_Y)^(X_Z)=X_(Y^Z)
85 everyxiwherethevariablesxi;:::;xndonotoccur.astraight backwardsubstitutionleadstothewholesolution. substitutionstephavetobeappliedntimesgivinganexpressionfor areinterestedinthewholesolutionthegaueliminationstepand ingure6.4.1stops,ifthesolutionofx1(f1)isdetermined.ifwe 6.4.Gauelimination. solution,i.e.whetherx1istrueorfalse.thereforethealgorithm 85 Example:StartingwiththeBooleanequationsystem: SubstitutionofX1^X2forX4andevaluation(Thesubstitutedexpressionsareunderlined): X1=X2_X3 X3=X4_X1 X1=X2_X3 X2=X3^X4 X4=X1^X2 SubstitutionofX1forX3andevaluation: X3=(X1^X2)_X1=X1 X1=X2_X1 X2=X3^(X1^X2) SubstitutionofX1forX2: Thecompletesystemconstructedbythealgorithmis: EliminationofX2inX2=X1^X2givesX2=X1^true=X1. X1=X1_X1=X1=false(byaneliminationstep) X2=X1^(X1^X2)=X1^X2 BackwardsubstitutiongivesX1=X2=X3=X4=false. subsetofequationswhichisnecessarytodeterminethesolutionfor Ifonlytherstvariableisofinterest,itsucestoconsideronlythe X1=false X2=X1 X3=X1 X4=X1^X2 (from4) (from3) (from2) (from1) C
86 E0consistingonlyoftheequation(1X1=f1).AslongasX1is notevaluatedtotrueorfalseweselectafreevariablefromf1,insert itsequationine0,applytheglobalversionofgauelimination,and 86 X1.Therelevantsubsetofequationsisselectedinatop-downmanner. ThisobservationleadstothelocalversionofGaueliminationgivenin gure6.3.theideaisasfollows.westartwiththeequationsystem Chapter6.SolvingBooleanequationsystems. continueinthesamewaywiththemodiedequationsysteme0. whilenot(f1=trueorf1=false) InstantiateX1inf1; f1:=eval(f1); E0:=(1X1=f1); doselectxjfromf1,wherexjisnotinlhs(e0); Createfj,insertjXj=fjinE0 (evaluationstep) (eliminationstep) Figure6.3.LocalVersionoftheGauEliminationAlgorithm Thereexistsanaccelerationofthealgorithmwhichworksasfollows: anoccurrenceofavariablexjmaybesubstitutedbytrueorfalseatan odapplytheglobalversionofgaueliminationtoe0 accordingtotheorderbythetransformationrules; possibilityappearsinthedenitionofthesemanticsforbooleanequationsystems(proposition3.30):anyoccurrenceoftherstvariable, earlierstagethanwhenoccurringontherighthandsideofitsdening equationjxj=fj.thisisthecase,whenitdoesnothappenthat(a inthesensethatitcanbedeterminedinadvance,whethersucha copyof)thisoccurrenceofxjissubstitutedintoanequationixi=fi wherexiexjduringthealgorithm.thispropertyisastaticone besubstitutedbytrueorfalserightinthebeginning.however,forthis X1,willneverbesubstitutedintoapriorequation,simplybecause theredoesnotexistapriorone.hence,everyoccurrenceofx1may substitutionintoapriorequationwillhappen.aspecialcaseofthis
87 itisonlyguaranteedthatthealgorithmproducesthecorrectsolution fortherstvariable Complexityforthegeneralcase. 6.4.Gauelimination. accelerationitisthecasethatbackwardsubstitutiondoesnotwork: 87 gentstorageofexpressions. andgiveanexampleforit.thesourceofcomplexityhereisthesize tially.however,itisnotknown,whetherthereexistsaversionofthe algorithm,wherethisexponentialblowupisavoidedbymoreintelli- ofright-handsideexpressions,whichinanexamplegrowthsexponen- eliminationisofcomplexityexponentialinthenumberofequations, InthissectionwearguethatthenaivealgorithmderivedfromGau Incomparisontotheapproximationalgorithmthebehaviourcwof acase,wheretheapproximationbasedalgorithmsneedsexponentially thealgorithmneedssametimeandspace.anexampledemonstrates Gaueliminationalgorithmsisverydierent.WeshowthatthecomplexityofGaueliminationisindependentfromthealternationdepth ofthebooleanequationsystem,i.e.givenanarbitrarybooleanequa- manysteps,butgaueliminationonlypolynomialtimeandspace. numberofequations,butalternationdepth1,andforbothsystems polynomialinthenumberofequations.especiallyforthefragment ForsomefragmentsweshowthatGaueliminationhascomplexity tionsystemthereexistsabooleanequationsystemwiththesame correspondingtol2gaueliminationprovidesano(n2)algorithm. ThenumberofsubstitutionstepsduringtheGaueliminationinthe globalalgorithmislessthan(n 1)+(n 2)+:::+1n2.Thelocal pressionsarisingfromiterativesubstitutions.ingeneralsubstitution versionincludesatmostnapplicationsoftheglobalalgorithmgiving alltogetherlessthann3substitutionsteps. tialinthenumberofvariablesinvolved.assumingthataboolean ofbooleanexpressionsintobooleanexpressionsleadstosizeexponen- ThecrucialpointconcerningcomplexityisthesizeoftheBooleanex- equationsysteminnormalformconsistsofnequations(anddierent
88 pressionscreatedrelativelysmall.findinganexamplewheretheright- uationrulesasdiscussedaboveandtheeliminationrulekeeptheex- Tryingabignumberofexamplesshowedthattheapplicationofeval- globalandlocalalgorithmiso(2n). 88 variables),thenthesizeofthebooleanexpressionscreatedduringthe algorithmisboundby2n.hencetheworstcasecomplexityofthe Chapter6.SolvingBooleanequationsystems. handsideexpressionsareofexponentialsizeturnedouttobeadi- culttask.theexamplebelowwasconstructedwithhelpofbrinksma sionwhereonevariableappearstwiceandthelawsforevaluationof XnuptoXn=2thereisnoapplicationoftheeliminationrulepossible. ordertoreduceit.suchanexpressiongivesaschemeforiterativesubstitutionwithnopossibilityofreduction.thexpointoperatorsin [Bri96]andRossmanith[Ros96].Thebasicideaistondanexpres- Thereforexpointoperatorsareleftaway.Assumen210IN.Thesize thisexampleareirrelevant,becausewhenbuildingupexpressionsfor Booleanexpressionsasxedforthealgorithmarenotapplicablein ofexpressionsisthenboundbyo(2n=5). X1 X2 X3 X4 =X2 =X3 =X4 Xn=2+4=Xn=2+6_Xn=2 3 Xn=2+3=Xn=2+5^Xn=2 2 Xn=2+2=Xn=2+4^Xn=2 1 Xn=2=Xn=2+1 Xn=2+1=Xn=2+2_Xn=2+3 ::: =X5 Xn 10=Xn 9_X10 Xn 11=Xn 9_X11 Xn 12=Xn 10^X12 Xn 13=Xn 11^X13 Xn 14=Xn 13_Xn 12 Xn=2+5=Xn=2+6_Xn=2 4 :::
89 6.4.Gauelimination. Xn 4=Xn 3_Xn 2 Xn 5=Xn 4_X6 Xn 6=Xn 4_X7 Xn 9=Xn 8_Xn 7 Xn 7=Xn 5^X8 Xn 8=Xn 6^X9 89 Inordertomaketheconceptualdierencetotheapproximationmethod clearweshowthatgaueliminationisindependentofthealternation Xn=X1_X2 Xn 1=X1_X3 Xn 2=Xn^X4 Xn 3=Xn 1^X5 variablewithleastxpoint. depthofabooleanequationsystem.leastandgreatestxpointsare treatedinasimilarway:thecorrespondingvariablesaresubstituted byaconstant,trueforavariablewithgreatestxpoint,falsefora bitraryalternationdepthweconstructabooleanequationsysteme0 Proposition6.4Thecomplexityofthenaivealgorithmbased withonly-xpoints,ande0hasthepropertythatthesizeofexpressionscreatedduringgaueliminationisatleastthesizeofexpressions Booleanequationsystemandhencealsooftheunderlying-calculus Proof:TheideaisthatforagivenBooleanequationsystemEofar- ongaueliminationisindependentofthealternationdepthofthe createdfore.(theirsolutionsmaydier.) formula. ForthispurposewehavetorestricttheclassofBooleanequationsystemsweconsidertothosewhichdonotcontainconstantsandallright becauseconstantsandxedrighthandsidevariablescanbeelimiplyingthiseliminationbeforestartinganyalgorithmwillnotincreasnatedfromabooleanequationsysteminlineartime(inthesizeofthe handsidevariablesarebound.infactthisisnotarealrestriction, system)suchthatthesolutionofthesystemispreserved.henceap-
90 instandardform.thisrepresentationcanbeachievedbyalinear 90 itscomplexity.furthermoreweconsiderbooleanequationsystems blow-upoftheoriginalsystem(inthesizeoftheunderlying-calculus formula). ThetransformationfromEtoE0worksasfollows: everyconjunctioncontaininga-variableistransformedtoadisjunction(ofthesamevariables),and Chapter6.SolvingBooleanequationsystems. everyissubstitutedbya. X2lhs(E0). WehavetoshowthatthesizeofexpressionswhenapplyingGau NotethatthesolutionofE0willbe0,where0(X)=falseforall thesamedependencygraph,andthereforealsothesamestructureof eliminationtoe0isgreaterorequaltothosefore.bothsystemshave ApplyingasubstitutionstepleadstoanexpressioniXi=f[Xj=g]and thecorrespondingequationsofe0,wherei<j. variables.letixi=f;jxj=gbeequationsofeandxi=f0,xj=g0 thermorecorrespondingequationsofbothsystemscontainthesame ThepropertytoshowholdsfortheinitialsystemsEandE0.Fur- lost"incomparisontoe. substitutions.wejusthavetomakesurethatine0\novariablesget (numberof)variablesasf0andg0thenthiswillalsoholdforf[xj=g] Xi=f0[Xj=g0]respectively.Iffandgcontainedatleastthesame off[xj=g]. ForaneliminationstepconsideraspartofanexpressionofEaconjunctionXi^Xj,whereXiisa-variableandXjisa-variable,and andf0[xj=g0]andthesizeoff0[xj=g0]isgreaterorequaltothesize evaluatestoxjasintheothercase.whenxjissubstitutedbyfalse thentheconjunctionofewillevaluatetofalse,whereasthedisjunctionofe0willevaluatetoxi,leadingtoagreaterexpression(withajunctionxi_xjandxiwillbesubstitutedbyfalse.thedisjunction leastonemorevariable)thanine.notethatthecaseofsubstituting Xiissubstitutedbytrue.ThentheconjunctionevaluatestoXj.In trueforavariableinadisjunctionintroducedine0doesnothappen, thetransformedsysteme0theconjunctionwastransformedtoadis-
91 6.4.Gauelimination. becausethesolutionofe0givesfalseforeveryvariableofe0. AnystatementaboutsizeofBooleanexpressionsmakesonlysenseif wechooseasensiblerepresentationofbooleanexpressions.inthecase hereweevaluateexpressionsjustwiththerulesforconstants. Wenowwanttodemonstratebysomeexamples\good"behaviourof Gauelimination,wheretableaumethodandapproximationmethod 91 needexponentialspaceand/ortime.twoexampleshavealreadybeen treatedinsection6.3,illustratingtheexponentialblow-upoftheplain tableaumethod.theseexamplescaneasilybesolvedwiththetechniquesfromthissectionwithoutanyblow-up.thismightnotbetoo sizenandalternationdepthn. TheGaueliminationmethodproducesonlyexpressionsofaxed surprisingasalreadyextensionsofthetableaumethodin[cle90]and [Mad92]candealwiththeseexamples. Herewepresentanotherexample.Itsfeaturesarethefollowing: Itisscalable,i.e.itisasetofexamples,whichcanhavearbitrary Letn22IN Knownalgorithmsbasedontheapproximationtechniqueareexponentiallyinn. Thelastaspectisduetothefactthattheexampleisconstructedina waythatamaximalnumberofbacktrackingstepsisrequired. constantlengthforanyoftheexamples,andthecomplexityis O(n2). X4=X3_Xn X2=X1_Xn X3=X2^Xn X1=X2^Xn Xn 2=Xn 3_Xn Xn 1=Xn 2^Xn Xn 3=Xn 4^Xn Xn=Xn 1_Xn=2 :::
92 tiveandtheconjunctiveclassandacombinationofthem.thefrag- mentsofthemodal-calculusthatgivesrisetotheseclassesarel1 InthissectionweconsiderclassesofBooleanequationsystemsfor whichgaueliminationhascomplexityo(n2).thesearethedisjunc Complexityforsubclasses. Chapter6.SolvingBooleanequationsystems. Gaueliminationtodisjunctivesystemsarealwaysdisjunctions.The ifallitsequationsare.expressionscreatedduringanapplicationof disjunctionoritisa2-aryconjunctionwhereatleastoneconjunctisa constant.abooleanequationsysteminstandardformisdisjunctive, ABooleanequationiscalleddisjunctive,ifitsright-handsideisa toectl[vw83],anextensionofctl. andl2.in[ejs93]thefragmentl2wasshownbeingequi-expressive thatareinvolved,whichisatmostthenumberofequationsinthe system. sizeofandisjunctionisboundbythenumberofdierentvariables ofanequationcanberepresentedasaset.substitutioncorresponds Proof:TheglobalversionoftheGaueliminationalgorithmtakes atmostn2eliminationandsubstitutionsteps.eachright-handside canbesolvedintimeandspaceo(n2)withtheglobalversionofthe Gaueliminationalgorithm.ApplyingthelocalversionoftheGau eliminationalgorithmneedstimeo(n3)andspaceo(n2). Proposition6.5AdisjunctiveBooleanequationsystemofsizen morethanndierentexpressions,orsetsresp.,eachofsizelessthan n.thelocalalgorithmneedslessthann3eliminationandsubstitution steps. Theconjunctiveclassisdenedanalogously:aBooleanequationsysteminstandardformisconjunctive,ifitcontainsonlyequationswith thentoaremovingoneelementofasetandunionoftwosets.these operationscanbeperformedinconstanttime.thereexistalwaysnot conjunctionsontheirrighthandsides,ordisjunctions,whereoneof thedisjunctsisaconstant.thedualargumentholdshere. Proposition6.6AconjunctiveBooleanequationsystemofsizen canbesolvedintimeandspaceo(n2)withthethelocalversionof
93 Disjunctiveandconjunctiveclassesmaybecombinedinarestricted Proof:Analogouslytothepreviousproofofproposition Gauelimination. way.intuitively,therequirementis,thatwhenapplyingthegaueliminationalgorithmneveradisjunction(containingmorethanaconstant orasinglevariable)issubstitutedintoaconjunctionorviceversa.the formaldenitionofthecombinedclassisgivenbelow.recallthata subsysteme0ofeisclosedwithrespecttoe,ifree(e0)free(e). eachdisjunctivesystemiscontainedinthecombinedclass; eachconjunctivesystemiscontainedinthecombinedclass; ifabooleanequationsystemeofthecombinedclasscontainesa fc,thenthereisavariablexineitherfdorfc,suchthat disjunctiveequationdxd=fdandaconjunctiveequationcxc= X=fXistheleast(w.r.t.E)equationofasubsystemE0 GaueliminationalgorithmneedstimeO(n3)andspaceO(n2). thegaueliminationalgorithm.applyingthelocalversionofthe. 93 classtheglobalversionofthegaueliminationalgorithmsolvesthe Proposition6.7ForaBooleanequationsysteminthecombined (cxc=fc)c(x=fx). (dxd=fd)c(x=fx), E0iscontainedinthecombinedclass, closedwithrespecttoe, Proof:TheobservationhereisthattheGaueliminationalgorithm evaluatestheleastvariableofaclosedsubsystemtoaconstant.the restisanalogoustothedisjunctiveandconjuncticecase. systeminspaceandtimeo(n2). eliminatedfromtheequationsystemaccordingtolemma3.20,followed byafurtherevaluationstep,andsoon.inthiscaseeachvariableofa aftereachevaluationstepequationswithaconstantright-handsideare thegaueliminationalgorithmhastobemodiedintheway,that Note,thatX=fXhasnottobenecessarilytheleastequationofthe subsystem;itmaybeoneequationofaclosedsubsystem.inthiscase closedsubsystemisevaluatedtoaconstant.
94 94 getalocalalgorithmforthecombinedclassthereisamodication Alsonote,thatthelocalversionoftheGaueliminationalgorithm classisnotnecessarilycontainedinthecombinedclass.inorderto substitutesdisjunctionsintoconjunctionsandviceversa.thereason appliedtobooleanequationsystemsofthecombinedclasspossibly isthatasubsystemofabooleanequationsysteminthecombined Chapter6.SolvingBooleanequationsystems. temsderivedfrom-calculusformulaeoffragmentl2arecontained tobecreateduntiltheactualsubsystemisinthecombinedclass. formulaeofthefragmentl1aredisjunctive,andbooleanequationsys- inthecombinedclass.(seedenitionsforl1andl2inchapter4). Emerson,JutlaandSistla[EJS93]presentedamodelcheckingalgorithmforL1andL2whichisofcomplexityO(jj2jTj).Transformation tobooleanequationsystemsgivesalsoano(jej2)algorithm. thenoderepresentingthe-calculusformulaandinitialstate,which BhatandCleaveland[BC96]developedamodelcheckingalgorithmfor impliesthattheformulasatiesthetransitionsystem.thelineartime caseofbooleanequationsystems.fortheextensionofthealgorithm tothefragmentl2theyclaim,thattheresultingalgorithmmaybe formulaisprovedbyatableausystem.thetimecomplexityoftheir algorithmiso(ad()jjjtj),givingano(ad(e)jej)algorithmforthe 6.5Complexity. shownalsotohavetimecomplexityo(ad()jjjtj). ItiseasytoseethatBooleanequationsystemsderivedfrom-calculus necessary:beforeapplicationoftheglobalalgorithmequationshave additionallylabelledby_or^.aformulaoflineartimetemporallogic thefragmentl1.itoperatesonthedependencygraphwherenodesare expressesthatthereexistsa-cycle(orconstanttrue)reachablefrom non-emptinessproblemsoftreeautomata,whichareinnp.thenthe proofs(e.g.[ejs93,bvw94])reducethemodelcheckingproblemto Forthemodelcheckingproblemthisisaknownresult.Mostofthe WegiveaproofthattheproblemofsolvingBooleanequationsystem iscontainedinnp\co-np.
