Data Analytics at NERSC. Joaquin Correa NERSC Data and Analytics Services
|
|
|
- Carol Carson
- 10 years ago
- Views:
Transcription
1 Data Analytics at NERSC Joaquin Correa NERSC Data and Analytics Services NERSC User Meeting August, 2015
2 Data analytics at NERSC Science Applications Climate, Cosmology, Kbase, Materials, BioImaging, Your science! Analytics Capabilities Statistics, Machine Learning Image Processing Graph Analytics Database Operations Tools + Libraries R, python, MLBase MATLAB OMERO, Fiji GraphX SQL Runtime Framework MPI Spark SciDB Resource Management Filesystems (Lustre), Batch/Queue Systems Hardware SandyBridge/KNL chipset, Burst Buffers, Aries Interconnect
3 Data analytics at NERSC Analytics Capabilities Statistics, Machine Learning Image Processing Graph Analytics Database Operations Tools + Libraries R, python, MLBase MATLAB OMERO, Fiji GraphX SQL Runtime Framework MPI Spark SciDB
4 Talk Overview Data analytics tools Data insight Scale your analysis -4-
5 Talk Overview Data analytics tools Data insight Scale your analysis -5-
6 R is a language and environment for statistical computing and graphics. It provides a wide variety of statistical tools, such as linear and nonlinear modelling, classical statistical tests, timeseries analysis, classification, clustering, graphics, and it is highly extensible. -6-
7 MATLAB is a technical computing language that integrates computation, visualization, and programming in an easy-to-use environment where problems and solutions are expressed in familiar mathematical notation. Toolboxes: MATLAB 16 Image Processing 2 Neural networks 1 Optimization 2 Parallel computing 2 Signal processing 1 Statistics 2 Compiler 1-7-
8 Mathematica Mathematica is a fully integrated environment for technical computing. It performs symbolic manipulation of equations, integrals, differential equations, and most other mathematical expressions. Numeric results can be evaluated as well. -8-
9 Fiji Is Just ImageJ - Fiji is an image processing package. It can be described as a "batteries-included" distribution of ImageJ (and ImageJ2), bundling Java, Java3D and a lot of plugins organized into a coherent structure. -9-
10 - 10 -
11 Scientific Computing Tools for Python NumPy The SciPy library Matplotlib pandas SymPy IPython nose Cython Scikits h5py mpi4py
12 Deep learning at NERSC neon is an easy to use, python-based scalable Deep Learning library. Deep Learning has recently achieved state-of-the-art performance in a wide range of domains including images, speech, and text. It is seeing adoption in the HPC community as a tool for large-scale data processing
13 Talk Overview Data analytics tools Data insight Scale your analysis
14 R and RStudio Service(Beta) r.nersc.gov
15 ipythonnotebook Service(Beta) ipython.nersc.gov
16 Talk Overview Data analytics tools Data insight Scale your analysis
17 Apache Spark is a fast and general-purpose cluster computing system. It provides high-level APIs in Java, Scala, Python and R, and an optimized engine that supports general execution graphs
18 Easy to Prototype Interactive shells make it easy to explore your data Interactively debug your analyses Works with ipython notebooks Easy to Run High-Level API using map-reduce paradigm Implement all your analyses in a few lines of Python Scala Java
19 Computation Type Spark Implementation Machine Learning MLlib, Spark ML Graph Computations GraphX Database Operations Spark SQL Streaming Analysis Spark Streaming Your Own Custom Analysis Using Spark s Built In Functions Computation types can be combined seamlessly all in the same piece of code!