95 ducedtoadisjunctivesystembychoosingonevariableoutofevery propertyholdsforsomemodelifitsnegationdoesnotandviceversa. AnarbitraryBooleanequationsysteminstandardformcanbere- WeclaimthattheproofintheframeworkofBooleanequationsystems isquitesimple.roughlytheargumentationworksasfollows. modelcheckingproblemisalsocontainedininco-np,justbecausea 6.5.Complexity. 95 DuallyaBooleanequationsysteminstandardformcanbereducedto Booleanequationsystemhasasolutionpointwisegreaterthanthesolutionoftheoriginalone.However,inproposition3.36itwasshown conjunctionandthrowingtheotheroneaway.ingeneralthereduced aconjunctivesystem.ingeneralitwillhaveapointwiselowersolution systemintimeo(jej2). thantheoriginalone,buttheremustexistonereductiongivingthe thattheremustbeonereductiontoadisjunctivesystemhavingthe solvedinquadratictimeaccordingtoproposition6.6. samesolution.againadisjunctivebooleanequationsystemcanbe samesolution.accordingtoproposition6.5wecansolvethereduced thesolutionsoftheconjunctiveandthedisjunctiveone.hence,if reductions(outofexponentiallymany),onetoadisjunctivesystem, time.weknowthatthesolutionoftheoriginalsystemliesbetween GivenaBooleanequationsysteminstandardformwecanguesstwo weguessed\correctly"andbothsystemshavethesamesolution,this mustalsobethesolutionoftheoriginalsystem. theotheronetoaconjunctiveone.bothcanbesolvedinquadratic righthandsideremainunchanged.byconstructionanddenition tooneofthedisjuncts.theequationswithaconjunctiononthe adisjunctionontherighthandsidewereducetherighthandside Proof:WeguessaconjunctivesystemE0:ineachequationofEwith innp\co-np. Theorem6.8SolvingaBooleanequationsystemEiscontained 3.15followsthatE0E.Thereareexponentiallymanypossibilitiesto choosesuchaconjunctivesystem.analogouslyweguessadisjunctive systeme00e.againthereareexponentiallymanypossibilitiesto
96 96 guess.ingeneralthesolutionofe0ispointwiselowerorequaltothe solutionase. solutionofe(proposition3.16).proposition3.36saysthatthereexists aconjunctivesysteme0havingthesamesolutionase.thesolution 3.16).AndagainthereexistsadisjunctivesystemE00havingthesame ofe00ispointwisegreaterorequaltothesolutionofe(proposition Chapter6.SolvingBooleanequationsystems. problemtosolvinge,i.e.([[e]])(x)=falsei([[e]])(x)=true.from andhencesolvingeisalsoinco-np. theyhavethesamesolutionthenitmustbethesolutionofe. E0andE00canbesolvedinquadratictime(propositions6.5,6.6).If Inlemma3.35itwasprovedthatthesolvingEisthecomplementary theargumentationabovefollowsthatsolvingeisalsocontainedinnp
97 algorithm. Chapter7 Inthissectionwedemonstratetwothings:Anon-trivialapplicationof Peterson'smutex themodal-calculusandresultsfromvericationwithaprototypeimplementationofthelocalgaueliminationalgorithm.forthispurpose thealgorithmsformutualexclusion(mutex)seemtobeappropriate: ononehandtheyaremoreinterestingthanthecoeemachine,but itisinthecriticalsection.thetaskofmutexalgorithmsisnowto time.whenaprocesshasaccesstothecommonsourcethenwesay shareacommonsourcewhichmaybeusedbyoneprocessonlyatone formulae. Roughlythemutexproblemisthefollowing:two(ormore)processes theyaresmallenoughtocaptureconceptseasily,ontheotherhand organizetheavailabilityofthecommonsourceinsuchawaythatit thepropertiestobeprovedresultinrathersophisticated-calculus neverhappensthatbothprocesseshaveaccessatthesametime(safety ThebasisfortheexamplespresentedhereistheworkofWalker[Wal91], (livenessproperty). whoencodedthebestknownmutexalgorithmsasccsprocessesand property)andthatarequestingprocesscannotbedeniedaccessforever
98 teedwithoutfairnessassumptions.acommonpossibilityistorequire [Vog96]pointedout,livenessformutexalgorithmscannotbeguaran- hisproperties.askindlerandwalter[wal95a,kw97]andvogler safetypropertieshewassuccessful,thereremainedopenquestions 98 triedtoprovesafetyandlivenesspropertiesforthem.whereasfor concerningliveness.onereasonisthathedidnottreatfairnessin Chapter7.Peterson'smutexalgorithm. fairnessforeverything.ingeneral,thisisnotnecessaryformostcases, WeinvestigatePeterson'smutexalgorithm.Othermutexalgorithms examplespresentedherearecontainedin[km]. 7.1Modellingthealgorithm. sumptionsformutexalgorithmstofulllthelivenessproperty.the andourinteresthereistondoutwhataretheprecisefairnessas- canbetreatedanalogously. Peterson'salgorithmworksfortwoprocessesP1andP2,eachone havingabooleanvariable,b1orb2resp.,whichissettotrueifa readsb2.duallyprocessp2writestob2andreadsb1.bothprocesses readandwritetovariablek.leti;j2f1;2gandj6=i. processwishestoenterthecriticalsection.thereisaturnvariablek theprocesswiththecorrespondingindex.processp1writestob1and takingvaluesfromf1;2gandincaseofaconictitgivesapriorityto whiletruedo begin(noncriticalsection); TheprocessesaremodelledfollowingWalker's[Wal91]approach.He waituntilnotbjork=i; bi:=true; formulatedthetwoprocessesasccsagents[mil89].eachvariableis end; k:=j; (criticalsection); bi:=false
99 7.1.Modellingthealgorithm. representedbyitsownagentandwritingtoavariableorreadingit areactionswhereaprocessagentandavariableagentsynchronize. ModellingProcessP1: =req1:b1wt:kw2:p11+:p1 99 P22 P21 ModellingProcessP2: P12 P11 =enter2:exit2:b2wf:p2 =b1rf:p22+b1rt:(kr1:p21+kr2:p22) =req2:b2wt:kw1:p21+:p2 =enter1:exit1:b1wf:p1 =b2rf:p12+b2rt:(kr2:p11+kr1:p12) Modellingthewholeprocess: L Modellingthevariablesb1,b2andkbyprocessagents: Peterson=(P1jP2jK1jB1fjB2f)nL =fb1rf;b1rt;b1wf;b1wt;b2rf;b2rt;b2wf;b2wt; B1t =b1rf:b1f+b1wf:b1f+b1wt:b1t =b1rt:b1t+b1wt:b1t+b1wf:b1f kr1;kr2;kw1;kw2g B2f B2t =b1rf:b2f+b1wf:b2f+b1wt:b2t criticalsectionandmodelthisbehaviorbyadditional-loopsforprocessp1andprocessp2.anotherpointconcernsthesemanticsofthe wealsotakeintoaccountthataprocessmayneverwishtoenterthe However,therearesmalldierences:inadditiontoWalker'sversion K1 K2 =kr1k1+kw1k1+kw2k2 =kr2k2+kw2k2+kw1k1 =b1rt:b2t+b1wt:b2t+b1wf:b2f rithmwitha(non-busy)wait-statementgivingdierentprocessagents semanticsismodelled.alternativelywealsowanttolookatthealgo- wait-statementinthealgorithm.intheprocessabovethebusy-waiting
100 100 forp11andp21: P2=req2:b2wt:kw1:P21+:P2 P12=enter1:exit1:b1wf:P1 P11=b2rf:P12+kr1:P12 P1=req1:b1wt:kw2:P11+:P1 Chapter7.Peterson'smutexalgorithm. Wedistinguishthreeconcepts:progress,weakfairnessandstrongfairness.Theydescribeconditionsforaccesstocommonsources,which 7.2FairnessandLiveness. P22=enter2:exit2:b2wf:P2 P21=b1rf:P22+kr2:P22 volved.gettingaccesstoavariableiseitherreadingthevariableor arevariablesinthecasehere,whenevermorethanoneprocessisin- writingtoit. Progress:Wheneveraprocesscontinuouslywantstohaveaccessto avariabletheneitheriteventuallycanaccessorinnitelyoftensome otherprocessesaccess. Weakfairness:Wheneveraprocesscontinuouslywantstohaveaccess processp2.a-calculusformulaexpressingthispropertyis: Strongfairness:Wheneveraprocessinnitelyoftenwantstohave VerifyingitforprocessPetersongivesfalseforbothinterpretations 1Z:[ ]Z^[req1](X:[ ]X_henter1itt) propertyforprocessp1andbysymmetryargumentsitfollowsalsofor criticalsectiontheniteventuallymaydoso.wewanttoshowthe Thelivenesspropertytoproveis,thatifaprocesswishestoenterthe accesstoavariabletheniteventuallygetsit. donotincludesomeadditionalassumptions.forexampleitiseasyto seethatinaninterleavingbasedmodelwealsohavetomakeprogress ofthewaitstatementasexpected.thepropertydoesnotholdifwe explicit.afterrequestingthecriticalsectiononeprocesscouldstopdoinganything,whereastheotheroneisreadingvariablescontinuously.
101 conditionwith-calculusexpressionsforprocesspetersonasencoded Fromthetechnicalpointofviewwecannotformulateanyfairness wewanttomakeprecise. 7.2.FairnessandLiveness. Thewholesystemisdoingsomethingallthetime,but,ofcourse,we cannotprovethattheoneprocesseventuallyentersthecriticalsection.whatfurtherfairnesspropertiesarerequiredisthepointwhich 101 Wewillusethesametechniqueandaddvariousprobesforvariable whichprocessgotaccesstowhichvariable,orwhichprocesswould accessestotheprocesses. Apropertywewanttoproveisthefollowing: liketodoso.walkerusedadditionalactions,calledprobes,inorder tomakerequest,enteringandexitingofthecriticalsectionvisible. above.everyvariableaccessresultsina-actionanditisnotvisible k2.thenewagentsforprocessesp1andp2areforinterpretationwith Requiringprogressforallvariables,afterrequestingthecriticalsection aprocessmayeventuallyenter. busywaitingarebelow. cessareinvolved.theadditionalprobesareb11,b12,b21,b22,k1and Accordingtothedenitionofprogresswehavetoaddanindividual probetoeachvariableaccessindicatingwhichvariableandwhichpro- P1=req1:b1wt:b11:kw2:k1:P11+:P1 Theformulaexpressinglivenessunderprogressconditionsisquite Peterson2=(P1jP2jK1jB1fjB2f)nL P22=enter2:exit2:b2wf:b22:P2 P2=req2:b2wt:b22:kw1:k2:P21+:P2 P12=enter1:exit1:b1wf:b11:P1 P21=b1rf:b12:P22+b1rt:b12:(kr1:k2:P21+kr2:k2:P22) P11=b2rf:b21:P12+b2rt:b21:(kr2:k1:P11+kr1:k1:P12) tothepossibilityofenteringthecriticalsectionoritfails(oneof)the progressconditions.thepossibilityoffailingprogressconditionsconsiststheninfurtherdisjunctionsinthe\pure"livenessformula1. large,buttheconstructionisratheruniform,anditrytogiveamotivation.whatisactuallyexpressedistheproperty:always,aftera request,eachpathhastofulllthefollowing:eitheriteventuallyleads
102 afterwardstheindicatingprobe.forexampleatastatewhereprocess P2wantstohaveaccesstovariablekthe-calculusformulahihk2itt itcoulddoit.inaccsprocessthestates,whereaprocesscould haveaccesstoavariablearethosewhereitcoulddoa-actionand holds.accordingtothisadditionofprobeswealsohavetomodel 102 Itissupposedthataprocess\wishes"toreadorwriteavariable,if Chapter7.Peterson'smutexalgorithm. thatavariableaccessanditsprobehavetoperformedasanatomic action.pathswheretheseactionsarenotdirectlysubsequentshould notbeconsideredandtheyalsofailtheassumptions.intheformula (e.g.:::_(hb11itt^[b11]x):::).additionallyweassumethatifprocessp2mayenterthecriticalsectionorexitthenitwilleventuallydo thisconditionisexpressedas\wheneveraprobecanbeperformedand itisnotperformedimmediately,thenthispathwillnotbeconsidered" it. Wewillhaveacloserlooktooneofthesubformulaeexpressingthe access(by[b11;b12]x)andeventuallytherewillbealwaysnoaccess pointoperatorsexpressesan\eventuallyalways"property.itisful- Accordingtothediscussionsinsection4.2thiscombinationofx- possibilitytofailaprogresscondition,e.g. (by[ b11;b12]y).thedisjunction[ b11;b12](x_y)isnecessarybe- X::::Y:hihb11itt^[b11;b12]X^[ b11;b12](x_y)::: causeofthebranchingstructure:imagineapathfailingtheprogress- condition,butonpathsbranchingothereiseventuallyanenter1 hihb11itt),butonlynitelyoftenoneoftheprocessesperformsan lledonallpaths,wherealwaysaccesstovariableb11ispossible(by action. 02X:[ ]X_henter1itt 2Z:[ ]Z _Y:hihb22itt^[b21;b22]X^[ b21;b22](x_y) _Y:hihb21itt^[b21;b22]X^[ b21;b22](x_y) _Y:hihb12itt^[b11;b12]X^[ b11;b12](x_y) _Y:hihb11itt^[b11;b12]X^[ b11;b12](x_y) ^[req1]02
103 7.2.FairnessandLiveness. _Y:hihk1itt^[k1;k2]X^[ k1;k2](x_y) _Y:hihk2itt^[k1;k2]X^[ k1;k2](x_y) _Y:hexit2itt^[exit2]X^[ exit2](x_y) _Y:henter2itt^[enter2]X^[ enter2](x_y) 103 _(hk2itt^[k2]x)) _(hk1itt^[k1]x) _(hb22itt^[b22]x) _(hb12itt^[b12]x) _(hb21itt^[b21]x) _(hb11itt^[b11]x) notsucientforliveness,asexpected.havingtriedseveralfairness Verifying2forPeterson2showsthatonlyprogressconditionsare assumptions,thefollowingturnedouttobetheweakestonethatis sucientforprovingliveness:inadditiontothegeneralprogressassumptions,weakfairnessisnecessaryforwriteaccesstob1andb2and forbothreadandwriteaccessofvariablek.theprobeswhichhaveto readandwriteaccessforvariablesb1andb2gettingthesetofprobes b11w;b21r;b22w;b12r;k1;k2(theotherpossibilitiesdonotappearin beaddedtotheprocessagentsnowhavealsotodistinguishbetween thecasehere).wegetthefollowingprocess: P1=req1:b1wt:b11w:kw2:k1:P11+:P1 P2=req2:b2wt:b22w:kw1:k2:P21+:P2 P12=enter1:exit1:b1wf:b11w:P1 P11=b2rf:b21r:P12+b2rt:b21r:(kr2:k1:P11+kr1:k1:P12) The-calculusformula3expressingtheintendedlivenessproperty isconstructedanalogouslyto2.notethattheprogressconditions foractionsb12wetc.donotappearintheformula,simplybecause Peterson3=(P1jP2jK1jB1fjB2f)nL P22=enter2:exit2:b2wf:b22w:P2 P21=b1rf:b12r:P22+b1rt:b12r:(kr1:k2:P21+kr2:k2:P22)
104 resulttrue. 104 theydonotappearintheprocess.verifying3forpeterson3gavethe _Y:hihb11witt^ 03X:[ ]X_henter1itt 3Z:[ ]Z^[req1]03 [b11w]x^[ b11w](x_y) Chapter7.Peterson'smutexalgorithm. _Y:henter2itt^[enter2]X^[ enter2](x_y) _Y:hihk2itt^ _Y:hihk1itt^ _Y:hihb22witt^ _Y:hihb21ritt^[b21r;b22w]X^[ b21r;b22w](x_y) _Y:hihb12ritt^[b11w;b12r]X^[ b11w;b12r](x_y) _Y:hexit2itt^ [b22w]x^ [k2]x^ [k1]x^ [b22w](x_y) _(hb12ritt^[b12r]x) _(hb21ritt^[b21r]x) _(hb11witt^[b11w]x)[exit2]x^[ exit2](x_y) [ k2](x_y) [ k1](x_y) Forthecaseofinterpretingthewaitstatementnotwithbusywaiting toprogressonlyfairwritingforthevariablesb1andb2issucient thenecessaryrequirementsturnouttobemuchweaker.inaddition forliveness.herealsothepositionoftherequest-probemakesadifference.inwalker'sversionofpeterson'salgorithmtherequest-probe wasplacedafterwritingb1totrue.inthiscasewecanshowthat _(hk1itt^[k1]x) _(hk2itt^[k2]x) _(hb22witt^[b22w]x) requestprobebeforewritingtob1leavesthesolutionofthisproblem onlyprocessesandformulaeveried. tothefairnessconditions. Theprooftechniqueisthesameasinthecaseaboveandwepresent criticalsection,butisnotabletosetvariableb1totrue.placingthe oneconictishiddeninthisversion:processp1wishestogetintothe onlyprogressrequirementsaresucienttoproveliveness.however,
105 7.2.FairnessandLiveness. P12 P11 P21 =enter1:exit1:b1wf:b11:p1 =req1:b1wt:b11:kw2:k1:p11+:p1 =b2rf:b21:p12+kr1:k1:p12 =req2:b2wt:b22:kw1:k2:p21+:p2 =b1rf:b12:p22+kr2:k2:p (Peterson5),itisthecasethat2doeshold! 2expressessimplylivenessunderprogressassumptions.ItwasevaluatedtofalseforPeterson4andprocessesP1andP2asabove.Forthe P22 Peterson4=(P1jP2jK1jB1fjB2f)nL =enter2:exit2:b2wf:b22:p2 modicationofp1,wheretherequestprobereq1comesafterb1wt:b11 forvariablesb1andb2hastobeguaranteed.theprobesindicating Fortherequestprobereq1inthe\correct"placeasabovefairwriting write(andread)accessforb1andb2havetobeadded.theformula 4givingtruePeterson4isasfollows: _Y:hihb22witt^ _Y:hihb12ritt^[b11w;b12r]X^[ b11w;b12r](x_y) _Y:hihb21ritt^[b21r;b22w]X^[ b21r;b22w](x_y) _Y:hihb11witt^ 04X:[ ]X_henter1itt 4Z:[ ]Z^[req1]04 _Y:hihk1;k2itt^[k1;k2]X^[ k1;k2](x_y) [b22w]x^ [b11w]x^[ b11w](x_y) _Y:henter2itt^[enter2]X^[ enter2](x_y) _Y:hexit2itt^ _(hb11witt^[b11w]x)[exit2]x^[ exit2](x_y) [b22w](x_y) _(hk1itt^[k1]x) _(hk2itt^[k2]x) _(hb22witt^[b22w]x) _(hb12ritt^[b12r]x) _(hb21ritt^[b21r]x)
106 tion6.4wasimplementedbywallner[wal93]andtheprocessesand formulaeofthischapterhavebeenveriedusingthisimplementation. ThelocalversionoftheGaueliminationalgorithmpresentedinSec ExperimentalResults. Chapter7.Peterson'smutexalgorithm. TheprogramiswritteninCandBinaryDecisionDiagrams(BDDs) suitablechoiceforouralgorithm:eachsubstitutionstepduringthealgorithmmakesacompositionofbbdsnecessary.thesizeofthebdds TheBBDpackagefromCarnegieMellonUniversitywasused.Thepro- agentstotransitionsystemsasinputfortheprogramwasperformed withtheedinburghconcurrencyworkbench. However,experimentsshowedthatBDDsareprobablynotthemost gramwasrunonasunultrasparc1.thetransformationfromccs [Bry86]havebeenchosenasdatastructureforBooleanexpressions. grewmorethanexpectedandmadefrequentandtime-consumingreorderingnecessary.belowwelisttheresultsfromtheverication procedures.bddsizesareincludedandhereandwetookonlyinto accountthesizeofthebddrepresentingtheright-handsideofthe VersionofPeterson states formula xpoints result timevericationofpetersons'smutexalgorithm equationscreated8min13min1min1min1min falsetruefalsetruetrue %ofallequations17%22%17%18%13% maximalbddsize averagebddsize substitutionsteps eliminationsteps
107 expressalways-properties,whichmakesanevaluationoftheformula gorithmcontainingtherelevantprobesforthiscase.allformulae 7.3.ExperimentalResults. isnoadvantageinthiscase.however,itturnedout,thatonly13-22% atallstatesnecessary.itistobeexpectedthatlocalmodelchecking variableofinterest(\therstequation").eachformulaintroduced intheprevioussectionwasveriedfortheversionofpeterson'sal- 107 ofthepossibleequationshadtobecreated.
108 108 Chapter7.Peterson'smutexalgorithm.
109 Chapter8 Equivalenttechniques. Themodelcheckingproblemforthemodal-calculushasbeentreated alsowithinotherframeworks,andthereexistreductionstoproblemsin automatatheoryandtheoryofgames.chapter5containsreductions versa.inthischapterwewillshowtheequivalenceofsolvingboolean ofthemodelcheckingproblemtobooleanequationsystemsandvice ustoapplythevariouspropertiesforbooleanequationsystemsfrom chapter3andsection3.2alsotothekindofalternatingautomataand itfollowsthatalgorithmssolvingoneproblemcanbetransformedin ordertosolvetheotherproblems.furthermoretheequivalenceallows playerhasawinningstrategy,ontheotherhand.fromtheequivalence equationsystemsononehand,andthenonemptinessproblemforalternatingautomataaswellasthedecisionproblemforgames,i.e.which gamesconsidered. natingautomataandthemodelcheckingproblemareequivalenttoo. resultsofsection5.2thatthenonemptinessproblemforthesealtertionandbooleanequationsystems.itfollowsthenaccordingtothe Inthissectionweshowtheequivalenceofalternatingautomataon 8.1Alternatingautomata. innitewordsovera1-letteralphabetwithaparityacceptancecondi-
110 Letbeanitenonemptyalphabet.Anitewordoverisanite Wordsandtrees. Foranoverviewoverautomataoninnitewordsandtreessee[Tho90], foralternatingautomataalso[var95]. 110 Chapter8.Equivalenttechniques. ofelementsof.thesetofinnitewordsoverisdenotedby!. sequencea0;:::;anofelementsof.thesetofnitewordsoveris denotedby.aninnitewordoverisainnitesequencea0;a1;::: arecalledleaves.abranchbofatreeisasequenceb1b2:::,such numberofitschildrenisthearityofanode.nodeswithoutchildren sor,itsparent,andanitenumberofsuccessors,itschildren.the predecessor,therootof.eachothernodehasoneuniquepredeces- nislabelledbyanelementof,writtenas(n)2.thesetof nodesmaybeeitherniteorinnite.thereexistsonenodewithout Atreeoverthealphabetisadirected,acyclicgraph.Eachnode Alternatingautomata. Alternatingautomataareageneralizationofnondeterministicautomata. thesetlim(b)asallelementsaofsuchthatinnitelymany thatb0istherootofandeachbiistheparentofbi+1.itiseither Forourpurposeautomataoveranalphabetcontainingasingleletter nite,endinginaleaf,ofinnite.givenabranchbofatreewedene aresucient. AnalternatingautomatonAisheredenedasatuple(fag;S;s0;;), nodesofbarelabelledwitha.notethatifbisnite,thenlim(b)=;. where isanacceptanceconditionwhichhastobespecied. fagisa1-letteralphabet, SisthesetofstatesofA, s02sistheinitialstate, :fags!b+(s)atransitionfunction,whichmapsastateof S(andthesymbola)toanegationfreeBooleanexpressionoverS,
111 SnS0.AsubsetS0ofSsatisesanegationfreeBooleanexpression disjunctivenormalform,allthestatesoccurringinonedisjunctform asetwhichsatisesf. fovers,iff(s0)=true.forexamplewhenfisrepresentedin alls2s0wehavethats0(s)=trueandfalseforallotherstatesin 8.1.Alternatingautomata. ForasubsetS0ofSdeneanenvironmentonstatesS0suchthatfor 111 therootofrislabelledbytheinitialstates0 treeroverswiththeproperties: ifanodenhasthechildrenn1;:::;nk,andnislabelledbyastate ArunofanautomatonAoverthe(innite)word!=a;a;a;:::isa whichcontainsforasubsetofcoloursallstatesofthesecolours.the acceptanceconditionis: everynitebranchendsinaleaflabelledwithastates,suchthat coloursf1;:::;mgforsomem2in,andanacceptancesetfs, ArunrofAisacceptingiftheacceptanceconditionholds,which hereisaparitycondition.includesalabellingofthestateswith s,where(a;s)=f,thenthelabelsetfr(n1);:::r(nk)gsatisesf. letteralphabetasdenedabovecanbeinterpretedasanon-deterministic tree-automatonandviceversa.inthiscasearunofanautomatona foreveryinnitebranchbthestatewiththeleastlabelinlim(b) Wemayalsomentionnowthatanalternatingautomatonoverasingle- Anautomatonisemptyifithasnoacceptingrun. (a;s)=true overthe(innite)treeisatreeroverswiththeproperties: therootofrislabelledbytheinitialstates0 iscontainedinf. Theacceptanceconditionforarunisasabove. denefors2stheautomatonasasa,butwithinitialstates;for ifanodenofrhasthechildrenn1;:::;nk,thenfor(a;r(n))=f thesetoflabelsfr(n1);:::r(nk)gsatisesf eachnodenofrwithchildrenn1;:::;nkthereexistsanoden0in withchildrenn01;:::;n0k,suchthateverysubtreeofrrootedwith niisarunofar(ni)overthesubtreeofrootedwithn0i.