20 SciDB For High Usability Big Data Analytic Why? It s painful to manage and analyze terabytes of data. Need a unified solution that s easy to use. What? SciDB is a parallel database for array-structured data, great for Terabytes of: Time series, spectrums, imaging, etc The greatest benefit of SciDB is: Usability: Use HPC hardware without learning parallel programming and parallel I/O SciDB Distribute a big array on many nodes
21 NERSC Data Analytic Services Production Data Services Big and Diverse Computing Facility Users, 700+ Projects 3+ PetaFlops (20+pf more coming) 50+ PB Storage Science Engagement
22 Thank you
23 Cori: Unified architecture for HPC and Big Data 64 Cabinets of Cray XC System 50 cabinets Knights Landing manycore compute nodes 10 cabinets Haswell compute nodes for data partition ~4 cabinets of Burst Buffer 14 external login nodes Aries Interconnect (same as on Edison) Lustre File system 28 PB capacity, 432 GB/sec peak performance NVRAM Burst Buffer for I/O acceleration Significant Intel and Cray application transition support Delivery in mid-2016; installation in new LBNL CRT
24 NERSC Systems Hopper: 1.3PF, 212 TB RAM 2.2 PB Local Scratch 70 GB/s Cray XE6, 150K Cores Edison: 2.5PF, 357 TB RAM 48 GB/s 6.4 PB Local Scratch 140 GB/s 80 GB/s 80 GB/s /global/scr atch 4 PB 50 GB/s /project 5 PB 5 GB/s /home 12 GB/s HPSS Cray XC30, 130K Cores Sponsored Compute Systems Carver, PDSF, JGI, KBASE, HEP 8 x FDR IB Ethernet & IB Fabric Science Friendly Security Production Monitoring Vis & Analytics, Data Transfer Nodes, Adv. Arch., Science Gateways 2 x 10 Gb 1 x 100 Gb Power Efficiency WAN Science Data Network 250 TB 45 PB stored, 240 PB capacity, 40 years of community data
25 5 V s of Scientific Big Data Science Domain Variety Volume Velocity Veracity Astronomy Multiple Telescopes, multi-band/spectra O(100) TB 100 GB/night 10 TB/night Noisy, acquisition artefacts Light Sources Multiple imaging modalities O(100) GB 1 Gb/s-1 Tb/s Noisy, sample preparation/acquisition artefacts Genomics Sequencers, Massspec, proteomics O(1-10) TB TB/day Missing data, errors HEP: LHC, Daya Bay Multiple detectors O(100) TB O(10) PB 1-10 PB/s reduced to GB/s Noisy, artefacts, spatiotemporal Climate Simulations Multi-variate, spatio-temporal O(10) TB GB/s Clean, need to account for multiple sources of uncertainty
26 DOE Facilities are Facing a Data Deluge Genomics Climate Astronomy Physics Light Sources
NERSC Data Efforts Update Prabhat Data and Analytics Group Lead February 23, 2015
NERSC Data Efforts Update Prabhat Data and Analytics Group Lead February 23, 2015-1 - A little bit about myself Computer Scien.st Brown, IIT Delhi Real- 3me Graphics, Virtual Reality, HCI Computa3onal
NERSC File Systems and How to Use Them
NERSC File Systems and How to Use Them David Turner! NERSC User Services Group! Joint Facilities User Forum on Data- Intensive Computing! June 18, 2014 The compute and storage systems 2014 Hopper: 1.3PF,
Big Data at Spotify. Anders Arpteg, Ph D Analytics Machine Learning, Spotify
Big Data at Spotify Anders Arpteg, Ph D Analytics Machine Learning, Spotify Quickly about me Quickly about Spotify What is all the data used for? Quickly about Spark Hadoop MR vs Spark Need for (distributed)
Data-intensive HPC: opportunities and challenges. Patrick Valduriez
Data-intensive HPC: opportunities and challenges Patrick Valduriez Big Data Landscape Multi-$billion market! Big data = Hadoop = MapReduce? No one-size-fits-all solution: SQL, NoSQL, MapReduce, No standard,
Data Requirements from NERSC Requirements Reviews
Data Requirements from NERSC Requirements Reviews Richard Gerber and Katherine Yelick Lawrence Berkeley National Laboratory Summary Department of Energy Scientists represented by the NERSC user community
Outline. High Performance Computing (HPC) Big Data meets HPC. Case Studies: Some facts about Big Data Technologies HPC and Big Data converging
Outline High Performance Computing (HPC) Towards exascale computing: a brief history Challenges in the exascale era Big Data meets HPC Some facts about Big Data Technologies HPC and Big Data converging
Kriterien für ein PetaFlop System
Kriterien für ein PetaFlop System Rainer Keller, HLRS :: :: :: Context: Organizational HLRS is one of the three national supercomputing centers in Germany. The national supercomputing centers are working
How To Create A Data Visualization With Apache Spark And Zeppelin 2.5.3.5
Big Data Visualization using Apache Spark and Zeppelin Prajod Vettiyattil, Software Architect, Wipro Agenda Big Data and Ecosystem tools Apache Spark Apache Zeppelin Data Visualization Combining Spark
Scaling Out With Apache Spark. DTL Meeting 17-04-2015 Slides based on https://www.sics.se/~amir/files/download/dic/spark.pdf
Scaling Out With Apache Spark DTL Meeting 17-04-2015 Slides based on https://www.sics.se/~amir/files/download/dic/spark.pdf Your hosts Mathijs Kattenberg Technical consultant Jeroen Schot Technical consultant
Intel HPC Distribution for Apache Hadoop* Software including Intel Enterprise Edition for Lustre* Software. SC13, November, 2013
Intel HPC Distribution for Apache Hadoop* Software including Intel Enterprise Edition for Lustre* Software SC13, November, 2013 Agenda Abstract Opportunity: HPC Adoption of Big Data Analytics on Apache
HPC and Big Data. EPCC The University of Edinburgh. Adrian Jackson Technical Architect [email protected]
HPC and Big Data EPCC The University of Edinburgh Adrian Jackson Technical Architect [email protected] EPCC Facilities Technology Transfer European Projects HPC Research Visitor Programmes Training
Customer Case Study. Automatic Labs
Customer Case Study Automatic Labs Customer Case Study Automatic Labs Benefits Validated product in days Completed complex queries in minutes Freed up 1 full-time data scientist Infrastructure savings
HPC ABDS: The Case for an Integrating Apache Big Data Stack
HPC ABDS: The Case for an Integrating Apache Big Data Stack with HPC 1st JTC 1 SGBD Meeting SDSC San Diego March 19 2014 Judy Qiu Shantenu Jha (Rutgers) Geoffrey Fox [email protected] http://www.infomall.org
Shark Installation Guide Week 3 Report. Ankush Arora
Shark Installation Guide Week 3 Report Ankush Arora Last Updated: May 31,2014 CONTENTS Contents 1 Introduction 1 1.1 Shark..................................... 1 1.2 Apache Spark.................................
Monitis Project Proposals for AUA. September 2014, Yerevan, Armenia
Monitis Project Proposals for AUA September 2014, Yerevan, Armenia Distributed Log Collecting and Analysing Platform Project Specifications Category: Big Data and NoSQL Software Requirements: Apache Hadoop
Ali Ghodsi Head of PM and Engineering Databricks
Making Big Data Simple Ali Ghodsi Head of PM and Engineering Databricks Big Data is Hard: A Big Data Project Tasks Tasks Build a Hadoop cluster Challenges Clusters hard to setup and manage Build a data
Building a Top500-class Supercomputing Cluster at LNS-BUAP
Building a Top500-class Supercomputing Cluster at LNS-BUAP Dr. José Luis Ricardo Chávez Dr. Humberto Salazar Ibargüen Dr. Enrique Varela Carlos Laboratorio Nacional de Supercómputo Benemérita Universidad
1. The orange button 2. Audio Type 3. Close apps 4. Enlarge my screen 5. Headphones 6. Questions Pane. SparkR 2
SparkR 1. The orange button 2. Audio Type 3. Close apps 4. Enlarge my screen 5. Headphones 6. Questions Pane SparkR 2 Lecture slides and/or video will be made available within one week Live Demonstration
Introduction Installation Comparison. Department of Computer Science, Yazd University. SageMath. A.Rahiminasab. October9, 2015 1 / 17
Department of Computer Science, Yazd University SageMath A.Rahiminasab October9, 2015 1 / 17 2 / 17 SageMath(previously Sage or SAGE) System for Algebra and Geometry Experimentation is mathematical software
Hadoop MapReduce and Spark. Giorgio Pedrazzi, CINECA-SCAI School of Data Analytics and Visualisation Milan, 10/06/2015
Hadoop MapReduce and Spark Giorgio Pedrazzi, CINECA-SCAI School of Data Analytics and Visualisation Milan, 10/06/2015 Outline Hadoop Hadoop Import data on Hadoop Spark Spark features Scala MLlib MLlib
Databricks. A Primer
Databricks A Primer Who is Databricks? Databricks was founded by the team behind Apache Spark, the most active open source project in the big data ecosystem today. Our mission at Databricks is to dramatically
Big Data Research in the AMPLab: BDAS and Beyond
Big Data Research in the AMPLab: BDAS and Beyond Michael Franklin UC Berkeley 1 st Spark Summit December 2, 2013 UC BERKELEY AMPLab: Collaborative Big Data Research Launched: January 2011, 6 year planned