112 FromBooleanequationsystemstoalternating 112nondeterministictree-automatonisnonempty. Proposition8.1AnalternatingautomatonAoverinnitestrings anda1-letteralphabetisnonemptyitheinterpretationofaas Chapter8.Equivalenttechniques. automata. GivenaBooleanequationsystemEandanenvironmentweconstruct SomevariableXiofEistakenasinitialstate. AE;=(fag;SE;Xi;E;;E;),where SEisthesetofallvariablesofE,i.e.SE=lhs(E)[rhs(E). IfX=fisanequationofE,wedene(a;X)=f,otherwise anautomatonae;asfollows. TheacceptancesetFcontainsallstatesXwhereX=fisan equationwithagreatestxpointoperatorine.thelabellingof (a;x)=(x). Theorem8.2ForaBooleanequationsystemEandanenvironment itisthecasethat([[e]])(xi)=trueiae;(fag;se;xi;e;;e;) isnonempty.moreoverae;hassizeofo(jej). getsthelabel1,thesecond2etc..stateswhichdonotcorrespond Hencetheirlabellingisirrelevant. toleft-handsidevariablesineareonlylabelsofleavesinallruns. thestatesfollowstheorderofthevariablesine:therstvariable Theproofisintheappendix. FromalternatingautomatatoBooleanequation phabetwithparityconditiontoabooleanequationsystemissimple. GivenanautomatonA(fag;S;s0;;)weconstructaBooleanequationsystemEAasfollows: systems. Thetransformationfromanalternatingautomatonovera1-letteral- ThesetofstatesSisinterpretedassetofBooleanvariables.
113 8.1.Alternatingautomata. Foreachs2S\Fthereisanequations=(a;s)inEA. Foreachs2SnFthereisanequations=(a;s)inEA. TheacceptanceconditionincludesalabellingofthestatesofS.If inea,i.e.theequationisi=(a;si)isbeforeisj=(a;sj)in forsi;sj2sthelabelofsiislowerthanthelabelofsjthensicsj 113 A(fag;S;s0;;)isnonemptyi([[EA]])(s0)=true. Theorem8.3Foranalternatingparityautomatonovera1-letter alphabeta(fag;s;s0;;)thereexistsabooleanequationsystem EAofsizeO(jAj),suchthatforanyenvironmentitis: EA.(Ifsiandsjcarrythesamelabelthentheyareinthesame blockandtheirorderisirrelevant.) andtransformitbacktoanautomatonaeaasintheprevioussection. Proof:TaketheBooleanequationsystemEAasconstructedabove Itiseasytoseethatwegettheoriginalautomatonuptolabelling. lemsfollowseasily: Theequivalencefollowsthenfromtheorem8.2. Nowtheequivalenceofalternatingautomataandmodelcheckingprob- Theorem8.4ForanalternatingparityautomatonA(fag;S;s0;;) somerenamingfunction:s!s,anyenvironmentandany overa1-letteralphabetthereexistsapropositionofthemodal -calculusandamodelmwiththestatespaces,suchthatfor (s0)2jjjjtvia(fag;s;s0;;)isnonempty.itisad()jfj+1 valuationvitis: Fromtheequivalenceprovedaboveandtheresultsfromsection6.5we knowthatthenonemptinessproblemforalternatingparityautomata Complexityandrelationtootherwork. Proof:Applytheorems8.2,8.3and5.2. andthemisofsizeo(jaj2). overa1-letteralphabetiscontainedinnp\co-np.inthissection
114 morestandardacceptanceconditions,thebuchiandrabinacceptance conditions. TheBuchiacceptanceconditionforarunrofan(alternating)automataconsistsofanacceptancesetFSandtherequirement,that wewanttorelatethisresulttoothercomplexityresultsforthesame 114 probleminthetheoryofautomata.forthatpurposeweconsider Chapter8.Equivalenttechniques. (Ln;Un)gandtherequirementforarunrtobeacceptedis:foreach lim(b)\f6=;foreverybranchbofr. TheRabinconditionincludesasetofacceptingpairsf(L1;U1);:::; overa1-letteralphabettheacceptanceconditionsmakeadierence. However,concerningtheemptinessproblemforalternatingautomata thesameforallthesethreeacceptanceconditions(seee.g.lindsay [Lin88]);itistheclassof!-regularlanguages. Thelanguagesacceptedbyalternatingautomataoninnitewordsare andlim(b)\li=;. branchbofrthereexistsani2f1;:::;ngsuchthatlim(b)\ui6=; statecontainedintheacceptancesetfgetsthelabel1andeach otherstatenotcontainedinfgetsthelabel2.thelabellingtogether labelsfromf1;2g.thelabelsarechoseninsuchaway,thateach sentiallyonlytransformationsoftheacceptanceconditions. ForthecaseofBuchiautomatathestateshavetobeequippedwith tomataandfromparityautomatatorabinautomata,whicharees- ThereexistlineartranslationsfromBuchiautomatatoparityau- initialstates0isnonemptyi([[ea]])(s0)=trueforanyenvironment ofconstructionofeaitfollowsthateahasalternationdepthofat.fromthestructureofbuchiacceptanceconditionsandtheway abooleanequationsystemea,suchthatthebuchiautomatonwith toanalternatingparityautomaton,andfurtherwiththeorem8.3to condition.thuseveryalternatingbuchiautomatonacanbemapped withtheacceptancesetfisthentheequivalentparityacceptance most2;therstequationshavegreatestxpointoperators,thelast [Var95],prop.5andproposition8.1. equationshaveleastxpointoperators.applyingcomplexityresults fromchapter6.2wegetthepropositionbelow.itfollowsalsofrom
115 ForthereductionofaparityautomatontoaRabinautomatonwe colouri2f1;:::;mgwedenelidef alsojusttheacceptanceconditionneedstobetransformed.foreach 8.1.Alternatingautomata. quadratictimeandspace. automataoninnitewordsovera1-letteralphabetisdecidablein Proposition8.5ThenonemptinessproblemforalternatingBuchi 115 andproposition8.1. pairs,becauseitacceptsnothing.itiseasytoseethatthisrabinconditionacceptsthesamerunsastheoriginalparityconditionandvice versa.however,herethenonemptinessproblemfollowsfrom[ej88] pair(li;ui)withli=;canberemovedfromthesetofaccepting anduidef =fs2sjshasalabellowerthanig.notethatanaccepting =fs2fjsislabelledwithig dition(e.g.[se84,niw88,ej91,kai96]).themodal-calculuswas Representing-calculusformulaeasautomataalreadyhasalongtra- showntobeexpressivelyequivalenttoautomataoninnitetrees. modelcheckingproblemandnonemptinessofnondeterministictreeautomatawithparityacceptanceconditionfromemerson,jutlaand automataoninnitewordsovera1-letteralphabetisnp-complete. Amongknownresultstheclosesttooursistheequivalenceofthe Proposition8.6ThenonemptinessproblemforalternatingRabin andtheirresultareinterderivable.anotherapproach(e.g.see[var95, Sistla[EJS93].Withproposition8.1theequivalencepresentedhere BVW94])istorepresentaformulaofthemodal-calculusandalsothe transitionsystemas(alternating,amorphous)rabintree-automata.if theproduct-automatonoftheseisnonempty,thentheformulaholds attheinitialstateofthetransitionsystem.however,thisemptiness InthisapproachtheNP\co-NPcomplexityofthemodelchecking problemfollowsfromcomplementationarguments. problemisnp-complete,andhencetheproblemsarenotequivalent.
116 closedandinstandardform. 8.2Graphgames. StartingfromtheframeworkofBooleanequationsystemswecanderivegraphgamesasdenedin[Sti96]andshowtheequivalenceofboth 116 approaches.inthissectionweassumebooleanequationsystemsbeing Chapter8.Equivalenttechniques. chosenbytwoplayers,playeriandplayerii.theplaystartsatsome AplayponthegamegraphGEisaninnitesequenceofvertices numberofedgesofg. carryingonelabelfromfi,iigandanotherfromf;g1thegraph Gcontainsoneortwoedgesoftheformi!jforeachvertexi.The sizejgjisdenedasusualassumofthenumberofverticesandthe AgamegraphGconsistsofasetofverticesf1;:::;ng,eachofthem initialvertexi.wheneverthecurrentvertexislabelledwithithen lim(p)ofallverticeswhichhavebeenvisitedinnitelyoften.ifthe Astrategyforaplayerisadecisionfunctionfromtheplaydoneso moveandchoosesasuccessor. thecurrentvertex.dually,ifitislabelledbyiithenplayeriihasto Decidingwhoisthewinnerofaplayprequiresconsideringtheset fartothenextmove. playerihastomoveandchoosesoneofthesuccessors,whichthenis Ahistoryfreewinningstrategyisawinningstrategywherethechoice ofasuccessordoesnotdependontheinitialsequenceoftheplaydone iifshecanwineveryplay. AplayerhasawinningstrategyforthegameonGEwithinitialvertex wins;ifitislabelledwiththenplayeriiwins. leastvertexofallverticesinlim(p)islabelledwiththenplayeri IIanda.Inbothcasesaextravertexhastobeintroducedwhichinheritsallthe I-nodewithaandeachII-nodewitha.Fortheotherwayroundwehaveto takecareoftwocases:verticescarryingaianda,and,duallyverticescarryinga successorsoftheoneconsidered,butisthentheonlyimmediatesuccessorofthe originalone.intherstcasetheoriginalvertexgetsthelabelii,itsnewsuccessor thelabeli,duallyinthesecondcase.inallothercasesthelabelsodmayjust beremoved. onelabelfromfi,iig.forgettingfromthedenitiontheretooursweequipeach 1In[Sti96]gamegraphsaredenedinsuchawaythateachvertexcarriesonly
117 I(II)thereexistsauniquechoiceofasuccessorateveryI-labelled 8.2.Graphgames. sofar.thismeansthatinahistoryfreewinningstrategyforplayer (II-labelled)vertex. FromBooleanequationsystemstographgames. 117 GivenaBooleanequationsystemEwewilldeneagamegraphGE. RecallthatforagivenBooleanequationsystemEthedependency graph(seesection6.1)consistsofasetofverticesf1;:::;n;true;falseg, label,truegetsthelabel.ifxi=xj^xkisanequationofe Xi=finEvertexiofGEislabelledwith.Vertexfalsegetsthe EssentiallythegamegraphGEforEisitsdependencygraphwhere additionallyeachvertexcarriestwomorelabels.foreveryequation edgesi!jandi!kinthedependencygraph. thereisanequationxi=xj_xk(xj^xk)inethentherewillbe oneforeachleft-handsidevariableofeandtwofortrueandfalse.if thenvertexiislabelledwithi,andallotherverticesarelabelledwith II.TwomoreedgesareaddedtoGEfortechnicalreasons:false!false andtrue!true. Theproofcanbefoundintheappendix. Theexistenceofhistory-freewinningstrategiesfollowseasilyfrom thecorrespondingpropertiesforbooleanequationsystems(seealso [Sti96]). Theorem8.7PlayerIIhasawinningstrategyforthegameonGE withinitialvertexii([[e]])(xi)=true.moreoverjgej=o(jej). Proof:Followsimmediatelyfromlemma3.36andtheorem8.7. gameongewithinitialvertexi,thenshehasalsoahistoryfree winningstrategy. Proposition8.8IfplayerI(II)hasawinningstrategyforthe
118 IfvertexihaslabelIandi!jandi!kareedgesinGthen IfvertexiofGislabelledwiththerewillbeanequationXi=fi FromagamegraphGwederiveaBooleanequationsystemEG. FromgraphgamestoBooleanequationsystems. 118inEG.Therewillbenoequationsfortrueandfalse. Chapter8.Equivalenttechniques. IfvertexihaslabelIIandthereareedgesi!jandi!kinG Fori<jitisXiCXjinEG. Xi=Xj_XkisanequationofEG. thenxi=xj^xkisanequationofeg.ifthereisjustoneedge Proof:Followsimmediatelyfromthefact,thatthegamegraphdened withinitialvertexii([[eg]])(xi)=true.moreoverjgj=o(jegj). Theorem8.9PlayerIIhasawinningstrategyforthegameonG i!jfromithenxi=xjisanequationofeg. byegisagaintheoriginalgamegraph,i.e.g=geg,togetherwith lenceofdeterminingwhetherthereexistsawinningstrategyforone playerinagameandsolvingbooleanequationsystems.thisisanotherproofthatthedecisionproblemforgraphgamesisinnp\ theorem8.7 Withlinearreductionsinbothdirectionswehaveshowntheequiva- co-np.withtheequivalenceofthelatterandthemodelcheckingprobleminthemodal-calculuswegetimmediatelyananswertoanopen questionin[sti96]. Theorem8.10ForagamegraphGthereexistsapropositionof Proof:Followsfromtheorems5.2,8.7and8.9. themodal-calculusandamodelmwiththestatespaces,such thatforarenamingfunction:f1;:::;ng!sandanyvaluation withinitialvertexi.moreoverjmj=o(jgj2). Vitis: (i)2jjjjtviplayeriihasawinningstrategyforthegameong
119 canbeinterpretedasabranchofarunonanalternatingautomation asdenedintheprevioussection.thebranchisacceptediplayerii tices.theanalogytotheautomataapproachisobvious:eachplay 8.2.Graphgames. Inthissectionaplayhasbeendenedasaninnitesequenceofver- Relationtoothertechniques. 119 thisdenitionaplayisequivalenttoapathinatableauasdened vertexwiththeleastlabelbetweentherstandsecondoccurrenceof avertexhasbeenvisitedtwice.playeriiwinssuchaniteplay,ifthe theonevisitedtwiceislabelledwith,otherwiseplayeriwins.with ofvertices([sti96]).thentheterminationconditionforaplayis,that EquallyaplayonagamegraphGcanbedenedasanitesequence winstheplay. volved.amoreecientandsimplealgorithmavoidingredundancyis However,thecriteriaforpossible\reuse"ofpriorinformationarein- analgorithmwhichsolvesthedecisionproblemforniteplayshasto solvingthisprobleminatop-downmanneriscontainedin[mad92]. dealwithsameredundancyproblemastableauxhave.onealgorithm egyforplayeriiorasuccessfultableauarethesame.consequently insection6.3.thequestionwhetherthereexistsawinningstrat- Gaueliminationofsection6.4.
120 120 Chapter8.Equivalenttechniques.
121 Chapter9 InniteBoolean equationsystems. Sofarwehavebeenconcernedwithmodelcheckingonlyfornitestate systems.ithasbeenshownthattheretheproblemsofsolvingboolean boundedbuersorprogramsusingrecursivedata-structuressuchas innitestatespaceeasilyarisewhene.g.consideringsystemswithun- equationsystemsandmodelcheckingareequivalent.modelswithan naturalnumbersortrees.inthischaptertheframeworkofboolean equationsystemsontheotherhandwillbeshowntobeequivalent. sibly)innitestatespaceononehand,andsolvinginniteboolean equationsystemswillbeextendedtotheinnitecase.themodel resentablemethodforsolvinginnitebooleanequationsystems.here checkingproblemforthemodal-calculusandsystemswith(pos- approximationtechniquesarenotapplicable.wepresentanelimina- However,suchanequivalenceisonlyuseful,ifthereexistsanitelyrep- equationsystems.thiseliminationmethodiscloselyrelatedtothe tionmethodsimilartogausseliminationinsection6.4basedonarep- resentationofinnitebooleanequationsystemsbysetbasedboolean Inatableauforaninnitestatesystemthesameeectcanoccuras inthenitecase:thetableaumightcontainmanycopiesofsimilar tableaumethodofbradeldandstirling[bs91,bra92].itcombines thetop-downapproachofthetableauwithabottom-upevaluation.
122 intheeliminationalgorithmpresentedhere.itisintendedthatan theeliminationmethodsimpliesthesuccesscriterion.thenondeterminismcontainedinthetableaumethodis,ofcourse,stillcontained 122 subtrees.thebottom-upevaluationavoidsthiskindofredundancy. Chapter9.InniteBooleanequationsystems. Todeterminewhetheratableauissuccessfulornotitisnecessaryto investigatesocalledextendedpaths.itturnsoutthatthestrategyof intelligentprovermakesuseofher(notgenerallyformalizable)knowledgeaboutsystemandpropertytoproveinordertodealwiththtationforinnitebooleanequationsystems.weshowasubstitution stepandeliminationstepsimilartotheonesinthegauelimination ofsection6.4.withtheseanalgorithmisformulateddescribingthe nondeterministicpartsofthealgorithm. WedeneinniteBooleanequationsystemsandshowhowproperties bottom-upversionofthetableaumethodin[bs91,bra92].small forthecaseofnitebooleanequationsystemscanbetransfered.set basedbooleanequationsystemsareintroducedasaniterepresen- examplesdemonstratethetechnique. 9.1Denitions. InthissectionwedenesyntaxandsemanticsofinniteBooleanequationsystems.Furthermore,weshowthatforeachinniteBoolean mayconsistofinniteconjunctionsordisjunctions.however,what ofequations,ontheotherhandtheright-handsidesofeachequation twokindsofinnity:ononehandtheremightbeaninnitenumber thereexisthistoryfreewinningstrategies. InthecaseofinniteBooleanequationsystemswehavetodealwith bothsystemshavethesamesolution.intermsofgamesthissaysthat equationsystemthereexistsasysteminconjunctiveformsuchthat nitesequenceofblocks,whereablockisapossiblyinnitesetof ofaninnitebooleanequationsystemisasfollows. systems.aninnitebooleanequationsystemthereforeconsistsofa stillhastobeniteisthenestingdepthofinnitebooleanequation Booleanequationsallhavingthesamexpointoperator.Thesyntax
123 9.1.Denitions. ofitselementsisoftheformwi2ixi,vi2ixiorxiwhereiisa Denition9.1ThesetofpositiveinniteBooleanexpressions overacountablesetxofvariablesisdenotedbyib+1(x).each countableindexsetandxi2x[ftrue;falseg. AninniteBooleanequationisoftheformX=f,where2f;g, 123 X2Xandf2IB+1(X). equationsystemtherearenotwoequationshavingthesamevariable Again,fortechnicalreasons,weassumethatinaninniteBoolean 1B1:::nBnforsomen2IN. AninniteBooleanequationsystemEisanitesequenceofblocks thesamexpointoperator,j2jandjisacountableindexset. AblockBisasetofinniteBooleanequationsXj=fj,allhaving Xi=trueor(Xi)=trueforsomei2I,andfalseotherwise.Dually (Vi2IXi)()=falseifforsomei2IeitherXi=falseor(Xi)=false. ontheleft-handside.thedenitionsofthesetofleft-handsidevariableslhs(e)andright-handsidevariablesrhs(e)ofaninnitebooleamultaneoussubstitutionofallxi2xbybifori2i,suchthat ForsomeindexsetIandbI2IBIwedenoteby[XI=bI]thesi- [XI=bI](Xi)=bifori2Iandotherwise[XI=bI](Xi)=(Xi). aredenedasinthenitecase.wehave(wi2ixi)()=true,if equationsystemareasinthenitecase.alsoenvironments:x!ib ThesemanticofaninniteBooleanequationsystemisdenedrecursively.IncontrasttothenitecaseineachstepaninniteBoolean equationsystemisnotreducedtosystemswithoneequationless,but withoneblockless. wherelhs(b)=fxi2xji2igforsomeindexseti,andb2ibi. XI:B([[E]])=\fb2IBIj8i2I:bifi([[E]][XI=b])g Denition9.2LetBEbeaninniteBooleanequationsystem, XI:B([[E]])=[fb2IBIj8i2I:bifi([[E]][XI=b])g [[BE]]=[[E]][XI=XI:B([[E]])],where [[]]=
124 124 Withthisdenitionofthesemanticwecanmakeuseofallthepropertiesprovedforxpointequationsystemsinchapter3.Inthiscasewe interpretablockaboveasonevectorvaluedxpointequation.how- Chapter9.InniteBooleanequationsystems. ever,weoftenwanttoargueaboutasinglebooleanequation,not fromablockandconsideritasoneblock.whenarguingaboutin- nitelymanybooleanequationsthenblockscontaininginnitelymany equationsshouldbesplitbeforeapplyingtherelevantlemmata. aboutawholeblock.thereforeweneedthepropertybelowabout splittingofblocks.thenitisalsopossibletosplitasingleequation Lemma9.3Let B,B1andB2beblocks,whereB=B1[B2. E1,E2beinniteBooleanequationsystems, andanenvironment. saysthatforeverybooleanequationsystemeandenvironmentthere fromxpointexpressionstoxpointequationsystems.detailsareleft tothereader. Wenowshowapropertywhichistheinniteversionoflemma3.36.It Proof:FollowsfromBekic'sTheorem2.24andthetransformation existsaconjunctivebooleanequationsysteme0suchthate0e,and Then[[E1BE2]]=[[E1B1B2E2]]. [[E0]]=[[E]].Intermsofgamesthismeansthatalsointheinnite casetherearehistoryfreewinningstrategies. Theorem9.4GivenaninniteBooleanequationsystemE= IfjXk=Vi2IXiisanequationinblockBjofEthenitisalso 1B1:::nBnandanenvironmentthereexistsaninniteBoolean junctionsontheright-handside,suchthat IfjXk=XiisanequationinblockBjofEthenitisalsoan equationsysteme0=1b01:::nb0nsuchthate0containsnodis- anequationinb0jofe0.