Scientific Programming, Analysis, and Visualization with Python. Mteor 227 Fall 2015
Scientific Programming, Analysis, and Visualization with Python Mteor 227 Fall 2015 Python The Big Picture Interpreted General purpose, high-level Dynamically type Multi-paradigm Object-oriented Functional
Spark and the Big Data Library
Spark and the Big Data Library Reza Zadeh Thanks to Matei Zaharia Problem Data growing faster than processing speeds Only solution is to parallelize on large clusters» Wide use in both enterprises and
Bringing Big Data Modelling into the Hands of Domain Experts
Bringing Big Data Modelling into the Hands of Domain Experts David Willingham Senior Application Engineer MathWorks [email protected] 2015 The MathWorks, Inc. 1 Data is the sword of the
Introduction to Big Data! with Apache Spark" UC#BERKELEY#
Introduction to Big Data! with Apache Spark" UC#BERKELEY# This Lecture" The Big Data Problem" Hardware for Big Data" Distributing Work" Handling Failures and Slow Machines" Map Reduce and Complex Jobs"
Databricks. A Primer
Databricks A Primer Who is Databricks? Databricks vision is to empower anyone to easily build and deploy advanced analytics solutions. The company was founded by the team who created Apache Spark, a powerful
Big Data Challenges in Bioinformatics
Big Data Challenges in Bioinformatics BARCELONA SUPERCOMPUTING CENTER COMPUTER SCIENCE DEPARTMENT Autonomic Systems and ebusiness Pla?orms Jordi Torres [email protected] Talk outline! We talk about Petabyte?
Agenda. HPC Software Stack. HPC Post-Processing Visualization. Case Study National Scientific Center. European HPC Benchmark Center Montpellier PSSC
HPC Architecture End to End Alexandre Chauvin Agenda HPC Software Stack Visualization National Scientific Center 2 Agenda HPC Software Stack Alexandre Chauvin Typical HPC Software Stack Externes LAN Typical
Overview of HPC Resources at Vanderbilt
Overview of HPC Resources at Vanderbilt Will French Senior Application Developer and Research Computing Liaison Advanced Computing Center for Research and Education June 10, 2015 2 Computing Resources
Pilot-Streaming: Design Considerations for a Stream Processing Framework for High- Performance Computing
Pilot-Streaming: Design Considerations for a Stream Processing Framework for High- Performance Computing Andre Luckow, Peter M. Kasson, Shantenu Jha STREAMING 2016, 03/23/2016 RADICAL, Rutgers, http://radical.rutgers.edu
Data-Intensive Applications on HPC Using Hadoop, Spark and RADICAL-Cybertools
Data-Intensive Applications on HPC Using Hadoop, Spark and RADICAL-Cybertools Shantenu Jha, Andre Luckow, Ioannis Paraskevakos RADICAL, Rutgers, http://radical.rutgers.edu Agenda 1. Motivation and Background
How Companies are! Using Spark
How Companies are! Using Spark And where the Edge in Big Data will be Matei Zaharia History Decreasing storage costs have led to an explosion of big data Commodity cluster software, like Hadoop, has made
Quick Reference Selling Guide for Intel Lustre Solutions Overview
Overview The 30 Second Pitch Intel Solutions for Lustre* solutions Deliver sustained storage performance needed that accelerate breakthrough innovations and deliver smarter, data-driven decisions for enterprise
Big Data Analytics with Spark and Oscar BAO. Tamas Jambor, Lead Data Scientist at Massive Analytic
Big Data Analytics with Spark and Oscar BAO Tamas Jambor, Lead Data Scientist at Massive Analytic About me Building a scalable Machine Learning platform at MA Worked in Big Data and Data Science in the
www.thinkparq.com www.beegfs.com
www.thinkparq.com www.beegfs.com KEY ASPECTS Maximum Flexibility Maximum Scalability BeeGFS supports a wide range of Linux distributions such as RHEL/Fedora, SLES/OpenSuse or Debian/Ubuntu as well as a
Case Study : 3 different hadoop cluster deployments
Case Study : 3 different hadoop cluster deployments Lee moon soo [email protected] HDFS as a Storage Last 4 years, our HDFS clusters, stored Customer 1500 TB+ data safely served 375,000 TB+ data to customer
Cray XC30 Hadoop Platform Jonathan (Bill) Sparks Howard Pritchard Martha Dumler
Cray XC30 Hadoop Platform Jonathan (Bill) Sparks Howard Pritchard Martha Dumler Safe Harbor Statement This presentation may contain forward-looking statements that are based on our current expectations.
Big Data and Analytics: Challenges and Opportunities
Big Data and Analytics: Challenges and Opportunities Dr. Amin Beheshti Lecturer and Senior Research Associate University of New South Wales, Australia (Service Oriented Computing Group, CSE) Talk: Sharif
TUT NoSQL Seminar (Oracle) Big Data
Timo Raitalaakso +358 40 848 0148 [email protected] TUT NoSQL Seminar (Oracle) Big Data 11.12.2012 Timo Raitalaakso MSc 2000 Work: Solita since 2001 Senior Database Specialist Oracle ACE 2012 Blog: http://rafudb.blogspot.com
Developing Scalable Smart Grid Infrastructure to Enable Secure Transmission System Control
Developing Scalable Smart Grid Infrastructure to Enable Secure Transmission System Control EP/K006487/1 UK PI: Prof Gareth Taylor (BU) China PI: Prof Yong-Hua Song (THU) Consortium UK Members: Brunel University
COMP9321 Web Application Engineering
COMP9321 Web Application Engineering Semester 2, 2015 Dr. Amin Beheshti Service Oriented Computing Group, CSE, UNSW Australia Week 11 (Part II) http://webapps.cse.unsw.edu.au/webcms2/course/index.php?cid=2411
From Raw Data to. Actionable Insights with. MATLAB Analytics. Learn more. Develop predictive models. 1Access and explore data
100 001 010 111 From Raw Data to 10011100 Actionable Insights with 00100111 MATLAB Analytics 01011100 11100001 1 Access and Explore Data For scientists the problem is not a lack of available but a deluge.
Mendel at NERSC: Multiple Workloads on a Single Linux Cluster
Mendel at NERSC: Multiple Workloads on a Single Linux Cluster Larry Pezzaglia NERSC Computational Systems Group [email protected] CUG 2013 (May 9, 2013) Snapshot of NERSC Located at LBNL, NERSC is the
Hadoop Ecosystem B Y R A H I M A.
Hadoop Ecosystem B Y R A H I M A. History of Hadoop Hadoop was created by Doug Cutting, the creator of Apache Lucene, the widely used text search library. Hadoop has its origins in Apache Nutch, an open
The Internet of Things and Big Data: Intro
The Internet of Things and Big Data: Intro John Berns, Solutions Architect, APAC - MapR Technologies April 22 nd, 2014 1 What This Is; What This Is Not It s not specific to IoT It s not about any specific
Dr. Raju Namburu Computational Sciences Campaign U.S. Army Research Laboratory. The Nation s Premier Laboratory for Land Forces UNCLASSIFIED
Dr. Raju Namburu Computational Sciences Campaign U.S. Army Research Laboratory 21 st Century Research Continuum Theory Theory embodied in computation Hypotheses tested through experiment SCIENTIFIC METHODS
So#ware Tools and Techniques for HPC, Clouds, and Server- Class SoCs Ron Brightwell
So#ware Tools and Techniques for HPC, Clouds, and Server- Class SoCs Ron Brightwell R&D Manager, Scalable System So#ware Department Sandia National Laboratories is a multi-program laboratory managed and
Enabling High performance Big Data platform with RDMA
Enabling High performance Big Data platform with RDMA Tong Liu HPC Advisory Council Oct 7 th, 2014 Shortcomings of Hadoop Administration tooling Performance Reliability SQL support Backup and recovery
Fast and Expressive Big Data Analytics with Python. Matei Zaharia UC BERKELEY
Fast and Expressive Big Data Analytics with Python Matei Zaharia UC Berkeley / MIT UC BERKELEY spark-project.org What is Spark? Fast and expressive cluster computing system interoperable with Apache Hadoop
Distributed DataFrame on Spark: Simplifying Big Data For The Rest Of Us
DATA INTELLIGENCE FOR ALL Distributed DataFrame on Spark: Simplifying Big Data For The Rest Of Us Christopher Nguyen, PhD Co-Founder & CEO Agenda 1. Challenges & Motivation 2. DDF Overview 3. DDF Design
Unlocking the True Value of Hadoop with Open Data Science
Unlocking the True Value of Hadoop with Open Data Science Kristopher Overholt Solution Architect Big Data Tech 2016 MinneAnalytics June 7, 2016 Overview Overview of Open Data Science Python and the Big
Surfing the Data Tsunami: A New Paradigm for Big Data Processing and Analytics
Surfing the Data Tsunami: A New Paradigm for Big Data Processing and Analytics Dr. Liangxiu Han Future Networks and Distributed Systems Group (FUNDS) School of Computing, Mathematics and Digital Technology,
Overview of HPC systems and software available within
Overview of HPC systems and software available within Overview Available HPC Systems Ba Cy-Tera Available Visualization Facilities Software Environments HPC System at Bibliotheca Alexandrina SUN cluster