125 9.2.Equivalencetothemodelcheckingproblem. IfjXk=Wi2IXiisanequationinblockBjofEandIis [[E]]=[[E0]] blockb0jofe0.ifiisemptythenjxk=falseisanequationof nonempty,thenforsomei2itheequationjxk=xiisin 125 Aproofcanbefoundintheappendix. 9.2Equivalencetothemodelchecking ThetransformationfunctionE1mapsapair(;M)consistingofa systemsonlyoneconjunctoronedisjunctontheright-handsideof eachequationwehavetointroducenewvariables. nitestatespacestoinnitebooleanequationsystemsdoesnotdier fromthenitecase.however,asweallowforinnitebooleanequation Essentiallythetransformationofthemodelcheckingproblemforin- problem. statespacestoaninnitebooleanequationsystem. ThefunctionE1performsthetransformationsfromanestedxpoint formulatoaxpointequationsystemandcreatesthebasicblock modal-calculusformulaandamodelmwithapossiblycountable structureofthewholesystem.byintroductionofnewvariablesand constantsitalsoreduceseachright-handsideexpressiontoasingle variable,constant,modality,disjunctionorconjunction(andnocombinationofthose).e1referstoasetoffunctionsfe1;e2;:::g,which WeomittheargumentMofE1whenitisclearfromthecontext. relatedtostatesiofthetransitionsystem. createthebooleanequationswithinoneblock.eacheifori2inis E1(1_2)=E1(1)E1(2) E1(1^2)=E1(1)E1(2) E1([a])=E1() E1(X)= E1(Q)=
126 126 E1(X:1_2)=(X1=E1(X0_X00))(X2=E2(X0_X00))::: E1(X:1^2)=(X1=E1(X0^X00))(X2=E2(X0^X00))::: E1(hai)=E1() E1(X0=1)E1(X00=2)forfreshX0,X00 Chapter9.InniteBooleanequationsystems. andfori2in E1(X:)=(X1=E1())(X2=E2()):::E1() Ei(Q)=(trueifsi2V(Q) ifisnotaconjunctionordisjunction Ei(X:)=Xi Ei(hai)=_ Ei([a])=^ Ei(X)=Xi sia!sjej() falseelse V(Xi)=trueisi2V(X). ThetransformationfunctionE1alsomapstoavaluationVanenvironmentVdenedasfollows: Proposition9.5ThepropertyX:holdsatstatesioftransitionsystemTinthemodelM=(T;V),sij=MX:,ithe correspondinginnitebooleanequationsystemhasthesolutiontrue forxi,i.e.forallenvironmentsvitisthecasethat section5.2isimmediatelyapplicabletotheinnitecase. introductionofnewvariablesandequationsiscorrectduetolemma systemtoamodelcheckingproblemworkshere.theconstructionof Proof:Theproofisanalogoustotheoneofproposition5.1.The AlsothebackwardstransformationfromaninniteBooleanequation ([[E1((X=);M)]]V)(Xi)=true.
127 9.3.SetbasedBooleanequationsystems. ([[E]])(X)=([[E(;M)]])((X)) X2lhs(E)andenvironmentswehave Theorem9.6ForeachinniteBooleanequationsystemEthere existsapropositionofthemodal-calculusandamodelm,such thatforavariablerenamingfunctiononthevariablesofe,all 127 SofarwehaveintroducedinniteBooleanequationsystems,showed 9.3SetbasedBooleanequationsystems. Proof:SeeproofofTheorem5.2 thatvariouspropertiesofthenitecasealsoholdfortheinnite,and thatthemodelcheckingproblemforpossiblyinnitestatespacesand innitebooleanequationsystemsareequivalent.howeverthisresults ThereforehereTheorem9.4iscrucial.Foreverymodelcheckingprob- TheniterepresentationwegiveheredealsonlywithinniteBoolean onlybecomeuseful,ifwendaniterepresentationofinniteboolean equationsystems.thisistheaimofthissection. lemwegetaninnitebooleanequationsystem,andforeveryin- nitebooleanequationsystemethereexistsanotherinniteboolean existdisjunctions,thentheyconsistofnotmorethanonedisjunct). solutionaseandbeingnitelyrepresentable. equationsysteme0withoutproperdisjunctions,buthavingthesame equationsystemswhichcontainnoproperdisjunctions(i.e.ifthere ThekindofBooleanequationsystemswhichwillbeintroducedhere Herethisideageneralizestovariablesforpairsconsistingofasetof iscalled\setbased".intuitivelyinabooleanequationsystemderived statesandaxpointvariable,andthevariablewillbetrue,ifthe fromamodelcheckingproblemthereisonevariableforeachpair correspondingxpointformulaholdsatallstatescontainedintheset. consistingofastateandaxpointvariable.thevariablewillbetrue, Thesetsconsideredheremayofcoursecontaininnitelymanystates ifthexpointformulacorrespondingtothisvariableholdsatthestate. andthisisthetechniquewhereniterepresentationscanbeobtained.
128 thatpurposeweneedpartialmappings;1;:::.eachright-handside theinnitebooleanequationsystem,towhichitistransformed.for mationtoaninnitebooleanequationsystem.thesemanticsofa setbasedbooleanequationsystemisthendenedbythesemanticsof variableinasetbasedbooleanequationsystemwillbeequippedwith 128 EncodedinasetbasedBooleanequationsystemwillbeatransfor- Chapter9.InniteBooleanequationsystems. M!P(S).Thenwealsodene(N)=Ss2N(s)forNS. Theconcatenation21andunion1[2of2:M2!P(S)and 1:M1!P(S)aredenedintheusualway: ForthestatespaceSandsomeMSletthefunctionbe: suchamapping. Givenafunction:M!P(S)dene and1[2:(m1[m2!p(s) 21:(M1!P(S) s17!fs2sj9s22m2:s221(s1)ands22(s2)g i+1def 0def def =Id;theidentityfunction =[ =i i2ini s7!1(s)[2(s) wellfounded. WenowdenethesyntaxofsetbasedBooleanequationsystems. denes1<s2ifs12(s2).wewillsayiswellfounded,if<is Anorder<onMSisdenedbyafunction:fors1;s22M (X;M)2XisaBooleanvariable, (X;M)=Vj2J(Xj;Mj;j),where Denition9.7AsetbasedBooleanequationisoftheform: 2f;g, M;MjSforallj2J,
129 9.3.SetbasedBooleanequationsystems. Jisaniteindexset, (Xj;Mj)2X[ftrue;falseg, j:m!mjforallj2j. AsetbasedBooleanequationsystemisanitesequenceofsetbased Booleanequations. 129 viaatransformationtofetoaninnitebooleanequationsystem. ThesemanticsofasetbasedBooleanequationsystemEisdened Informally,asetbasedequation(X;M)=Vj2J(Xj;Mj;j)will bemappedtoasetofinnitebooleanequations,eachoftheform Xs=fs,wheres2Mandfsisaconjunctionwhichwillbedened T(((X;M)=^j2J(Xj;Mj;j))E)= below. AssumeM=fs01;s02;:::g.ThenT()= (Xs01=^j2J^ t2j(s01)xj;t)(xs02=^j2j^ Xj;t=trueifXj=true, where Xs0i2X, Xj;t2X[ftrue;falseg, t2j(s02)xj;t):::t(e) Xj;t=falseifXj=false. (Xj;Mj)=false,thentheinnitedisjunctionalsogetsfalse,i.e., Itiseasytosee,thatifinVj2J(Xj;Mj;j)foroneofthedisjuncts systemeisdenedrelativelytoanenvironmentandisitselfan [[E]]=0,where0((X;M))=(Vs2MXs)([[T(E)]]) environment. Denition9.8ThesemanticsofasetbasedBooleanequation ([[((X;M)=Vj2J(Xj;Mj;j))E]])((X;M))=false.
130 andstirling[bs91,bra92].intheirmethodthesuccessofatableau 130 abottom-upevaluationversionofthetableaumethodofbradeld 9.4Eliminationmethod. InthissectionwepresentaneliminationmethodforsetbasedBoolean equationsystems.similarlytothenitecaseitcanbeinterpretedas Chapter9.InniteBooleanequationsystems. methodthistaskissolvedbythemappingsinaverysimpleway. Analogouslytothenitecase(seesection6.4)wedeneasubstitution stepandaneliminationstepinasetbasedbooleanequationsystem, andshowthattheypreservethesolution. Firstweshowthesubstitutionstep.Whenperformingonesubstitution stepinasetbasedbooleanequationsystemethisstandsforapossibly requiresinvestigationofsocalledextendedpaths.intheelimination innitenumberofsimultaneoussubstitutionstepsinthecorresponding innitebooleanequationsystemt(e). Lemma9.9Let E1,E2,E3besetbasedBooleanequationsystems, M;N;N0S,whereNN0 assumingthatforallj2jitisy6=xj fn0=^ fm=(y;n;y)^^j2j(xj;mj;j); f0m=^ k2k(yk;nk;k); Theproofisintheappendix. anenvironment. Then[[E1(X(X;M)=fM)E2(Y(Y;N0)=fN)E3]] =[[E1(X(X;M)=f0M)E2(Y(Y;N0)=fN)E3]]. k2k(yk;nk;yk)^^j2j(xj;mj;j); mayjustbesubstitutedbytrueorfalse.herewheneliminatingavariableadditionallythemappingsofallotherright-handsidevariables systemstheright-handsideoccurrencesoftheleft-handsidevariable Nextweshowtheeliminationstep.IncaseofniteBooleanequation
131 vestigationofextendedpathsinthetableaumethod. 9.4.Eliminationmethod. ofthisequationareextended.intuitivelythiscorrespondstothein- Lemma9.10Let E1andE2besetbasedBooleanequationsystems, (X;M)=(X;M;)^Vi2I(Xi;Mi;i)asetbasedBoolean 131 anenvironment,and 0def equation, Aproofcanbefoundintheappendix. BasedonthesebothlemmataisthealgorithminFigure9.1.Itstask If=then0=[[E1((X;M)=Vi2I(Xi;Mi;i))E2]]. If=andiswellfoundedthen0isasinthecasefor=, ifisnotwellfoundedthen0((x;m))=false. =[[E1((X;M)=(X;M;)^Vi2I(Xi;Mi;i))E2]] collectedintheblockt((z;s0)=g).evaluationevalofconjunctions allotherequationszs=gsremainunchanged.alltheseequationsare ronmentitis([[e]])(xs)=true.creatinganequation(z;s0)=g handsideofanequationzs=gsineonedisjunctisselected,whereas istoshowthatforaninnitebooleanequationsystemeandenvi- isheredonebythefollowingrules: includesanondeterministicchoice:fromeachdisjunctionontheright- Thealgorithminpseudocodeisasfollows: (false;)^^i2i(xi;mi;i)=(false;) (true;)^^i2i(xi;mi;i)=^i2i(xi;mi;i) systemsandproveditcorrect.thequestionisstill,whetheritisalways SofarwepresentedanalgorithmforsolvingsetbasedBooleanequation possibletondarepresentationofaninnitebooleanequationsystem assetbasedbooleanequationsystemsuchthatfromsolvingthelatter ^;=(true;)forany thesolutionoftherstcanbederived.
132 132 Apply,ifpossible,aneliminationstep; fx:=eval(fx); E0:=X(X;M)=fX; whilenotfx=(true;)orfx=(false;) CreateanequationX(X;M)=fX,suchthats2M; Chapter9.InniteBooleanequationsystems. doselect(y;n;y)fromfx; Figure9.1.EliminationalgorithmforinniteBooleanequationsystems. odevaluateeachequationz(z;m0)=eval(fz); CreateanequationY(Y;N0)=fY,whereNN0; InsertY(Y;N0)=fYinE0accordingtothetransformation; Proposition9.11ForaninniteBooleanequationsystemEand Applyallpossibleeliminationstepsandsubstitutionsteps; consistsintheselectionofasetofstateswhencreatinganewequation. suchthatthesolutionispreserved.theothernondeterministicchoice systeme.theorem9.4saysthatthereexistsachoiceofdisjuncts TheoneisthechoiceofdisjunctsintheinniteBooleanequation Proof:Thealgorithmincludestwosortsofnondeterministicchoices. canevaluateavariable(x;m)totrue,wheres2m. environment,where([[e]])(xs)=truethealgorithminfigure9.1 method.)wehavetomakesurethatthereexistchoices,suchthatthe (Notethatthischoiceiscomparabletothethinruleinthetableau variablesofthesystemewhichhavethesolutiontrue.hencethereare thesolutiontrue,i.e.nydef Thesimplestchoiceiscollectingallvariablesofablock,whichhave nitenumberofthesesets.whenrestrictingthechoiceofsetstothese blockofethereexistsonesetofthiskind,andthereforethereisjusta resultingsetbasedsystemcontainsonlyanitenumberofequations. NYtheresultingsetbasedsystemE0isnite.Notethatitcontainsall =fs2sj([[e]])(ys)g=true.foreach
133 9.5.Examples. enoughequationsinordertoapplythesubstitutionandelimination steps,whicharecorrectaccordingtolemmata9.10and Examples. 133 Wewanttodemonstratetheeliminationmethodbytwoexamples. Theproblemsarebothcontainedin[Bra92]. -calculusthisis:s2jjz:[ ]ZjjTV. everypathstartingatshasonlynitelength.intermsofmodal ForthetransitionsystemTbelowwewanttoshowthepropertythat sbbbbbp TTTTTTTTB Xs11 s33 s00 s22xxx s10 InarststepwederivetheinniteBooleanequationsystemforthe s21 s32xx s31 s20 modelcheckingproblemabove. Xs30 Zsij=Zsi(j 1) Zs=Vi2INZsiifori;j2INand0<ij andpropertytoprovecomesin.ononehandineachdisjunction ThenextstepistondarepresentationassetbasedBooleanequation system.ingeneralthisisthepartwheretheknowledgeaboutsystem oftheinnitesystemonedisjuncthastobeselected,whichisnot innitesystemasuitablepartitionofthestatespacehastobefound. necessaryinthecasehere.ontheotherhandforeachblockofthe Zsi0=true fori2in
134 134 Asabbreviationweintroducethesetsandmappings M1def M2def M3def 0:s7!f(0;0)g =f(i;i)ji2innf0gg =f(i;j)2ininj0<jig =f(i;0)2iningchapter9.innitebooleanequationsystems. 2:8><>:M2!P(M2) 1:s7!M1 (i;j)7!f(i;j 1)gforj>1 ThesetbasedBooleanequationsystemisthen: 3:8><>:M2!P(M3)? willdenoteanarbitrarymapping (i;1)7!f(i;0)g (i;j)7!;forj>1 (i;1)7!; Theprocedureofsolvingthisequationsystemisnowdoneindetail. Wesubstitutetheright-handsideofequation9.3intoequation9.2 gettingforequation9.2: (Z;M2)=(Z;M2;2)^(Z;M3;3) (Z;M3)=(true;?) (Z;fsg)=(Z;M1;1)^(Z;f(0;0)g;0) (9.1) (Z;M2)=(Z;M2;2)^(true;?) (9.2) (9.3) Inthelaststepwesubstitutetheright-handsidesofequations9.5and Nextweapplyaneliminationsteptoequation9.4.Because2is wellfoundedweget: 9.3intoequation9.1. (Z;M2)=(true;?) (9.5) (9.4) (Z;fsg)=(true;?)^(true;?) (9.6) (9.7)
135 9.5.Examples. whichgivestheexpectedresultzs=trueors2jjz:[ ]ZjjTV.C ThesecondexampleisoriginallyaPetriNetexamplein[Bra92].Here wedemonstrateitsversionbasedonatransitionsystem.theproperty Thiswillbeshownfortheinitialstates00ofthetransitionsystembelowandthecorrespondingexpressioniss002jjY:Z:[c]Y^[ c]zjjtv. 135 toproveisthatonallpathsac-transitionoccursonlynitelyoften. s00 c s01 s11 c s02 c s03 c i2f1;2g,j;k2inandk>0.denethemappings Weimmediatelypresentasetbasedsystem,whereitisassumedthat s101((1;j))=(f(1;j)gforj1 ;forj=0 s12 s13 ::: 5((1;k))=(f(1;k 1)g)fork>1 3((0;j))=f(0;j+1)g 4((0;j))=f(1;j)g 2((1;j))=(;forj1 f(1;0)gforj=0 ThenasetbasedBooleanequationsystemequivalenttothemodel checkingproblemis: (Y;f(0;j)g)=(Z;f(0;j)g;id) 6((1;1))=f(1;0)g; fork=1 (Z;f(0;j)g)=(Z;f(0;j)g;3)^(Y;f(1;j)g;4)(9.10) (Y;f(1;j)g)=(Z;f(1;k)g;1)^(Z;f(1;0)g;2)(9.9) (9.8)
136 136 Aftersubstitutionofequation9.12intoequations9.11and9.9and eliminationstepsinequations9.10and9.11weget: (Z;f(1;k)g)=(Z;f(1;k)g;5)^(Z;f(1;0)g;6)(9.11) (Z;f(1;0)g)=(true;?) Chapter9.InniteBooleanequationsystems. (Y;f(0;j)g)=(Z;f(0;j)g;id) (Y;f(1;j)g)=(Z;f(1;k)g;1)^(true;?) (9.12) (9.13) 9.13andalso9.16in9.14. Nowwesubstitutetheright-handsideofequation9.15inequation (Z;f(1;k)g)=(true;?) (Z;f(1;0)g)=(true;?) (Z;f(0;j)g)=(Y;f(1;j)g;43) (9.15) (9.16) (9.17) (9.14) Thelastsubstitutionof9.19in9.18givestheresult (Y;f(0;j)g)=(Y;f(1;j)g;id43) (Y;f(1;j)g)=(true;?) ::: (9.18) anditisprovedthats002jjy:z:[c]y^[ c]zjjtv. (Y;f(0;j)g)=(true;?) (9.19) tionsystemscanbeextendedinordertodealalsowithinnitestate spaces.themodelcheckingproblemforinnitestatespacesandsolvingbooleanequationsystemswereshowntobeequivalent.whilstthe tofullyautomaticproving.therstallowstoconsideronlyarelevant thetableaumethodthereandtheeliminationmethodpresentedhere arecloselyrelated.themainadvantagesofthetableaumethodarethe theoreticalapproachdiersverymuchfromtheonein[bs91,bra92], 9.6Conclusion. InthischapterweshowedthatthetechniquesforniteBooleanequa- C onesoflocalmodelcheckingandcomputerassistedprovingincontrast
137 9.6.Conclusion. partofthestatespace,whichispossiblyamuchsmallersubset.the lattergivesthepossibilitytosetupaprooffollowingtheknowledge aboutthespecialstructureandpropertiesofasystemincontrastto traversingawholestatespaceandtryingtoproveeverysubformula ateverystate,whichmakesprovingpropertiesimpossibleforinnite systems.theeliminationalgorithmcombinesthetop-downstrategy 137 wegettheadvantagesofthetableaumethod,butwearealsoableto ofthetableauwithabottom-upevaluation.withthiscombination avoidtheinherentredundancyoftableauxaswellasexplorationof Andersen[And94b]describedanothermethodforperformingmodel extendedpathsforthesuccesscriterion. -calculustoinnitebooleanequationsystems,butdidnotderivea andalsosimilartothetableausystemof[bs91,bra92].itimproves checkingoninnitestatesystems,presentedasasetofrewritingrules niterepresentation. thetableaumethodinthesensethatthesuccesscriterionforaleafis derivablefromthepathleadingtothatleafratherthanbyanexplorationofpossiblythewholetableau. AlreadyWallner[Wal94]transformedmodelcheckingforthemodal
138 138 Chapter9.InniteBooleanequationsystems.