Bayesian networks - Time-series models - Apache Spark & Scala
Bayesian networks - Time-series models - Apache Spark & Scala Dr John Sandiford, CTO Bayes Server Data Science London Meetup - November 2014 1 Contents Introduction Bayesian networks Latent variables Anomaly
Unified Big Data Analytics Pipeline. 连 城 [email protected]
Unified Big Data Analytics Pipeline 连 城 [email protected] What is A fast and general engine for large-scale data processing An open source implementation of Resilient Distributed Datasets (RDD) Has an
New Storage System Solutions
New Storage System Solutions Craig Prescott Research Computing May 2, 2013 Outline } Existing storage systems } Requirements and Solutions } Lustre } /scratch/lfs } Questions? Existing Storage Systems
Microsoft Research Windows Azure for Research Training
Copyright 2013 Microsoft Corporation. All rights reserved. Except where otherwise noted, these materials are licensed under the terms of the Apache License, Version 2.0. You may use it according to the
How To Scale Out Of A Nosql Database
Firebird meets NoSQL (Apache HBase) Case Study Firebird Conference 2011 Luxembourg 25.11.2011 26.11.2011 Thomas Steinmaurer DI +43 7236 3343 896 [email protected] www.scch.at Michael Zwick DI
Depth and Excluded Courses
Depth and Excluded Courses Depth Courses for Communication, Control, and Signal Processing EECE 5576 Wireless Communication Systems 4 SH EECE 5580 Classical Control Systems 4 SH EECE 5610 Digital Control
Hadoop on the Gordon Data Intensive Cluster
Hadoop on the Gordon Data Intensive Cluster Amit Majumdar, Scientific Computing Applications Mahidhar Tatineni, HPC User Services San Diego Supercomputer Center University of California San Diego Dec 18,
Big Data Analysis: Apache Storm Perspective
Big Data Analysis: Apache Storm Perspective Muhammad Hussain Iqbal 1, Tariq Rahim Soomro 2 Faculty of Computing, SZABIST Dubai Abstract the boom in the technology has resulted in emergence of new concepts
Data Intensive Science and Computing
DEFENSE LABORATORIES ACADEMIA TRANSFORMATIVE SCIENCE Efficient, effective and agile research system INDUSTRY Data Intensive Science and Computing Advanced Computing & Computational Sciences Division University
Brave New World: Hadoop vs. Spark
Brave New World: Hadoop vs. Spark Dr. Kurt Stockinger Associate Professor of Computer Science Director of Studies in Data Science Zurich University of Applied Sciences Datalab Seminar, Zurich, Oct. 7,
Parallel Programming Survey
Christian Terboven 02.09.2014 / Aachen, Germany Stand: 26.08.2014 Version 2.3 IT Center der RWTH Aachen University Agenda Overview: Processor Microarchitecture Shared-Memory
Microsoft Research Microsoft Azure for Research Training
Copyright 2014 Microsoft Corporation. All rights reserved. Except where otherwise noted, these materials are licensed under the terms of the Apache License, Version 2.0. You may use it according to the
SGI High Performance Computing
SGI High Performance Computing Accelerate time to discovery, innovation, and profitability 2014 SGI SGI Company Proprietary 1 Typical Use Cases for SGI HPC Products Large scale-out, distributed memory
Data Centric Systems (DCS)
Data Centric Systems (DCS) Architecture and Solutions for High Performance Computing, Big Data and High Performance Analytics High Performance Computing with Data Centric Systems 1 Data Centric Systems
Workflow Tools at NERSC. Debbie Bard [email protected] NERSC Data and Analytics Services
Workflow Tools at NERSC Debbie Bard [email protected] NERSC Data and Analytics Services NERSC User Meeting August 13th, 2015 What Does Workflow Software Do? Automate connection of applications Chain together
Mississippi State University High Performance Computing Collaboratory Brief Overview. Trey Breckenridge Director, HPC
Mississippi State University High Performance Computing Collaboratory Brief Overview Trey Breckenridge Director, HPC Mississippi State University Public university (Land Grant) founded in 1878 Traditional
REAL-TIME STREAMING ANALYTICS DATA IN, ACTION OUT
REAL-TIME STREAMING ANALYTICS DATA IN, ACTION OUT SPOT THE ODD ONE BEFORE IT IS OUT flexaware.net Streaming analytics: from data to action Do you need actionable insights from various data streams fast?