139 Chapter10 Conclusion. showntobeequivalentforboth,modelswithinniteandwithnite statespace. Theapproachwasanalgebraicone:modelcheckingwastransformed tosolvingbooleanequationsystemsandbothproblemshavebeen Inthisthesisweattackedmodelcheckinginthemodal-calculus. 10.1Finitestatespacemodelchecking EquivalencetosolvingBooleanequationsystems themodelcheckingproblem:right-handsidesofequationsarenegationfreebooleanexpressions,theequationsareorderedlinearly,and eachequationisequippedwithaminimalityormaximalitycondition; thelogicalmodalitiesdisappear,andthemodelisencodedintheequa- Booleanequationsystemsasusedherehaveasimplerstructurethan checkingproblemtoabooleanequationsystem.withthisresult anyalgorithmsolvingoneoftheproblemsalsosolvestheotherone. theequivalenceofbothproblemsbyareductionwhichmapsamodel spacestosolvingbooleanequationsystems.furtherwehaveshown Otherpeoplehavereducedthemodelcheckingproblemfornitestate tionsystem.booleanequationsystemsareinterpretedovercomplete
140 140 latticesandresultsoflatticetheorygivesupportinndingnewalgorithms. Algorithmsandcomplexity Thereexistseveralalgorithmswhichsolvethemodelcheckingproblem Chapter10.Conclusion. standing.weintroducedanewalgorithm,similartogauelimination plexity.themodel-checkingproblemisknowntobeinnp\co-np, ingallofthemwithinoneframeworkhelpedtogetaclearerunder- anditisbelievedthatthereexistsanalgorithmsovingtheproblemin polynomialtime.butsofar,nopolynomialalgorithmhasbeenfound. Existingmodel-checkingalgorithmsusevarioussettings,andinterpret- fornitestatespaces.however,theyallhaveexponentialtimecom- alongtimetondanexamplewherethisalgorithmhasexponential behaviour,i.e.theexpressionscreatedhaveexponentialsize.while forlinearequationsystems,inaglobalandalocalversion.ittook lookingforitmanyexamplesoccurredwherethetableaumethodand theapproximationtechniquehaveexponentialtimecomplexity(and alsospaceforthetableau),butgaueliminationsolvestheminlineartimeandspace.thedicultyinndinganexponentialexample GaueliminationisindependentofthealternationdepthofaBoolean equationsystemora-calculusformula(butdependsonthestructure mightindicatethattheaveragecomplexityoftheproblemismuch betterthanexponential.furthermore,weshowedthatcomplexityof alternationdepth.obviously,isnotinherenttotheproblemthatalgorithmssolvingitareexponentialinthealternationdepth.thisgives anargument,thattherecouldbeapolynomialalgorithmcombining ideasofapproximationandeliminationapproach. Application Fairnesspropertiesarequitediculttoexpressinthemodal- -calculusallowstoexpress\innitelyoften"andthisisanecessary oftheexpressions).approximationalgorithmsareexponentialinthe calculus.usuallystatementsarerestrictedtothefactthatthemodal
141 ingredientforfairnessproperties.wegaveinsection*7examples whichallowthederivationofaschemeforengineering\real"liveness propertieswithfairnessassumptions.somefairnessandliveness propertiescanalsobeexpressedinothertemporallogics,suchas 10.1.Finitestatespacemodelchecking CTL*,buttranslationfromtheselogicstomodal-calculusisfor allinterestinglogicsexponentialorevenworse.thereforeitisuseful 141 exampleshelpwithengineeringofnewformulae. Otherframeworks Modelcheckinginthemodal-calculushasalreadybeentreatedin toformulatepropertiesdirectlyinthemodal-calculusandour otherframeworks.welookedatthemfromtheperspectiveofboolean equationsystemsandcouldshowequivalencesforautomata-theoretic andgame-theoreticproblems. Automatatheory modelcheckinginthemodal-calculustoautomata-theoreticprob- Wewereabletoshowanewresult:theequivalenceofsolvingBoolean Mapping-calculusformulaetoautomataalreadyhasalongtradition. automata.thereisastrongclaim,thatmodal-calculusexpressions dition.theequivalencetomodelcheckingfollowsimmediatelywith lems.however,allautomatapreviouslyconsideredhavebeentree- resultsfromchapter5.inotherworktherearevariousreductionsof equationsystemsandtheemptinessproblemforalternatingautomata correspondtotree-automata,andthisideahasbeentransferredto oninnitestringsovera1-letteralphabetandparityacceptancecon- modelcheckingwork.ourresultdemonstratesthatthisisnotanecessaryfeature.nonewcomplexityresultsfollowdirectlyfromour tondasolution. equivalence,butnowalsoresultsofalternating!-automatamayhelp
142 142 WehaveshowntheequivalenceofsolvingBooleanequationsystems andgraphgames.indoingthiswegaveananswertotheopenquestion Gametheoryisanactiveareaofresearchandthereexistreductionsof ofwhethergraphgamesarereducibletomodelcheckingproblems. Chapter10.Conclusion. 10.2Innitestatespacemodelchecking answertothecomplexityofthemodelcheckingproblem. thatanswerstoopencomplexityquestionsingametheorywillgivean \subexponential"algorithm(2opn)(see[sti96]).thereissomehope graphgamestoe.g.simplestochasticgame,forwhichthereexistsa ForthecaseofinnitestatespacesweintroducedinniteBoolean Translatingintogame-theoreticterms,wealsoshowedtheexistenceof EquivalencetosolvingBooleanequationsystems equationsystemsandshowedtheequivalenceofmodelcheckingin themodal-calculusandsolvinginnitebooleanequationsystems. theexistenceofhistory-freewinningstrategieswasacrucialconditionforrepresentinginnitebooleanequationsystemsbynite,set basedbooleanequationsystems.thealgorithmiscloselyrelatedto thetableaumethodofbradeldandstirling[bs91,bra92],but,like inthenitecase,avoidingredundancyoftableaux.thebottom-up eliminationalgorithmforinnitebooleanequationsystems.here, history-freewinningstrategiesforthecaseofinnitestatespaces. Algorithm AnalogouslytoGaueliminationforthenitecasewederivedan strategyforsolvingsetbasedbooleanequationsystemsgaveanother Likeinthetableausystemthereisahighgradeofnondeterminism minesuccessofaleafisreplacedbyiterativefunctioncompositions whichseemstobeeasiertreatableforanimplementation. advantage:thecomplicatedexplorationofextendedpathstodeter-
143 inherentintheeliminationalgorithm.theideaofmakinguseof knowledgeaboutasystemandapropertytodirectaproofisquite attractive.ifthesupposedpropertiesaboutasystemandthesystem 10.2.Innitestatespacemodelchecking donotcoincidethenthesolutionofthesetbasedsystemconstructed willbefalse.thisalsoimmediatelygivesdiagnosticinformation.it wouldbeinterestingtotrythisapproachwithrealworldexamples. 143
144 144 Chapter10.Conclusion.
145 AppendixA A.1ProofsofChapter3. Thesolutionof[(X=f)E]isthelexicographicallyleast Proposition3.5Thesolutionof[]is. (w.r.t(x=f)e)environment1satisfying: (1)f(1)=1(X)and (2)1isthesolutionof[E][X=1(X)]. Proof:Assumethat=.Thecase=isdually. (8)01(X)1(X) (7)f(01)=01(X) ontheotherhandfor (6)01def (5)1(X)Tfajaf([E][X=a])gfrom(3)and(4) (3)1=[E][X=1(X)] (4)1(X)=f([E][X=1(X)]) =[E][X=X:f([E])] 1islex.leastenv. from(1) from(2) (9)1(X)=X:f([E])] from(5)and(8) fullling(1)and(2)
146 Proof:Followsdirectlyfromproposition Corollary3.7If[E]=0then[E(i)]0=0for1in. AppendixA.Appendix equationsystemsconcerningtheindependenceofequationswithdifferentvariables. Lemma3.10LetE1andE2bexpoint-equationsystems,suchthat lhs(e2)\rhs(e1)=;. Then[E1][E2]=[E1E2]. Theproofofproposition3.9isnowbyinductiononthestructureof E. AssumeX:fisanunnestedexpression,i.e.E(X:f)=X:f,and Proposition3.9LetX:fbeaxpointexpressionoveralattice(A;) andanarbitraryenvironment. Then(X:f)()=([E(X:f)])(X). Proof:FortheproofofthispropositionweneedapropertyofBoolean lhs(e1)\rhs(e2)=;, lhs(e1)\lhs(e2)=;, Nowassumethat1X1:f1;:::;lXl:flarethedirectxpointsubformulaeofX:f(andbyassumptionthenamesofvariablesin xpointexpressionsareunique,suchthatx1doesnotoccurin =([X=X:f()])(X) ThesameholdsforunnestedX:f ([X:f])(X)=([][X=X:f([])])(X) anenvironment. 2X2:f2;:::;lXl:fletc.).Furthermoreletfor1ilandSA [E(iXi:fi)][X=S]def =(X:f)() ([X:f])(X)=([(X:E0(f))E(1X1:f1):::E(lXl:fl)])(X) =([(X:E0(f))E1:::El])(X) =([E1:::El][X=X:(E0(f)([E1:::El]))])(X) =[Ei][X=S]=(iXi:fi)([X=S])
147 A.1.ProofsofChapter3. AgainthesameholdsfornestedX:f. =X:(E0(f)([E1:::El]))(lemma3.10) =X:(E0(f)([E1]:::[El]) =X:(E0(f)([X1=1X1:f1;:::;lXl:fl)) =(X:f)() 147 inductionstep:[e]1[e]2 Lemma3.11If12then[E]1[E]2. inductionhypothesis:assumethatforall12itis[e]1[e]2. Forall12itisthecasethat[]1=12=[]2. Proof:byinduction. [E]1[X=X:f([E]1)][E]2[X=X:f([E]1)](ind.hyp.) 1[X=X:f([E]1)]2[X=X:f([E]1)](denitionof) [(X=f)E]1[(X=f)E]2 X:f([E]1)X:f([E]2) (fandx: aremonotone) Proof:Forthesecondpartweshow[(X=f)E1][(X=f)E2]. Thelemmaasstatedfollowsthenfromiterativeapplicationofthe Lemma3.14IfE1E2thenEE1EE2. IfE1-E2thenEE1-EE2. (denitionof semantics) weakerstatement. Therstpartfollowstheimmediately. [(X=f)E1]=[E1][X=X:f([E1])] =[(X=f)E2]: [E2][X=X:f([E2])] [E1][X=X:f([E2])]
148 148 Lemma3.16IfE1E2thenalsoE1-E2 Assumefg.Then [X=f]=[X=(X:f)()] Proof:bystructuralinduction [X=(X:g)()] AppendixA.Appendix AssumefgandE1E2with[E1][E2]. [(X=f)E1]=[E1][X=X:f([E1])] =[X=g] [E1][X=X:g([E1])] Lemma3.18If([(X=f)E])(X)=([(X=g)E])(X) [E1][X=X:g([E2])] Proof:Followsdirectlyfromproposition3.5. then[(x=f)e]=[(x=g)e]: [E2][X=X:g([E2])] =[(X=g)E2] Lemma3.19Let EE1(X=f)E2, ([E])(X)=a,and E0E1(X=a)E2. Then[E]=[E0]. Proof:Notethatherewecannotsimplyapplyproposition3.5or is016=1andderiveaninnitenumberofsubsystemsofeande0, Theproofisdonebycontradiction.Weassumethatfor[E0]def whichmusthavedierentsolutions. lemma3.14,becausetheequivalence[(x=f)e2]=[(x=a)e2] doesnotholdforallenvironments. =01it
149 orderofequationsine),forwhichholds1(y)6=01(y),suchthat forallpreviousvariables1and01coincide.fixtheisuchthat respectively.letnbethenumberofequationsofe.foralli,1in A.1.ProofsofChapter3. NowchoosetherstvariableYofvar(E)(rstwithrespecttothe holds,[e(i)]1=1. 1and01coincideinallvariableswhicharenotboundinE,orE0 149 E(i)(iY=g)E(i+1),andE0(i)(iY=g)E0(i+1). 1=[E(i)]1 =[(iy=g)e(i+1)]1 Hence,because1(Y)6=01(Y)also 01=[E0(i)]1 =[E(i+1)]1[Y=iY:g([E(i+1)]1)] iy:g([e(i+1)]1)]6=iy:g([e0(i+1)]1)], Ontheotherhandstill1(X)=aandalso00 andtherefore[e(i+1)]16=[e0(i+1)]1def =[(iy=g)e0(i+1)]1 canapplythesameargumentationtoe(i+1),1,e0(i+1)and00 =[E0(i+1)]1[Y=iY:g([E0(i+1)]1)] on.altogetherwecanderivethattheremustbeaninnitenumberof subsystemse(i)ande0(i)havingdierentsolutionsrelativeto1. Lemma3.20[E1(X=a)E2]=[E1E2][X=a]. =00 1 Proof:Forallenvironmentswehave[(X=a)E2]=[E2][X=a]. 1(X)=a.Thereforewe ForsomeE;E0andallenvironmentslet[E]=[E0][X=a].Then 1,andso [(Y=f)E]=[E][Y=Y:f([E])] =[E0][X=a][Y=Y:f([E0][X=a])] =[(Y=f)E0][X=a]:
150 150 Lemma3.21Let 1def 2def Proof:followsfromBekic'stheoremandthetransformationfrom Then1=2. =[E1(X1=f1)(X2=f2)E2],and =[E1(X2=f2)(X1=f1)E2]. AppendixA.Appendix nestedxpointstoxpoint-equationsystemsinproposition3.9. Lemma3.22If X1isnotfreeinf2, showsthat [(1X1=f1)(2X2=f2)E2]=(2X2=f2)(1X1=f1)E2] X2isnotfreeinf1, 1def forallenvironments.thenlemma3.14canbeapplied. 2def Proof:Straightforwardapplicationofthedenitionofthesemantics Then1=2. =[E1(1X1=f1)(2X2=f2)E2] =[E1(2X2=f2)(1X1=f1)E2] Lemma3.23Let 1def 2def Thenitis12,andmoreover,iftheinequalityisstrictthen =[E1(X1=f1)(X2=f2)E2],and =[E1(X2=f2)(X1=f1)E2]. propositiontoshowthatforallenvironmentsitis Proof:Accordingtolemma3.14itsucesfortherstpartofthe 1(X1)<2(X1)and1(X2)<2(X2). [(X1=f1)(X2=f2)E2][(X2=f2)(X1=f1)E2]. Duetoproposition3.5thesearethetwopropertieswhichthesolution Let[(X1=f1)(X2=f2)E2]def f2(01)=01(x2)(proposition3.5), 02of[(X2=f2)(X1=f1)E2]musthave,andfurthermorethe [(X1=f1)E2]01=01(lemmata3.19,3.20) =01.Weknowthat
151 solution02isthelexicographicleastoneofthoseenvironments0 havingtheseproperties.hencethesolution02islexicographically A.1.ProofsofChapter3. lowerorequalto1,i.e.02(x2)01(x2). solutionsmustbeequal. If02(X2)=01(X2)thenapplyinglemmata3.19,3.20showsthatboth 151 andwithlemma3.11also 01=[(X1=f1)(X2=f2)E2] 02=[(X1=f1)E2][X2=02(X2)] If02(X2)>01(X2)then0201and[X2=02(X2)]>[X2=01(X2)] =[(X1=f1)E2][X2=01(X2)] =[(X1=f1)E2][X2=02(X2)] =01: [(X1=f1)E2][X2=01(X2)] =[(X2=f2)(X1=f1)E2]: Lemma3.24Let 1def 2def Thenitis12,andmoreover,iftheinequalityisstrictthen =[E1(X=f)E2],and =[E1(X=f)E2]. lemma3.14itsucestoshowthat[(x=f)e2][(x=f)e2]. Proof:Inordertoprovetherstpartofthelemmaandaccordingto 1(X)<2(X). 1(X)=2(X)=aintheequationsystemsduetolemma3.19and [(X=f)E2]=[E2][X=X0:f([E2][X=X0])] eliminateitwithlemma3.20: Forthesecondpartofthelemmaassumethatthesolutionscoincideat Xandshowthatthentheymustbeidentical.Substitutethesolution [E2][X=X0:f([E2][X=X0])] =[(X=f)E2]:
152 152 [E1(X=f)E2]=[E1(X=a)E2] =[E1E2][X=a] =[E1(X=f)E2]: =[E1(X=a)E2] AppendixA.Appendix wherex0isanewvariable,i.e.(*)x0doesnotoccurontheright ([(X=f1_f2)E])(Y)=([(X=f1_X0)(0X0=f2)E])(Y), Lemma3.25 ([(X=f1^f2)E])(Y)=([(X=f1^X0)(0X0=f2)E])(Y), handsideofeorinf1orf2,and(**)y6=x0. Proof:bystraightforwardapplicationofthedenitionofthesemantics. ([(X=f1^X0)(0X0=f2)E])(Y) =([(0X0=f2)E][X=X:(f1^X0)([(0X0=f2)E])])(Y) =([(0X0=f2)E][X=X:(f1([E])^f2([E]))])(Y)() =([(0X0=f2)E][X=X:(f1([E])^0X0:f2([E]))])(Y) =([(0X0=f2)E][X=X:(f1^f2)([E])])(Y) [X=X:(f1([(0X0=f2)E])^X0([(0X0=f2)E]))])(Y) [X=X:(f1([E][X0=:::])^X0([E][X0=0X0:f2([E])]))])(Y) Lemma3.26Let Theprooffor_isanalogous. =([E][X=X:(f1^f2)([E])][X0=:::])(Y) =([E][X=X:(f1^f2)([E])](Y) =([(X=f1^f2)E])(Y) 1def ()() 2def Then1=2. 02def =[E1(X1=f)(X2=f)E2] =02[X1=02(X2)] =[E1[X1=X2](X2=f[X1=X2])E2[X1=X2]]
153 caseof=isdual.moreovertheproofisdonefore1.the Fortheproofherethealternativecharacterizationofthesolutionof generalizationtoarbitrarye1followsthenbylemma3.14and3.19. suitable. Proof:Wewillshowthelemmaforthecaseof=.Theother A.1.ProofsofChapter3. axpoint-equationsysteminproposition3.5turnedouttobemore 153 Showthat21: Hence,withproposition3.5,itis21. Showthat12: (1) (2) (3) (4) [E2[X1=X2]]1=[E2]1(1),(2),proposition3.5 1(X1)=1(X2)proposition3.5 (1) 1(X2)=f(1)proposition3.5 (2) (3) [E2[X1=X2]]2=2 2(X1)=2(X2)bydenition [E2]1=1 [E2]2=2 (1),(2),lemma3.19 corollary3.7 (4) (5) (7)X1:f([(X2=f)E2]2)2(X1)(2),(4),(6),Theo.2.16 (6) (8) (9) f([(x2=f)e2]2)f(2)(5),monotonicityoff [(X2=f)E2]22 [(X2=f)E2]1[(X2=f)E2]2 1(X1)2(X1)(7) f(2)=2(x2)proposition3.5 (3),(4),proposition3.5 Booleanequation,anenvironment,b=falseandb=true.Then forthesolutionofabooleanequationsystemholds: Proposition3.30LetEbeaBooleanequationsystem,X=fa (10)1=[(X2=f)E2]12 (8)&proposition3.11 [[]]= (9),(5),prop3.5 Proof:Applylemma3.29todenition3.3. [[(X=f)E]]=[[E]][X=f([[E]][X=b])].
154 154 BooleanequationsystemE0instandardformandarenamingfunction Proposition3.31ForeachBooleanequationsystemEthereexistsa standardformisperformedbyintroductionofadditionalvariables,suchthat([[e]])(x)=([[e0]])((x)),ande0hassizelinearinthe Proof:ThetransformationfromaBooleanequationsystemEinto sizeofe. AppendixA.Appendix Lemma3.35([[E]])(X)=falsei([[E]])(X)=true. expressionsofe.renamingdoesnotinuencethesize. sizeoftheright-handsideexpressionsofe.thesizeoftherighthandsideexpressionsofe0islinearinthesizeoftheright-handside ([[]])(X)=(X) (proposition3.25).thenumberofadditionalvariablesislinearinthe Proof:byinductiononthestructureofE Show([[(Y=f)E]])(X)=([[(Y=f)E]])(X) inductionhypothesis:([[e]])(x)=([[e]])(x) =([[]])(X) =[[E]][Y=f([[E]][Y=false])])(X)inductionhypothesis =([[E]][Y=f([[E]][Y=false])])(X)inductionhypothesis =([[E]][Y=f([[E]][Y=false])])(X)complementationof =([[E]][Y=f([[E]][Y=false])])(X)deMorgan =([[E]][Y=f([[E]][Y=false])])(X)denitionofsemantics =[[E]][Y=f([[E]][Y=true])(X) =([[(Y=f)E]])(X) denitionofsemantics
155 Proposition3.36GivenaBooleanequationsystemEandanenvironmentthereexistBooleanequationsystemsE0andE00withthe 155 A.1.ProofsofChapter3. properties: E0isinconjunctiveform, E0E,and [[E0]]=[[E]]. ForE00thedualpropertieshold: E00isindisjunctiveform, E00E,and [[E00]]=[[E]]. FortheproofofthispropositionweneedlemmataA.1andA.2. LemmaA.1GivenBooleanequationsystemsE;E1;E2withthe properties: (1)E1;E2areinconjunctiveform, (2)E1E,E2E, (3)[[E1]][X=false]=[[E]][X=false], (4)[[E2]][X=true]=[[E]][X=true]. ThenthereexistsaBooleanequationsystemE3inconjunctiveform, [[E3]][X=false]=[[E]][X=false], suchthate3eand ByconstructionofE3follows ixi=gi,if([[e1]][x=false])(xi)=false. Proof:Assume E1=(1X1=f1):::(nXn=fn)and LetiXi=fibeanequationofE3,if([[E1]][X=false])(Xi)=trueand E2=(1X1=g1):::(nXn=gn). [[E3]][X=true]=[[E]][X=true]. (7)E3isinconjunctiveform. (6)E3E,and (5)[[E1]][X=false][[E3]][X=false],
156 156 Wealsoknowthat[[E2]][X=true][[E3]][X=true],becauseatthe With(4)and(6)followsthat[[E3]][X=true]=[[E]][X=true]. From(3),(5),(6)andproposition3.16followsthat [[E3]][X=false]=[[E]][X=false]. variableswheree2ande3diere3hasthesolutiontruefor[x=false] andhencealsofor[x=true]. AppendixA.Appendix LemmaA.2GivenBooleanequationsystemsE;E1;E2withthe (2)E1E,E2E, properties: (1)E1;E2areindisjunctiveform, (3)[[E1]][X=false]=[[E]][X=false], (4)[[E2]][X=true]=[[E]][X=true]. Proofofproposition3.36:byinduction ProofanalogoustotheproofoflemmaA.1 ThenthereexistsaBooleanequationsystemE3indisjunctiveform, [[E3]][X=false]=[[E]][X=false], suchthate3eand haveadisjunctionasrighthandsideandshowthatwecanselectone HereweassumethattheBooleanequationsystemisinnormalform, i.e.eachrighthandsideexpressioniseitheraconjunctionoradisjunctionoftwovariables.thenwehavetoinvestigatetheequationswhich [[E3]][X=true]=[[E]][X=true]. ofthedisjunctspreservingthesolution. [[X=(Xi_Xj)]]=[X=(Xi_Xj)([X=b])] =[X=[X=b](Xi)_[X=b](Xj)] =[X=[X=b](Xi)] =[[X=Xi]]: thenassumewlogxi(0)=true) (if(xi_xj)(0)=true
157 3def 1def 2def NowassumethatforE;thereexistsE1suchthat[[E]]=[[E1]].Let A.1.ProofsofChapter3. =[X=b]; =[X=(Xi_Xj)([[E]][X=b])] wheretrue=falseandfalse=true157 Wehavetoconsidertwocases: [[(X=Xi_Xj)E]]=[[E]][X=(Xi_Xj)([[E]][X=b])] (i)(xi_xj)([[e]]1)=b,andhence1=2.thenthereexistse1 suchthat[[e]]i=[[e1]]ifori=1;2. =[[E]]2 =[[E]][X=(Xi_Xj)([[E]]1)] ()=[[E1]][X=(Xi_Xj)([[E1]][X=b])] =[[E1]][X=(Xi)([[E1]][X=b])] =() (ii)(xi_xj)([[e]]1)6=b,andhence2=3.nowthereexistsa ande3with[[e]]3=[[e3]]3. dierentequationsystemforeitheri,e1with[[e]]1=[[e1]]1 =[[(X=Xi)E1]] (asinthebasecase: ThenduetopropositionA.1thereexistsE4with[[E4]]1=[[E]]1 chooseadisjunctwhichgivesthecorrectresult) ()=[[E4]][X=(Xi_Xj)([[E4]][X=b])] and[[e4]]3=[[e]]3.hence whichhasthesamesolutionaseworksanalogously. Theproofforthedualfact,thatthereexistsaconjunctivesystem =[[(X=Xi)E4]]: =[[E4]][X=(Xi)([[E4]][X=b])] (againchooseasuitabledisjunct)
158 158 A.2ProofsofChapter5. Theorem5.1LetX:beaformulaofthemodal-calculus,M= ThenforallenvironmentsVitisthecasethat (T;V)amodelandsiastateofT. AppendixA.Appendix thesecondtoaequationsystemoverthepowerspaceofthestate rstleadsfroma-calculusformulatoa-calculusequationsystem, arereducedstepwise. space,thelastonetobooleanequationsystems.foreachdomainwe giveasemanticsandshowthatineachcasetheproblemstobesolved sij=mx:i([[e((x=);m)]]v)(xi)=true. Thersttransformation,E,leadsfromthesetof-calculusformulae, Proofoftheorem5.1:ThemappingEisdividedinthreesteps:the Thistransformationwasalreadygivenandprovedindenition3.8and Ltosequencesofunnested-calculusformulae,denotedbyL1. provedinproposition3.9.herewejustpresentthetransformationfor theactualscenario. E:L!L1isbasedonamappingE0andisdenedasfollows: E(1_2)=E(1)E(2) E(1^2)=E(1)E(2) E(hai)=E() E([a])=E() E(X)= E(Q)= E0(1^2)=E0(1)^E0(2) E0(1_2)=E0(1)_E0(2) E(X:)=(X:E0())(E()) E0([a])=[a]E0() E0(X)=X E0(Q)=Q
159 NotethathereweinterpretthevaluationfunctionVasanenvironment. A.2.ProofsofChapter5. E0(X:)=X E0(hai)=haiE0() 159 Fromproposition3.9follows:s2jjX:jjVis2([[E(X:)]]V)(X). laetoaxpoint-equationsystemoverthepowersetofthestatespace. Thesecondtransformation,EM,mapsasequenceof-calculusformu- LetX:beanunnested-calculusformulaandEasequenceof Formally,thisisthestepfromthelogicalformulaetotheirsemanticdomain.Technically,weperformonlyasyntacticaltransformation P(S)isbasedonamappingE0Manddenedasfollows. fromlogicalvariablestosetvariables,fromthebooleanconnectives_ and^tothesetoperations[and\,fromthemodaloperators[a]and haitosetoperators[[a]]tandhhaiit. unnested-calculusformulae.thetransformationem:l1! EM((X:)E)=(X=E0M())EM(E) E0M(1^2)=E0M(1)\E0M(2) E0M(X)=X E0M(Q)=V(Q) EM()= Recallthatthesemanticsofaxpoint-equationsystemwasgivenin denition3.3.herefdenotesamonotonesetfunctiononp(s). E0M(1_2)=E0M(1)[E0M(2) E0M(X:)=X=E0M() E0M(hai)=hhaiiT(E0M()) E0M([a])=[[a]]T(E0M()) [[(X=f)E]]V=[[E]]V[X=\fSSjSf([[E]]V[X=S])g [[(X=f)E]]V=[[E]]V[X=[fSSjSf([[E]]V[X=S])g [[]]V=V
160 expressions.accordingtobekic'stheoremsuchasimultaneousxpointexpressioncanbeeliminatedandsubstitutedbyasequenceof simplexpointexpressions.inadditionthesetoperators[[a]]tand hhaiitcanbeeliminatedbyevaluation,becausehereeachboolean asabooleanvectorexpressionandequivalentlyasavectorofboolean spaceandabooleanvectorspaceallowstorepresentasetexpression Inthelaststeptheisomorphismbetweenthepowersetofthestate 160 nitionsofthesemantics:[[(x:)e]]v=[[(x=e0m())em(e)]]v Correctnessofthetransformationfollowsimmediatelyfromthede- AppendixA.Appendix expressiondescribesasetexpressionataparticularstateoftheunderlyingtransitionsystemandateachsinglestatethesetoperators canbeevaluatedeasily. AltogetherthetransformationfunctionEIB:P(S)!IBmaps system.itreferstoasetoffunctionsfeib;1;:::;eib;ng,wheren=jsj axpoint-equationsystemoversetsofstatestoabooleanequation EIB((X=f)E)=(X1=E1(f)):::(Xn=En(f))EIB(E) EIB;i(S)=(trueifsi2S EIB()= isthesizeofthestatespace. EIB;i(A1\A2)=EIB;i(A1)^EIB;i(A2) EIB;i(A1[A2)=EIB;i(A1)_EIB;i(A2) EIB;i(hhaiiTA)=_ EIB;i([[a]]TA)=^ EIB;i(X)=Xi falseelse InordertoshowthecorrectnessofthetransformationEIBwehaveto above: V(Xi)=trueisi2V(X) ThesemanticofaBooleanequationsystemwasalreadygiveninsection 3.2.TheenvironmentVderivedfromthevaluationVisdenedas sia!sjeib;j(a)
161 si2([[e]]v)(x)i([[eib(e)]]v)(xi)=true. proveforasetequationsystemeandavaluationv: ofann-arysimultaneousxpointtoanestedxpointandthetransformationofanestedxpointtoaxpoint-equationsystemgivenin denition3.8andproposition3.9. A.3.ProofsofChapter8. TheproofhererequiresBekic'stheorem2.24forthetransformation 161 tothesemanticsgivenwecanconcludethat tions,andfromthecorrectnessofthesetransformationwithrespect [[E(X:)]]V(Xi)=trueisi2jjjjTV. E()=(EIBEME)()whereistheusualcompositionoffuncsionandamodeltoaBooleanequationsystemcanbecomposedby thetransformationse;em,andeibasdenedabove,anditholds: AltogetherthetransformationfunctionEfroma-calculusexpres- MoreoverAE;hassizeofO(jEj). A.3ProofsofChapter8. itis([[e]])(xi)=trueiae;(fag;se;xi;e;;e;)isnonempty. Theorem8.2ForaBooleanequationsystemEandanenvironment intheirinitialstate,butcoincideinthesetofstatesse,thetransition Proof:Inthefollowingweoftenarguewithautomatawhichdieronly relatione;andtheacceptingconditione;.thenwewillexplicitly NowthproofisbyinductiononE. branchbofr,i.e.b0=bfb,thenb0fulllsalsotheacceptancecondition E;andhencer0isanacceptingrunofAE;withinitialstateXj. initialstatexiandarunr0ofae;withinitialstatexj,suchthat (*)Note,ifwehaveanacceptingrunroftheautomatonAE;with everybranchb0ofr0consistsofaniteinitialpartbfcontinuedbya talkabouttheautomatonae;withinitialstatexi. ia;withinitialstatexihasanacceptingrun. i;(a;xi)=true i(xi) ([[]])(Xi)=true
162 162 inductionhypothesis:8xi;eoflengthn,:([[e]])(xi)=truei AE;withinitialstateXihasanacceptingrun. Show8Xi;Eoflengthn,;;X;f: ([[(X=f)E]])(Xi)=trueiA(X=f)E;withinitialstateXiis nonempty. (=)) AppendixA.Appendix case1([[(x=f)e]])(xi)=true=([[e]][x=f([[e]][x=true])])(xi) 1.1([[E]][X=false])(Xi)=true ThenthereexistsanacceptingrunronAE;[X=false]withinitial ThetreeristhenalsoanacceptedrunofA(X=f)E;withinitialstateXi,becauseE;[X=false]and(X=f)E;coincideonall thisnodewouldbealeafandthisbranchnotaccepted. statexiandnonodeofrislabelledwithx,becauseotherwise 1.2([[E]][X=false])(Xi)=false acceptedbythe\weaker"acceptancecondition(x=f)e;. Furthermore,ifarunisacceptedbyE;[X=false])thenitisalso statesdierentfromxandnonodeofrislabelledwithx. automatonae;[x=true]withinitialstatexjl. asatisfyingsetofffxj1;:::;xjkgitisthat ([[E]][X=true])(Xjl)=truefor1lk.ForeachXjlthereis (1)Thenitmustbethecasethatf([[E]][X=true])=true,i.e.for ConsideratreerX0wheretherootislabelledwithXandthesuccessorsoftherootarerj1;:::;rjkfrom(1).LetrX00bethetree (2)WeshownowthatthereexistsanacceptingrunrXon accordingtotheinductionhypothesisanacceptingrunrjlofthe A(X=f)E;withinitialstateX. labelledwithxthesucessorsarelabelledwithasatisfyingset rx0.continuesubstitutionofx-labelledleavesbyrx0getting nallythetreerx.itiseasytoseethatrxfollowsthetransitionfunction(x=f)e;becauseitcoincidesonallrj1;:::;rjk withe;[x=true]onallstatesapartfromxandatthenodes rx0whereallleaveslabelledwithxaresubstitutedbyacopyof
163 A.3.ProofsofChapter8. eachbranchbxofrxconsistseitherofaniteinitialpartfollowedbyabranchfromsomerjl,where1lk,inwhichno labelledwithx.intherstcasebxisacceptedbythefactthat ItremainstoshowthattherunrXisalsoaccepted.Notethat nodeislabelledwithx,orbxcontainsinnitelymanynodes offaccordingtothetransitionfunction(x=f)e;(a;x)=f. 163 bxisacceptedbytheacceptancecondition(x=f)e;,because withinitialstatexjlandargument(*)above.inthelattercase AE;[X=true]withinitialstateXjlisalsoacceptedbyA(X=f)E; Xisa-variableandgetstheleastindex. (3)Wenallyhavetoshowthatthereisanacceptingrunron eachbranchcontainingnox-labellednodewhichisacceptedby A(X=f)E;withinitialstateXi.Accordingtotheassumptions itmustbethecasethat([[e]][x=true])(xi)=trueandwiththe inductionhypothesisweknowthattheremustbeanaccepting case2([[(x=f)e]])(xi)=([[e]][x=([[e]][x=false])])(xi)=true r0andsubstituteeachleaflabelledwithxbytherunrxfrom (X=f)E;.Eachbranchofr0containingnoXandacceptedbt (2).ItiseasytoseethatrXfollowsthetransitionfunction E;[X=true]isalsoabranchofrandacceptedby(X=f)E;. Allotherbranchesareacceptedbyargument(*)above. runr0ofae;[x=true]withinitialstatexi.nowtaketherun 2.1([[E]][X=false])(Xi)=true withx,sincesuchanodewouldbealeafofanotaccepted branch.hencerisalsoanacceptingrunofa(x=f)e;with AE;[X=false]withinitialstateXi.Nonodeofrislabelled Accordingtotheinductionhypothesisthereisanacceptingrunr 2.2([[E]][X=false])(Xi)=false E;[X=false]. initialstatexi,because(x=f)e;ande;[x=false]coincide onallstatesapartfromxandxdoesnotappearinr. Then(X=f)E;acceptseverybranchthatisacceptedby
164 164(1)Thenitmustbethecasethatf([[E]][X=false])=true,i.e. theremustbeasatifyingsetfxj1;:::;xjkgforsomek2inof fsuchthat([[e]][x=false])(xjl)=truefor1lk.accordingtotheinductionhypothesisforeach1lkthereisan acceptingrunrjlonae;[x=false]withinitialstatexjl.sinceno nodeislabelledwithxeachtreerjlisalsoanacceptingrun AppendixA.Appendix ingrunrx.letrxbethetreewheretherootislabelledwith ofa(x=f)e;withinitialstatexjl,becausethetransitionfunctionse;[x=false]and(x=f)e;coincideonallstatesapartfrom (1).SincefXj1;:::;Xjkgisanacceptingsetoff,rXfollows accepts. (2)ShownowthatA(X=f)E;withinitialstateXhasanaccept- Xandthesuccessorsoftherootarethetreesrj1;:::;rjkfrom Xand(X=f)E;acceptseveryinnitebranchthatE;[X=false] thetransitionfunction(x=f)e;(a;x)=f,whichcoincides withe;[x=false]onallstatesotherthanx.withargument(*) runr0ofae;[x=true]withinitialstatexiletrbeasr0where followsthatrxisalsoacceptedbya(x=f)e;. allleaveslabelledwithxaresubstitutedbyrxfrom(2).note accordingtotheinductionhypothesistheremustbeanaccepting (3)ItremainstoconstructanacceptingrunrofA(X=f)E;with initialstatexi.weknowthat([[e]][x=true])(xi)=trueand thatallbranchesofr0containingnoxarealsoacceptedby A(X=f)E;withinitialstateXi.Allotherbranchesareaccepted statexiisnonempty.thecomplementationofalternatingautomata accordingtotherstpartoftheproofweknowthatae;withinitial Assume([[E]])(Xi)=false,thenbylemma3.35([[E]])(Xi)=trueand andalternatingautomatawithparitycondition. ((=)WemakeuseofcomplementationofBooleanequationsystems byargument(*). withinitialstatexiisae;withinitialstatexi,andifae;hasan withparityconditioniseasy(see[ej91]):thecomplementofae; acceptingrun,thenae;isempty.
165 ((=) Proof:ItfollowsimmediatelyfromconstructionthatthesizeofGEis linearinthesizeofe. initialvertexii([[e]])(xi)=true.moreoverjgej=o(jej). Theorem8.7PlayerIIhasawinningstrategyforthegameonGEwith A.3.ProofsofChapter Assume([[E]])(Xi)=true.Accordingtolemma3.36thereexistsa BooleanequationsystemE0inconjunctiveform,whereE0Eand and[[e0]]=[[e]].allconjunctionsofearecontainedine0,butfrom ningstrategyforplayeriiistochooseineveryi-labelledvertexthis initialvertexlabelledwithiplayeriiwinseveryplay.thenawin- with_. WenowwanttoshowbycontradictionthatforthegameonGE0with playeriinevertakesamove,becausetherearenoverticeslabelled equationofe0.considerthegamegraphge0.ineveryplayonge0 eachdisjunctionofethereisonlyonedisjunctinthecorresponding lim(p)nfjgfor0<j<n.wenowwanttoshowthatintheboolean asubsequencep0=v0;v1;:::;vnofp,wherev0=vn=jandvk2 andalso(atleast)oneofitspredecessors.moreovertheremustbe I.Letjbetheleastvertexinlim(p).Foreachvertexinlim(p)it mustbethecasethatthereis(atleast)oneofitssuccessorsinlim(p) AssumepisaplayofGE0withinitialvertexiwhichiswonbyplayer successorwhichisalsocontainedinge0. f1j,thentheequationcorrespondingtovertexv2intof1jgivingxj= equationcorrespondingtovertexv1issubstitutedintofjgivingxj= p0denesasequenceofsubstitutionsteps(lemma6.3)ine0:rstthe j,istheleastonewithrespecttoeamongtheseequations.now lim(p).weknowthatxj=fj,theequationcorrespondingtovertex j6=false.considerallequationsxk=fkine0wherekisavertexin equationsysteme0thevariablexihasthesolutionfalse.assume adisjunctionorasinglevariabletheequationevaluatestoxj=false aneliminationstep(lemma6.2).becausef(n 1)jandmayapply thevariablexjontheright-handsideofxj=fn 1 anditisthecasethat([[e0]])(xj)=([[e]])(xj)=false.theinitial f2jandsoon.aftern 1substitutionstepswehaveanoccurrenceof jcanonlyconsistof
166 166 partofpdenesasequencefromxitotherstoccurrenceofxjinp andgoingthisinitialsequencebackwardsapplyingsubstitutionsteps (=)) havetoapplythelastargumentaboveandgetthesamecontradiction. forconstants(lemma3.19)wegetthat([[e0]])(xi)=([[e]])(xi)= falsewhichcontradictstheassumption.forthecasej=falsewejust AppendixA.Appendix rstcaseoftheproofwecanshowthatfrom([[e]])(xi)=falseit Theotherdirectionfollowsbydualityarguments.Analogouslytothe followsthatplayerihasawinningstrategy.sinceonlyoneofthe playerscanhaveawinningstrategyand([[e]])(xi)mustbeeither A.4ProofsofChapter9. trueorfalsetheproofiscomplete. 1B1:::nBnandanenvironmentthereexistsaninniteBoolean Theorem9.4GivenaninniteBooleanequationsystemE= equationsysteme0=1b01:::nb0nsuchthate0containsno disjunctionsontheright-handside.inparticular: IfkXj=Vi2IXiisanequationinblockBjofEthenitisalso IfkXj=XiisanequationinblockBjofEthenitisalsoan IfkXj=Wi2IXiisanequationinblockBjofEandIis anequationinb0jofe0. Theargumentationhereissimilartotheoneintheproofforthenite case(proposition3.36).thereintheinductionstepwehavetoconstructonebooleanequationsystembasedontwoothers(lemmaa.1). nonempty,thenforsomek2itheequationkxj=xiisinblock Proof:byinductiononthestructureofE. [[E]]=[[E0]] IncontrasttothenitecaseherewehavetoconstructoneBoolean B0jofE0.IfIisemptythenkXj=falseisanequationofB0jofE0. equationsystembasedoncountablenumberofotherones.however, theideaandtechniqueisverymuchthesame.
167 fewerblocksthannandenvironmentwecanndaninniteboolean equationsysteme0havingnodisjunctionswithmorethanonedisjunct onitsright-handsideand[[e]]=[[e0]]. requirements. inductionhypothesis:foreachinnitebooleanequationsystemewith basecase:lete=andbeanenvironment.thene0=fulllsthe A.4.ProofsofChapter Dene inductionstep:assumethatbeisaninnitebooleanequationsystem,thatforsomeindexsetilhs(b)=fxiji2ig,andthatisan environment.then [[BE]]=[[E]][XI=XI:B([[E]])] Nowweproceedasfollows:,andsincethebformanascendingchainintheproductlatticeIBI, iscountable. foranordinal,alimitordinal.byproposition2.20,b=bforsome b+1def bdef b0def =B([[E]][XI=b =_<b =falsei solutionaseforall[xi=b].thene0andealsohavethesame ClimbingupthebwerstconstructasystemE0havingthesame B([[E]][XI=b])=B0([[E]][XI=b]).ThenwegetalsoB([[E]][XI=b]= terwardsweconstructablockb0,alsoclimbinguptheb,suchthat solutionfortheleastxpointb,i.e.[[e]][xi=b]=[[e0]][xi=b].af- B0([[E0]][XI=b]=bThetheoremfollowsthenbyapplicationofthedefinitionofthesemantic. WerstconstructasystemE0,suchthat Forthisweusethefactthataccordingtotheinductionhypothesisfor knowthatthenalso([[e0]][xi=b0])(x)=true.foreachofthesexlet (1)[[E]][XI=b]=[[E0]][XI=b]forall. For=0selectallX2lhs(E)where([[E]][XI=b0])(X)=true.We TheconstructionofE0worksasfollows: [[E0]][XI=b]. eachthereexistsane0havingtherequiredformand[[e]][xi=b]=
168 168 theequationx=f0frome0beanequationofe0inthecorresponding block.whatevertheremainingequationsofe0willbe(theymightall (*)([[E0]][XI=b0])(X)=true=([[E]][XI=b0])(X). befalse,see3.19),wehave ForeachselectallvariablesXj2lhs(E)suchthat AppendixA.Appendix ([[E]][XI=b+1])(Xj)=true andforallthesexjlettheequationxj=f0jine0beanequation ofe0,suchthatxj=f0jiscontainedinthecorrespondingblockto (havinglowersignature) Theargumentnowisbyinduction.AssumethatforallotherXk theoneofecontainingxj=fj. ([[E]][XI=b])(Xj)=false if([[e]][xi=b])(xk)=true if([[e0]][xi=b])(xk)=true then([[e0]][xi=b])(xk)=true; Thisis,becauseofmonotonicity,forall HenceweknowthatforalltheseXk,where ([[E0]])(Xk)=true=([[E]])(Xk)thatalso([[E0]])(Xk)=true. then([[e0]][xi=b])(xk)=true: thenb([[e]][xi=b])=b([[e0]][xi=b])=b+1 Furthermore if Withthebasecase(*)wecannowconclude(1).(SeealsotheargumentationforlemmaA.1incombinationwithlemma9.3). (2)XI:B([[E]])=XI:B([[E0]]) Fromtheabovewealsocanconclude NextweconstructB0insuchaway,thatforeach B([[E]][XI=b])=B0([[E]][XI=b]). LeteachequationX=Vj2JXjforsomeindexsetJinBbe [[E]][XI=b]=[[E0]][XI=b] alsoanequationofb0.
169 IfthereisanequationinBoftheformX=XiorX=WXi, A.4.ProofsofChapter9. IfthereisanequationinBoftheformX=Wj2JXjforsome wherethedisjunctioncontainsonlyasingledisjunct,thenletx= indexsetjandthereisoneofthedisjunctstrue,thenletx=true XibeanequationofB ForeachequationX=Wj2JXjinBwhere([[BE]])(X)= InallothercasesforXi2lhs(B)wehave([[BE]])(Xi)=true X=XjbeanequationofB0. indexsetj.foreachofthesexithereexistsansuchthat andtheequationforxiisoftheformxi=wj2jxjforsome falsechooseanyofthedisjunctsfromwj2jxj,sayxj,andlet Altogetherwehavethenthat Itfollowsfromtheconstructionthat (3)B([[E]][XI=b+1])=B0([[E]][XI=b+1]) accordingtothechoiceofxj. letx=xjanequationinb0.hence(b0([[e]][xi=b]))i=true Wj2JXjavariableXj,suchthat([[E]][XI=b])(Xj)=trueand ([XI=b+1])(Xi)=trueand([XI=b])(Xi)=false.Selectfrom [[BE]]=[[E]][XI=XI:B([[E]])] =[[E]][XI=XI:B0([[E]])](3) =[[E0]][XI=XI:B0([[E0]])](1);(2) assumingthatforallj2jitisy6=xj Lemma9.9Let E1,E2,E3besetbasedBooleanequationsystems, M;N;N0S,whereNN0 ThedualcaseforBEworkssimilarly. fm=(y;n;y)^^ =[[B0E0]] j2j(xj;mj;j); fn0=^ k2k(yk;nk;k);
170 anenvironment. Then[[E1(X(X;M)=fM)E2(Y(Y;N0)=fN)E3]] 170f0M=^ =[[E1(X(X;M)=f0M)E2(Y(Y;N0)=fN)E3]]. k2k(yk;nk;yk)^^ j2j(xj;mj;j); AppendixA.Appendix XXm=^ Form2Mandn2NE4containstheequations systemse4ande5. Proof:TransformbothequationsystemstoinniteBooleanequation n2y(m)yn^^j2j^ alltheyn,andgettingthenewequation stitutionstepsintheinnitebooleanequationsysteme4substituting ine4.accordingtolemmata9.3,6.3wecanapplyinnitelymanysub- YYn=^ k2k^ n02k(n)yk;n0t2j(m)xj;tand ThisisanequationoftheinniteBooleanequationsystemE5. XXm=^ n2y(m)^ k2k^ n02(ky)(m)yk;n0^^j2j^ k2k^ n02k(n)yk;n0^^j2j^ Lemma9.10Let E1andE2besetbasedBooleanequationsystems, t2j(m)xj;t (X;M)=(X;M;)^Vi2I(Xi;Mi;i)asetbasedBooleanequation, anenvironment,and 0def If=then0=[[E1((X;M)=Vi2I(Xi;Mi;i))E2]]. If=andiswellfoundedthen0isasinthecasefor=, ifisnotwellfoundedthen0((x;m))=false. =[[E1((X;M)=(X;M;)^Vi2I(Xi;Mi;i))E2]]
171 Proof:Inarststepthesetbasedequationsystemistransformedto aninnitebooleanequationsystem,wherethesetequation (X;M)=(X;M;)^^i2I(Xi;Mi;i) fors2mismappedtoablockbcontainingtheequations A.4.ProofsofChapter Xs=^ Theequation (X;M)=^i2I(Xi;Mi;i) ismappedtoablockbinaninnitebooleanequationsystem, s02(s)xs0^^i2i^ containingtheequationss02i(s)zi;s0: Xs=^i2I^ onlyforthecasee1=,i.e.[[be02]]=[[be02]],andaccordingto Wewillabbreviatethe(innite)vectorofallXifori2IbyX. or=wehavetoshowthat[[e01be02]]=[[e01be02]]and LetE01def accordingtolemma3.14wejusthavetoshowtheequivalenceabove =T(E1)andE02def s02(i)(s)zi;s0 thedenitionofthesemanticsitsucestoshowthatx:b([[e02]])= X:B([[E02]]) NowwewanttoapplyasubstitutionsteptoeachXs0.ForapplyinginnitelymanysubstitutionswithinblockBweneedproposition 2.17(6)andlemma9.3ratherthanlemma9.9. Xs=^ =^ s002((s))xs00^^i2i^ s02((s))xs0^^i2i^ s02(s)(^ s002(s0)xs00^^i2i^ s02((i)[i)(s)zi;s0 s002(i)(s)zi;s00^^i2i^ s002i(s0)zi;s00)^^i2i^ s02i(s)zi;s0 =T(E2).Forthecasesthatiswellfounded :::applyingthesesubstitutionstepslog2(n)times
172 172 LettheseequationsbecollectedinablockBnforn22m;m2IN Itfollowsfromproposition2.17(6)that[[BnE02]]=[[BE02]]forall =^ s02n(s))xs0^^i2is02(i(0[1[:::n 1))(s)Zi;s0 ^AppendixA.Appendix soldef soldef Bn. Dene bdef bdef b=x:bn([[e]]02) anditfollowsthat =[[BE02]] =X:B([[E02]] =X:B([[E02]] Weabbreviatesol[X=b](Xs)bybsandsol[X=B(sol)](Xs)by b=b(sol),andalsosol=[[b]]solandb=b(sol) Withlemmata3.19and3.20itisthecasethatsol=[[B]]soland ShownowX:B(sol)=b (i)becauseinbthereisnofreexsontheright-handside,itisthe Itsucestoshowthatb=bandforthatpurposeweshowthat (2)impliesthatB([[E]]02[X=b])=bandhencebb. (1)X:B(sol)=band(2)X:B(sol)=b (1)impliesthatB([[E]]02[X=b])=bandhencebb, (B(sol))(Xs),andanalogouslyforbandB.Nowweassume=. casethatx:b(sol)=b(sol) IfforB(sol)andanequationXs=Vi2IVs02(i)(s)Zi;s0inB wehavethat(vi2ivs02(i)(s)zi;s0)(sol)=falsethenthereforsome Zi;s0itmustbethatsol(Zi;s0)=false.ThenwecanndaBn,where theequationforxshasthiszi;s0onitsright-handsideandalso (Bn(sol))(Xs)=falseandhencewehavealso(X:Bn(sol))(Xs)= (ii)deneb0def Assumethat(X:B(sol))(Xs)=false. falseandalso(x:b(sol))(xs)=bs=false.thereforeisbb(sol). =trueiandb+1def =B(sol[X=b]).
173 If>1thentheremustbeaX0sforsomes02(s)withsol(Xs0)= sol(zi;s0)=false.butthenitisalso(b(sol))(xs)=false. If=1thentheremustbeaZi;s0forsomei2I,s02i(s),where Xs.) suchthatbs=falseandb 1 Showthatthenalso(B(sol))(Xs)=false.Thentheremustbesome A.4.ProofsofChapter9. s=true.(iscalledthesignatureof 173 falseandhenceb(sol)b. Altogetherfrom(X:B(sol))(Xs)=falsefollowsthat(B(sol))(Xs)= From(i)and(ii)wecanconcludethatB(sol)=b Henceitis(B(sol))(Xs)=false. forsomei2i,s02(in)(s),forsomen,suchthatsol(zi;s0)=false. falseandx0shavingasignature0<.applyingthisargumentrepeatedlythenthesignatureeventuallyreaches0,andthenwehaveazi;s0 Whenshowingthatb=B(sol)applythesameargumentsasabove tosolinsteadofsol.from(i)followsthenthatx:b(sol)b, andletbeitssignature.foralls002(s0)xs00mustbetrueand B(sol[X=b]).AssumeanXs0beingtrueattheleastxpoint Ifisnotwellfoundedthendeneb0=falseIandb+1= existssomen2insuchthatn(s)=;andtheequivalenceofbnand Bfollowsimmediately. Forthecase=notethatifiswellfoundedforeachS2Mthere from(ii)thatbx:b(sol). notwellfoundedwecanndaninnitechainofdecreasingsignatures, whichisacontradiction. havealowersignature.repeatthisargumentforxs00.becauseis
174 174 AppendixA.Appendix
175 Bibliography [AKM95]S.Ambler,M.Kwiatkowska,andN.Measor.Dualityand [AC88]A.ArnoldandP.Crubille.Alinearalgorithmtosolve [And92]H.R.Andersen.Modelcheckingandbooleangraphs.In ComputerScience,151(1):3{27,1995. ProcessingLetters,29:57{66,1988. thecompletenessofthemodalmu-calculus.theoretical xed-pointequationsontransitionsystems.information [And94a]H.R.Andersen.Modelcheckingandbooleangraphs.TheoreticalComputerScience,126(1):3{30,1994currentsystems.PhDthesis,AarhusUniversity,1993ence,1992. ESOP'92,volume582ofLectureNotesonComputerSci- Proceedingsof4thEuropeanSymposiumonProgramming, [And93]H.R.Andersen.Vericationoftemporalpropertiesofcon- [And94b]H.R.Andersen.Onmodelcheckinginnite-statesystems. [BC96]G.BhatandR.Cleaveland.Ecientlocalmodel-checking [BCM+92]J.R.Burch,E.M.Clarke,K.L.McMillan,D.L.Dill,and ComputerScience,pages8{17.Springer,1994. InProceedingsofLFCS'94,volume813ofLectureNotesin forfragmentsofthemodal-calculus.inproceedingsof TACAS'96,volume1055ofLectureNotesinComputerScience,pages107{126.Springer, yond.informationandcomputation,98(2):142{170,june L.J.Hwang.Symbolicmodelchecking:1020statesandbe-
176 176 [BK95]M.BonsangueandM.Kwiatkowska.Re-interpretingthe [Bek84]H.Bekic.HansBekic:ProgrammingLanguagesandTheir Denition,volume177ofLectureNotesinComputerScience,chapterDenableoperationsingeneralalgebras,and thetheoryofautomataandowcharts.springer,1984. modal-calculus.inmodallogicandprocessalgebra, Bibliography [Boc70]I.M.Bochenski.AHistoryofFormalLogic.ChelseaPublishingCompany,NewYork,secondedition,1970. Birkhauser, /12/93A,TechnischeUniversitatMunchen,1993. [BM93]D.BarnardandA.Mader.Modelcheckingforthemodal mu-calculususinggauelimination.technischerbericht CSLILectureNotes,pages65{83,1995. [Bra92]J.C.Bradeld.VerifyingTemporalPropertiesofSystems. [Bra96]J.C.Bradeld.Themodalmu-calculusalternationhierarchyisstrict.InProceedingsofCONCUR'96,volume 1119ofLectureNotesinComputerScience,pages233{246. [Bri96]E.Brinksma.personalcommunication [Bry86]R.E.Bryant.GraphbasedalgorithmsforBooleanfunc- Springer, (8):677{691,1986. tionmanipulation.ieetransactionsoncomputers,c- [BVW94]O.Bernholtz,M.Y.Vardi,andP.Wolper.Anautomatatheoreticapproachtobranching-timemodelchecking.Itiesofprocesses.InProceedingsofCONCUR`90,volume [BS91]J.BradeldandC.Stirling.Localmodelcheckingforin- [BS90]J.C.BradeldandC.Stirling.Verifyingtemporalproper- nitestatespaces.theoreticalcomputerscience,1991. Springer,1990. ProceedingsofCAV'94,volume818ofLectureNotesin 458ofLectureNotesinComputerScience,pages115{125. ComputerScience,pages142{155.Springer,1994.
177 [CE81]E.M.ClarkeandE.A.Emerson.Designandsynthesisof Bibliography [CES86]E.M.Clarke,E.A.Emerson,andA.P.Sistla.Automatic synchronisationskeletonsusingbranchingtimetemporal pages52{71.springer,1981. vericationofnite-stateconcurrentsystemsusingtem- logic.volume131oflecturenotesincomputerscience, 177 [CKS92]R.Cleaveland,M.Klein,andB.Steen.Fastermodel minglanguagesandsystems,8:244{263,1986. porallogicspecications.acmtransactionsonprogram- [Cle90]R.Cleaveland.Tableau-basedmodelcheckinginthepropositionalmu-calculus.ActaInformatica,27:725{747,1990. Springer,1992. andd.k.probst,editors,proceedingsofcav'92,volume 663ofLectureNotesinComputerScience,pages410{422. checkingforthemodalmu-calculus.ing.v.bochmann [CS91]R.CleavelandandB.Steen.Alineartimemodel-checking [DP90]B.DaveyandH.Priestley.Introductiontolatticesand [Dam92]M.Dam.CTL*andECTL*asfragmentsofthemodalcalculus.Technicalreport,UniversityofEdinburgh,June cation,2:79{92,july1991. ceedingsofthethirdworkshoponcomputeraidedveri- algorithmforthealternationfreemodalmu-calculus.pro [EH86]E.A.EmersonandJ.Halpern.\sometimes"and\not [EJ88]E.A.EmersonandC.S.Jutla.Thecomplexityoftreeautomataandlogicsofprograms.InProceedingsofthe29th 368{377,1991. anddeterminacy.inproceedingsofthe32ndfocs,pages order.cambridgeuniversitypress,1990. [EJ91]E.A.EmersonandC.S.Jutla.Treeautomata,mu-calculus never"revisited:onbranchingversuslineartime.journal oftheacm,33:151{178,1986. IEEEFOCS,pages328{337,1988.
178 [EL86]A.EmersonandC.Lei.Ecientmodelcheckinginfragmentsofthepropositionalmu-calculus.Proceedingsof Springer,1993. fragmentsof-calculus.inproceedingsofcav'93,volume 697ofLectureNotesinComputerScience,pages385{396. Bibliography 178 [EJS93]E.Emerson,C.Jutla,andA.Sistla.Onmodelcheckingfor [Eme96]E.Emerson.LogicsforConcurrency,volume1043ofLec- [Eme91]E.A.Emerson.Temporalandmodallogic.InJ.van ence,volumeb.elsevier/north-holland,1991. Leuwen,editor,HandbookofTheoreticalComputerSci- 1stAnnualSymposiumonLogicinComputerScience, poralreasoningaboutreactivesystems,pages41{101. turenotesincomputerscience,chapterautomatedtem- LICS'86,pages267{278,1986. [Flo67]R.Floyd.Assigningmeaningstoprograms.InJ.T. [EN94]J.EsparzaandM.Nielsen.DecidabilityissuesforPetri 160,1994. Schwartz,editor,MathematicalAspectsofComputerScience,pages19{32.AmericanMathematicalSociety,1967. ofregularprograms.journalofcomputerandsystemscience,18:194{211,1979. nets-asurvey.j.inform.process.cybernet.,30(3):143{ Springer,1996. [HM85]M.HennessyandR.Milner.Algebraiclawsfornondeterminismandconcurrency.JournaloftheACM,32:137{162, ming.communicationoftheacm,12:576{580,1969. ComputerScience,74:239{248,1990. [FR79]M.J.FischerandLadnerR.E.Propositionaldynamiclogic [Har95]C.Hartonas.Stonedualityformodal-logics [Hut90]H.Huttel.SnScanbemodallycharacterized.Theoretical [Hoa69]C.A.R.Hoare.Anaxiomaticbasisforcomputerprogram- [Kai96]R.Kaivola.Usingautomatatocharacterisexedpointtemporallogics.PhDthesis,UniversityofEdinburgh,1996.
179 [Koz83]D.Kozen.Resultsonthepropositionalmu-calculus.The- substitutions.1996.submittedforpublication. 179 [KM]E.KindlerandA.Mader.Trappingfairness.toappear. [Kal96]K.Kalorkoti.Modelcheckinginthemodal-calculusby BibliographyoreticalComputerScience,27:333{354,1983. [KP83]D.KozenandR.Parikh.Adecisionprocedureforthe [KW97]E.KindlerandR.Walter.Mutexneedsfairness.InformationProcessingLetters,62(31{39),1997ingsofCAV'92,volume663ofLectureNotesinComputer Science.Springer,1992. recursion.inproceedingsofcaap'88,volume299oflec- [Koz88]D.Kozen.Anitemodeltheoremforthepropositional [Lar92]K.Larsen.Ecientlocalcorrectnesschecking.InProceed- Programs,1983. propositional-calculus.insecondworkshoponlogicsof -calculus.studialogica,47:233{241,1988. [Lar95]K.G.Larsen.ProofsystemforHennessy{Milnerlogicwith [Len96]G.Lenzi.Ahierarchytheoremforthe-calculus.InProceedingsofICALP'96,volume1099ofLectureNotesin Animprovedalgorithmfortheevaluationofxpointexpressions.InProceedingsof6thInternationalConference ofcomputer-aidedverication,cav'94,volume818of [LBC+94]D.Long,A.Browne,E.Clarke,S.Jha,andW.Marrero. LectureNotesinComputerScience,pages338{350,1994. turenotesincomputerscience,pages215{230,1995. [LNS82]J.-L.Lassez,V.L.Nguyen,andE.A.Sonenberg.Fixed [Lin88]P.Lindsay.Onalternating!-automata.JournalofComputerandSystemSciences,36:16{24,1988. pointtheoremsandsemantics:afolktale.information volume663oflecturenotesincomputerscience,pages [Mad92]A.Mader.Tableaurecycling.InProceedingsofCAV'92, ComputerScience,pages87{97.Springer,1996. ProcessingLetters,14(3):112{116,May {342.Springer,1992.
180 [Mil89]R.Milner.CommunicationandConcurrency.Prentice 180 [Mad95]A.Mader.Modal-calculus,modelcheckingandGau LectureNotesinComputerScience,pages72{88.Springer, elimination.inproceedingsoftacas'95,volume1019of Hall,1989. Bibliography [MP69]Z.MannaandA.Pnueli.Formalizationofpropertiesof [MP83]Z.MannaandA.Pnueli.Howtocookatemporalproof recursivelydenedfunctions.inproceedingsoftheacm SymposiumonTheoryofComputing,pages201{210,1969. [Niw88]D.Niwinski.Fixed-pointsvs.innitegeneration.InPro- [Niw86]D.Niwinski.Onxedpointclones.InProceedingsofthe ACMonPrinciplesofProgrammingLanguages,pages141{ Science,pages402{409.Springer, thICALP,volume226ofLectureNotesinComputer systemforyourpetlanguage.inproceedingsofthe10th puterscience,pages402{409,1988. ceedingsofthethirdieeesymposiumonlogicincom- 154,1983. [Par70]D.M.R.Park.Fixpointinductionandproofofprogram [Pra76]V.Pratt.SemanticalconsiderationsofFloyd-Hoarelogic. [Ros96]P.Rossmanith.personalcommunication [Rud74]S.Rudeanu.BooleanFunctionsandEquations.North- InProceedingsofthe1stIEEESymposiumonFoundations ofcomputerscience,pages109{121,1976. semantics.machineintelligence,5:59{78,1970. [SE84]R.S.StreettandE.A.Emerson.Anautomatatheoretic [Sti93]C.Stirling.Modalandtemporallogics.InS.Abramsky, HollandPublishingCompany,1974. decisionprocedureforthepropositionalmu-calculus.informationandcomputation,81:249{264,1984. D.Gabbay,andT.Maibaum,editors,HandbookofLogic incomputerscience,volume2,pages447{463.oxford UniversityPress,1993.
181 [Sti96]C.Stirling.Modelcheckingandothergames.Notesfor [Str81]R.S.Street.Propositionaldynamiclogicofloopingand Bibliographymathtworkshoponnitemodeltheory,Universityof Wales,Swansea,1996. Computing,pages375{383,1981. converse.inproceedings13thsymposiumontheoryof 181 [Str82]R.S.Street.Propositionaldynamiclogicofloopingand [SW89]C.StirlingandD.Walker.Localmodelcheckinginthe [Tar55]A.Tarski.Alatticetheoreticalxpointtheoremandits modalmu-calculus.inj.dazandf.orejas,editors, ComputerScience,pages369{383,1989. ProceedingsofTAPSOFT,volume351ofLectureNotesin 54:121{141,1982. converseiselementarydecidable.informationandcontrol, [Var95]M.Y.Vardi.ComputerScienceToday.RecentTrendsand [Tho90]W.Thomas.HandbookofTheoreticalComputerScience, 191.Elsevier/North-Holland,1990. volume2,chapterautomataoninniteobjects,pages133{ Developments.,volume1000ofLectureNotesinComputer applications.pacicjournalofmathematics,5:285{309, [VL92]B.VergauwenandJ.Lewi.Alinearalgorithmforsolvingxed-pointequationsontransitionsystems.InJ.-C. Science,chapterAlternatingautomataandprogramveri- [Ver95]B.Vergauwen.manuscript AlgebraandProgramming,CAAP'92,volume581ofLectureNotesinComputerScience,pages322{341.Springer, cation,pages471{484.springer,1995. Raoult,editor,Proceedingsof17thColloquiumonTreesin [VL94]B.VergauwenandJ.Lewi.Ecientlocalcorrectness tems.inproceedingsoficalp'94,volume820oflecture checkingforsingleandalternatingbooleanequationsys NotesinArticialIntelligence,pages302{315.Springer,
182 [Vog96]W.Vogler.Eciencyofasynchronoussystemsandread 182 [VLAP94]B.Vergauwen,J.Lewi,I.Avau,andA.Pote.Ecientcomputationofnestedx-pointswithapplicationstomodel Bibliography checking.ind.gabbayandh.j.ohlbach,editors,pro- cialintelligence,pages165{179.springer,1994. ceedingsofictl'94,volume827oflecturenotesinarti- [VW83]M.VardiandP.Wolper.Yetanotherprocesslogic.InProceedingsoftheWorkshoponLogicsofPrograms,volume [Wal91]D.Walker.AutomatedanalysisofmutualexclusionalgorithmsusingCCS.TechnicalReportECS-LFCS-89-91, arcsinpetrinets.technicalreport,universitataugsburg, [Wal93]F.Wallner.EinlokalermodelcheckermitGau- Springer,1983. Elimination.Fortgeschrittenenpraktikum,1993. UniversityofEdinburgh, ofLectureNotesinComputerScience,pages501{512. [Wal94]F.Wallner.ModelCheckingimModalen-Kalkul [Wal95a]R.Walter.PetrinetzmodelleverteilterAlgorithmen,volume2ofEditionVersal.BertzVerlag,1995.Dissertation. ofthepropositional-calculus.inproceedingsoflics'95, marbeit. [Wal95b]I.Walukiewicz.CompletenessofKozen'saxiomatization furunendlichesystememithilfesymbolischergau- Elimination.Master'sthesis,TUMunchen,1994.Diplo- [ZSS94]S.Zhang,O.Sokolsky,andS.A.Smolka.Ontheparallel [Win89]G.Winskel.Anoteonmodelcheckingthemodalcalculus.InG.Ausiello,M.Dezani-Ciancaglini,and complexityofmodelcheckinginthemodalmu-calculus. S.RonchiDellaRocca,editors,Proceedingsof16thICALP, InProceedingsofthe9thIEEESymposiumonLogicin volume372oflecturenotesincomputerscience,pages 761{772,1989. ComputerScience,pages154{163,1994.
Question 1a of 14 ( 2 Identifying the roots of a polynomial and their importance 91008 )
Quiz: Factoring by Graphing Question 1a of 14 ( 2 Identifying the roots of a polynomial and their importance 91008 ) (x-3)(x-6), (x-6)(x-3), (1x-3)(1x-6), (1x-6)(1x-3), (x-3)*(x-6), (x-6)*(x-3), (1x- 3)*(1x-6),
1 = (a 0 + b 0 α) 2 + + (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain
Notes on real-closed fields These notes develop the algebraic background needed to understand the model theory of real-closed fields. To understand these notes, a standard graduate course in algebra is
DataClusteringAnalysisinaMultidimensionalSpace A.BouguettayaandQ.LeViet QueenslandUniversityofTechnology fathman,[email protected] SchoolofInformationSystems Brisbane,Qld4001,Australia theresultofafairlyexhaustivestudytoevaluatethreecommonlyusedclusteringalgorithms,
Analysis of Software Variants
Analysis of Software Variants Christian Lindig CAROL Software Technology Group Technical University of Braunschweig Germany -BRA Outline Computer platform diversity causes software diversity software exists
SF2940: Probability theory Lecture 8: Multivariate Normal Distribution
SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2015 Timo Koski Matematisk statistik 24.09.2015 1 / 1 Learning outcomes Random vectors, mean vector, covariance matrix,
Chapter 2: Linear Equations and Inequalities Lecture notes Math 1010
Section 2.1: Linear Equations Definition of equation An equation is a statement that equates two algebraic expressions. Solving an equation involving a variable means finding all values of the variable
Logic in general. Inference rules and theorem proving
Logical Agents Knowledge-based agents Logic in general Propositional logic Inference rules and theorem proving First order logic Knowledge-based agents Inference engine Knowledge base Domain-independent
Chapter 11. 11.1 Load Balancing. Approximation Algorithms. Load Balancing. Load Balancing on 2 Machines. Load Balancing: Greedy Scheduling
Approximation Algorithms Chapter Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should I do? A. Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one
University of Ostrava. Reasoning in Description Logic with Semantic Tableau Binary Trees
University of Ostrava Institute for Research and Applications of Fuzzy Modeling Reasoning in Description Logic with Semantic Tableau Binary Trees Alena Lukasová Research report No. 63 2005 Submitted/to
SF2940: Probability theory Lecture 8: Multivariate Normal Distribution
SF2940: Probability theory Lecture 8: Multivariate Normal Distribution Timo Koski 24.09.2014 Timo Koski () Mathematisk statistik 24.09.2014 1 / 75 Learning outcomes Random vectors, mean vector, covariance
(a) Write each of p and q as a polynomial in x with coefficients in Z[y, z]. deg(p) = 7 deg(q) = 9
Homework #01, due 1/20/10 = 9.1.2, 9.1.4, 9.1.6, 9.1.8, 9.2.3 Additional problems for study: 9.1.1, 9.1.3, 9.1.5, 9.1.13, 9.2.1, 9.2.2, 9.2.4, 9.2.5, 9.2.6, 9.3.2, 9.3.3 9.1.1 (This problem was not assigned
UNIVERSITY OF WARWICK. Academic Quality and Standards Committee
UNIVERSITY OF WARWICK Academic Quality and Standards Committee There will be a meeting of the Academic Quality and Standards Committee on Monday 7 July 2003 at 2.00pm in the Council Chamber, Senate House.
Left-Handed Completeness
Left-Handed Completeness Dexter Kozen Computer Science Department Cornell University RAMiCS, September 19, 2012 Joint work with Alexandra Silva Radboud University Nijmegen and CWI Amsterdam Result A new
Rigorous Software Development CSCI-GA 3033-009
Rigorous Software Development CSCI-GA 3033-009 Instructor: Thomas Wies Spring 2013 Lecture 11 Semantics of Programming Languages Denotational Semantics Meaning of a program is defined as the mathematical
Software Modeling and Verification
Software Modeling and Verification Alessandro Aldini DiSBeF - Sezione STI University of Urbino Carlo Bo Italy 3-4 February 2015 Algorithmic verification Correctness problem Is the software/hardware system
ú Ó Á É é ú ú É ú Á Á ú É É É ú É Ó É ó É Á ú ú ó Á Á ú Ó ú Ó ú É Á ú Á ú ó ú Á ú Á É Á Á Ó É Á ú ú é ú ú ú ú Á ú ó ú Ó Á Á Á Á ú ú ú é É ó é ó ú ú ú É é ú ú ú óú ú ú Ó Á ú ö é É ú ú ú úé ú ú É É Á É
International Journal of Innovative Research in Science, Engineering and Technology Vol. 2, Issue 5, May 2013
ISSN: 2319-8753 International Journal of Innovative Research in Science, Engineering and Technology Vol. 2, Issue 5, May 2013 of vibration are 0.14 rad/s and 0.42 rad/s respectively. The dynamic response
Fixed Point Theory. With 14 Illustrations. %1 Springer
Andrzej Granas James Dugundji Fixed Point Theory With 14 Illustrations %1 Springer Contents Preface vii 0. Introduction 1 1. Fixed Point Spaces 1 2. Forming New Fixed Point Spaces from Old 3 3. Topological
A Propositional Dynamic Logic for CCS Programs
A Propositional Dynamic Logic for CCS Programs Mario R. F. Benevides and L. Menasché Schechter {mario,luis}@cos.ufrj.br Abstract This work presents a Propositional Dynamic Logic in which the programs are
Randomized algorithms
Randomized algorithms March 10, 2005 1 What are randomized algorithms? Algorithms which use random numbers to make decisions during the executions of the algorithm. Why would we want to do this?? Deterministic
calculating the result modulo 3, as follows: p(0) = 0 3 + 0 + 1 = 1 0,
Homework #02, due 1/27/10 = 9.4.1, 9.4.2, 9.4.5, 9.4.6, 9.4.7. Additional problems recommended for study: (9.4.3), 9.4.4, 9.4.9, 9.4.11, 9.4.13, (9.4.14), 9.4.17 9.4.1 Determine whether the following polynomials
Sect 6.1 - Greatest Common Factor and Factoring by Grouping
Sect 6.1 - Greatest Common Factor and Factoring by Grouping Our goal in this chapter is to solve non-linear equations by breaking them down into a series of linear equations that we can solve. To do this,
Bayesianprobabilisticextensionsofadeterministicclassicationmodel K.U.Leuven,Belgium IwinLeenenandIvenVanMechelen AndrewGelman ColumbiaUniversity,NewYork binarypredictorvariablesx1;:::;xk,abooleanregressionmodelisaconjunctive(ordisjunctive)logicalcombinationconsistingofasubsetsofthe
Activity Networks And Gantt Charts
Activity Networks And Gantt Charts (Session 3 in the Project Planning And Management Module) Russ Pimmel Electrical and Computer Engineering University of Alabama October, 2001 The development of this
Average rate of change of y = f(x) with respect to x as x changes from a to a + h:
L15-1 Lecture 15: Section 3.4 Definition of the Derivative Recall the following from Lecture 14: For function y = f(x), the average rate of change of y with respect to x as x changes from a to b (on [a,
Research Note. Bi-intuitionistic Boolean Bunched Logic
UCL DEPARTMENT OF COMPUTER SCIENCE Research Note RN/14/06 Bi-intuitionistic Boolean Bunched Logic June, 2014 James Brotherston Dept. of Computer Science University College London Jules Villard Dept. of
Introduction to Algebraic Geometry. Bézout s Theorem and Inflection Points
Introduction to Algebraic Geometry Bézout s Theorem and Inflection Points 1. The resultant. Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain (UFD). Another example of a
For each learner you will need: mini-whiteboard. For each small group of learners you will need: Card set A Factors; Card set B True/false.
Level A11 of challenge: D A11 Mathematical goals Starting points Materials required Time needed Factorising cubics To enable learners to: associate x-intercepts with finding values of x such that f (x)
Real-TimeVericationofStatemateDesigns. applicationsraisesthedemandforprovingtheircorrectness.becauseverication
Real-TimeVericationofStatemateDesigns vericationofstatemate1designs.statemateisawidelyuseddesign Abstract.Thispaperpresentsanapproachtowardsreal-time toolforembeddedcontrolunits.theseembeddedcontrolunitsare
MEZZANINE DEBT TERM SHEET HEADINGS
MEZZANINE DEBT TERM SHEET HEADINGS Borrower: Shareholders: Sponsors: Finance Parties: Administrative Parties: Lenders: Majority Lenders: Facility Agent: Security Agent: Account Bank: Material Project Party:
CSL105: Discrete Mathematical Structures. Ragesh Jaiswal, CSE, IIT Delhi
Propositional Logic: logical operators Negation ( ) Conjunction ( ) Disjunction ( ). Exclusive or ( ) Conditional statement ( ) Bi-conditional statement ( ): Let p and q be propositions. The biconditional
Chapter 6. Linear Transformation. 6.1 Intro. to Linear Transformation
Chapter 6 Linear Transformation 6 Intro to Linear Transformation Homework: Textbook, 6 Ex, 5, 9,, 5,, 7, 9,5, 55, 57, 6(a,b), 6; page 7- In this section, we discuss linear transformations 89 9 CHAPTER
Bachelor of Science in Marketing Curriculum
COLLEGE OF INDUSTRIAL MANAGEMENT Department of Management and Marketing Bachelor of Science in Marketing Curriculum The full list of courses in the proposed marketing curriculum is shown in the table below.
Linear Regression. Guy Lebanon
Linear Regression Guy Lebanon Linear Regression Model and Least Squares Estimation Linear regression is probably the most popular model for predicting a RV Y R based on multiple RVs X 1,..., X d R. It
Algorithm Design and Analysis
Algorithm Design and Analysis LECTURE 27 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/6/2011 S. Raskhodnikova;
Andrew Pitts chapter for D. Sangorgi and J. Rutten (eds), Advanced Topics in Bisimulation and Coinduction, Cambridge Tracts in Theoretical Computer
Andrew Pitts chapter for D. Sangorgi and J. Rutten (eds), Advanced Topics in Bisimulation and Coinduction, Cambridge Tracts in Theoretical Computer Science No. 52, chapter 5, pages 197 232 ( c 2011 CUP)
Non-deterministic Semantics and the Undecidability of Boolean BI
1 Non-deterministic Semantics and the Undecidability of Boolean BI DOMINIQUE LARCHEY-WENDLING, LORIA CNRS, Nancy, France DIDIER GALMICHE, LORIA Université Henri Poincaré, Nancy, France We solve the open
2.3. Finding polynomial functions. An Introduction:
2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned
How To Understand The Theory Of Algebraic Functions
Homework 4 3.4,. Show that x x cos x x holds for x 0. Solution: Since cos x, multiply all three parts by x > 0, we get: x x cos x x, and since x 0 x x 0 ( x ) = 0, then by Sandwich theorem, we get: x 0
p: I am elected q: I will lower the taxes
Implication Conditional Statement p q (p implies q) (if p then q) is the proposition that is false when p is true and q is false and true otherwise. Equivalent to not p or q Ex. If I am elected then I
How To Prove The Dirichlet Unit Theorem
Chapter 6 The Dirichlet Unit Theorem As usual, we will be working in the ring B of algebraic integers of a number field L. Two factorizations of an element of B are regarded as essentially the same if
University of Ostrava. Fuzzy Transforms
University of Ostrava Institute for Research and Applications of Fuzzy Modeling Fuzzy Transforms Irina Perfilieva Research report No. 58 2004 Submitted/to appear: Fuzzy Sets and Systems Supported by: Grant
AGENDA Annual Filing Season Program (AFSP) Overview Annual Federal Tax Refresher Course (AFTR) Overview Maryland Registration Requirements and
MRSTAX ENTERPRISE AGENDA Annual Filing Season Program (AFSP) Overview Annual Federal Tax Refresher Course (AFTR) Overview Maryland Registration Requirements and Examination Overview AFSP Voluntary Continuing
SUPPORTI PER VETRO SUPPORT FOR GLASS. ACCESSORI PARAPETTI / Supporti per vetro FITTINGS FOR RAILINGS / Support for glass COD. COD. COD.
EX260 DA SPESSORE 6 mm A 8 mm Ø 42,4 - INOX AISI 304 SUPPORT for 6-8 mm glass x 42,4 mm dia. - STAINLESS STEEL AISI 304 SATIN FINISH EX260F DA SPESSORE 6 mm A 8 mm - INOX AISI 304 SUPPORT for 6-8 mm glass
1.5. Factorisation. Introduction. Prerequisites. Learning Outcomes. Learning Style
Factorisation 1.5 Introduction In Block 4 we showed the way in which brackets were removed from algebraic expressions. Factorisation, which can be considered as the reverse of this process, is dealt with
Winter Camp 2011 Polynomials Alexander Remorov. Polynomials. Alexander Remorov [email protected]
Polynomials Alexander Remorov [email protected] Warm-up Problem 1: Let f(x) be a quadratic polynomial. Prove that there exist quadratic polynomials g(x) and h(x) such that f(x)f(x + 1) = g(h(x)).
def: An axiom is a statement that is assumed to be true, or in the case of a mathematical system, is used to specify the system.
Section 1.5 Methods of Proof 1.5.1 1.5 METHODS OF PROOF Some forms of argument ( valid ) never lead from correct statements to an incorrect. Some other forms of argument ( fallacies ) can lead from true
Model Checking: An Introduction
Announcements Model Checking: An Introduction Meeting 2 Office hours M 1:30pm-2:30pm W 5:30pm-6:30pm (after class) and by appointment ECOT 621 Moodle problems? Fundamentals of Programming Languages CSCI
IVECO pag. 52-65 MAN pag. 64-65. SCANIA pag. 64-65 VOLVO pag. 64-65 GEARBOX CAMBIO
ricambi per / spare parts for IVECO pag. 52-65 MAN pag. 64-65 MERCEDES pag. 64-65 SCANIA pag. 64-65 VOLVO pag. 64-65 52 FIG. ITEM RIF. ERREVI ERREVI REF. DESCRIZIONE PARTICOLARI DESCRIPTION TIPO VEHICLE
COURSE NAVIGATOR DEMO QUICK GUIDE
COURSE NAVIGATOR DEMO QUICK GUIDE INTRODUCTION The Course Navigator is a web-based learning management system that contains the EHR Navigator activities and assessments, as well as flash cards, quizzes,
QMC: A Model Checker for Quantum Systems
QMC: A Model Checker for Quantum Systems Simon J. Gay 1, Rajagopal Nagarajan 2, and Nikolaos Papanikolaou 2 1 Department of Computing Science, University of Glasgow [email protected] 2 Department of
An Introduction to AC Field Hall Effect Measurements
An Introduction to AC Field Hall Effect Measurements Dr. Jeffrey R. Lindemuth The Hall effect is a well-known method to determine the carrier concentration, carrier type, and when coupled with a resistivity
Software Model Checking: Theory and Practice
Software Model Checking: Theory and Practice Lecture: Secification Checking - Temoral Logic Coyright 2004, Matt Dwyer, John Hatcliff, and Robby. The syllabus and all lectures for this course are coyrighted
Introduction to Finite Fields (cont.)
Chapter 6 Introduction to Finite Fields (cont.) 6.1 Recall Theorem. Z m is a field m is a prime number. Theorem (Subfield Isomorphic to Z p ). Every finite field has the order of a power of a prime number
OpenStax-CNX module: m32633 1. Quadratic Sequences 1; 2; 4; 7; 11;... (1)
OpenStax-CNX module: m32633 1 Quadratic Sequences Rory Adams Free High School Science Texts Project Sarah Blyth Heather Williams This work is produced by OpenStax-CNX and licensed under the Creative Commons
TrinityHall, Cambridge, England.
usingrecurrentneuralnetworks HandwritingRecognition O-lineCursive AndrewWilliamSenior A TrinityHall, Cambridge, England. Thisthesisissubmittedforconsideration forthedegreeofdoctorofphilosophy attheuniversityofcambridge.
2.8.3 / (Z80 Serial I/O)
283 / (Z80 Serial I/O) 80 SIO 80 / 80 bit bit bit bit SIO! 80 " Z80 SIO 2 # $ % Z80 SIO & IBM bisync ( byte) HDLC, IBM SDLC ( bit) '! # & ( modem modem )/" ' Cyclic Redundancy Check (CRC) ( ) 2831 Z80
Lights and Darks of the Star-Free Star
Lights and Darks of the Star-Free Star Edward Ochmański & Krystyna Stawikowska Nicolaus Copernicus University, Toruń, Poland Introduction: star may destroy recognizability In (finitely generated) trace
Factorization in Polynomial Rings
Factorization in Polynomial Rings These notes are a summary of some of the important points on divisibility in polynomial rings from 17 and 18 of Gallian s Contemporary Abstract Algebra. Most of the important
Reachability in Succinct and Parametric One-Counter Automata
Reachability in Succinct and Parametric One-Counter Automata Christoph Haase, Stephan Kreutzer, Joël Ouaknine, and James Worrell Oxford University Computing Laboratory, UK {chrh,kreutzer,joel,jbw}@comlab.ox.ac.uk
The Butterfly, Cube-Connected-Cycles and Benes Networks
The Butterfly, Cube-Connected-Cycles and Benes Networks Michael Lampis [email protected] NTUA The Butterfly, Cube-Connected-Cycles and Benes Networks p.1/16 Introduction Hypercubes are computationally
On some Constructions of Shapeless Quasigroups
Aleksandra Mileva 1 and Smile Markovski 2 1 Faculty of Computer Science, University Goce Delčev, Štip 2 Faculty of Computer Science and Computer Engineering, University Ss. Cyril and Methodius - Skopje
Duality of linear conic problems
Duality of linear conic problems Alexander Shapiro and Arkadi Nemirovski Abstract It is well known that the optimal values of a linear programming problem and its dual are equal to each other if at least
Foundational Proof Certificates
An application of proof theory to computer science INRIA-Saclay & LIX, École Polytechnique CUSO Winter School, Proof and Computation 30 January 2013 Can we standardize, communicate, and trust formal proofs?
! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. !-approximation algorithm.
Approximation Algorithms Chapter Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of
4.5 Linear Dependence and Linear Independence
4.5 Linear Dependence and Linear Independence 267 32. {v 1, v 2 }, where v 1, v 2 are collinear vectors in R 3. 33. Prove that if S and S are subsets of a vector space V such that S is a subset of S, then
General Framework for an Iterative Solution of Ax b. Jacobi s Method
2.6 Iterative Solutions of Linear Systems 143 2.6 Iterative Solutions of Linear Systems Consistent linear systems in real life are solved in one of two ways: by direct calculation (using a matrix factorization,
CS510 Software Engineering
CS510 Software Engineering Propositional Logic Asst. Prof. Mathias Payer Department of Computer Science Purdue University TA: Scott A. Carr Slides inspired by Xiangyu Zhang http://nebelwelt.net/teaching/15-cs510-se
Concentration inequalities for order statistics Using the entropy method and Rényi s representation
Concentration inequalities for order statistics Using the entropy method and Rényi s representation Maud Thomas 1 in collaboration with Stéphane Boucheron 1 1 LPMA Université Paris-Diderot High Dimensional
ORIENTATIONS. Contents
ORIENTATIONS Contents 1. Generators for H n R n, R n p 1 1. Generators for H n R n, R n p We ended last time by constructing explicit generators for H n D n, S n 1 by using an explicit n-simplex which
3.1 Solving Systems Using Tables and Graphs
Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system
Solving Quadratic Equations by Factoring
4.7 Solving Quadratic Equations by Factoring 4.7 OBJECTIVE 1. Solve quadratic equations by factoring The factoring techniques you have learned provide us with tools for solving equations that can be written
Applied Mathematics and Computation
Applied Mathematics and Computation 219 (2012) 1449 1467 Contents lists available at SciVerse ScienceDirect Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc Preclusion
EE 330 Lecture 21. Small Signal Analysis Small Signal Analysis of BJT Amplifier
EE 330 Lecture 21 Small Signal Analsis Small Signal Analsis of BJT Amplifier Review from Last Lecture Comparison of Gains for MOSFET and BJT Circuits IN (t) A B BJT CC 1 R EE OUT I R C 1 t If I D R =I
Factor analysis. Angela Montanari
Factor analysis Angela Montanari 1 Introduction Factor analysis is a statistical model that allows to explain the correlations between a large number of observed correlated variables through a small number
! Solve problem to optimality. ! Solve problem in poly-time. ! Solve arbitrary instances of the problem. #-approximation algorithm.
Approximation Algorithms 11 Approximation Algorithms Q Suppose I need to solve an NP-hard problem What should I do? A Theory says you're unlikely to find a poly-time algorithm Must sacrifice one of three
Aim: How do we find the slope of a line? Warm Up: Go over test. A. Slope -
Aim: How do we find the slope of a line? Warm Up: Go over test A. Slope - Plot the points and draw a line through the given points. Find the slope of the line.. A(-5,4) and B(4,-3) 2. A(4,3) and B(4,-6)
DNA Data and Program Representation. Alexandre David 1.2.05 [email protected]
DNA Data and Program Representation Alexandre David 1.2.05 [email protected] Introduction Very important to understand how data is represented. operations limits precision Digital logic built on 2-valued
Semester Review. CSC 301, Fall 2015
Semester Review CSC 301, Fall 2015 Programming Language Classes There are many different programming language classes, but four classes or paradigms stand out:! Imperative Languages! assignment and iteration!
Beyond Propositional Logic Lukasiewicz s System
Beyond Propositional Logic Lukasiewicz s System Consider the following set of truth tables: 1 0 0 1 # # 1 0 # 1 1 0 # 0 0 0 0 # # 0 # 1 0 # 1 1 1 1 0 1 0 # # 1 # # 1 0 # 1 1 0 # 0 1 1 1 # 1 # 1 Brandon
Board Notes on Virtual Memory
Board Notes on Virtual Memory Part A: Why Virtual Memory? - Letʼs user program size exceed the size of the physical address space - Supports protection o Donʼt know which program might share memory at
Informatique Fondamentale IMA S8
Informatique Fondamentale IMA S8 Cours 1 - Intro + schedule + finite state machines Laure Gonnord http://laure.gonnord.org/pro/teaching/ [email protected] Université Lille 1 - Polytech Lille
Sect 6.7 - Solving Equations Using the Zero Product Rule
Sect 6.7 - Solving Equations Using the Zero Product Rule 116 Concept #1: Definition of a Quadratic Equation A quadratic equation is an equation that can be written in the form ax 2 + bx + c = 0 (referred
Database Design and Normalization
Database Design and Normalization Chapter 10 (Week 11) EE562 Slides and Modified Slides from Database Management Systems, R. Ramakrishnan 1 Computing Closure F + Example: List all FDs with: - a single
On computer algebra-aided stability analysis of dierence schemes generated by means of Gr obner bases
On computer algebra-aided stability analysis of dierence schemes generated by means of Gr obner bases Vladimir Gerdt 1 Yuri Blinkov 2 1 Laboratory of Information Technologies Joint Institute for Nuclear
Examples of Tasks from CCSS Edition Course 3, Unit 5
Examples of Tasks from CCSS Edition Course 3, Unit 5 Getting Started The tasks below are selected with the intent of presenting key ideas and skills. Not every answer is complete, so that teachers can
Abstract Algebra Cheat Sheet
Abstract Algebra Cheat Sheet 16 December 2002 By Brendan Kidwell, based on Dr. Ward Heilman s notes for his Abstract Algebra class. Notes: Where applicable, page numbers are listed in parentheses at the