How To Write A Trusted Analytics Platform (Tap)
Trusted Analytics Platform (TAP) TAP Technical Brief October 2015 TAP Technical Brief Overview Trusted Analytics Platform (TAP) is open source software, optimized for performance and security, that accelerates
Big Data Explained. An introduction to Big Data Science.
Big Data Explained An introduction to Big Data Science. 1 Presentation Agenda What is Big Data Why learn Big Data Who is it for How to start learning Big Data When to learn it Objective and Benefits of
Architectures for massive data management
Architectures for massive data management Apache Spark Albert Bifet [email protected] October 20, 2015 Spark Motivation Apache Spark Figure: IBM and Apache Spark What is Apache Spark Apache
Making big data simple with Databricks
Making big data simple with Databricks We are Databricks, the company behind Spark Founded by the creators of Apache Spark in 2013 Data 75% Share of Spark code contributed by Databricks in 2014 Value Created
Purchase of High Performance Computing (HPC) Central Compute Resources by Northwestern Researchers
Information Technology Purchase of High Performance Computing (HPC) Central Compute Resources by Northwestern Researchers Effective for FY2016 Purpose This document summarizes High Performance Computing
Clusters: Mainstream Technology for CAE
Clusters: Mainstream Technology for CAE Alanna Dwyer HPC Division, HP Linux and Clusters Sparked a Revolution in High Performance Computing! Supercomputing performance now affordable and accessible Linux
MapReduce and Hadoop. Aaron Birkland Cornell Center for Advanced Computing. January 2012
MapReduce and Hadoop Aaron Birkland Cornell Center for Advanced Computing January 2012 Motivation Simple programming model for Big Data Distributed, parallel but hides this Established success at petabyte
What s next for the Berkeley Data Analytics Stack?
What s next for the Berkeley Data Analytics Stack? Michael Franklin June 30th 2014 Spark Summit San Francisco UC BERKELEY AMPLab: Collaborative Big Data Research 60+ Students, Postdocs, Faculty and Staff
Unified Big Data Processing with Apache Spark. Matei Zaharia @matei_zaharia
Unified Big Data Processing with Apache Spark Matei Zaharia @matei_zaharia What is Apache Spark? Fast & general engine for big data processing Generalizes MapReduce model to support more types of processing
Large scale processing using Hadoop. Ján Vaňo
Large scale processing using Hadoop Ján Vaňo What is Hadoop? Software platform that lets one easily write and run applications that process vast amounts of data Includes: MapReduce offline computing engine
HPC Wales Skills Academy Course Catalogue 2015
HPC Wales Skills Academy Course Catalogue 2015 Overview The HPC Wales Skills Academy provides a variety of courses and workshops aimed at building skills in High Performance Computing (HPC). Our courses
HPCHadoop: MapReduce on Cray X-series
HPCHadoop: MapReduce on Cray X-series Scott Michael Research Analytics Indiana University Cray User Group Meeting May 7, 2014 1 Outline Motivation & Design of HPCHadoop HPCHadoop demo Benchmarking Methodology
Introduction to ACENET Accelerating Discovery with Computational Research May, 2015
Introduction to ACENET Accelerating Discovery with Computational Research May, 2015 What is ACENET? What is ACENET? Shared regional resource for... high-performance computing (HPC) remote collaboration
HPC technology and future architecture
HPC technology and future architecture Visual Analysis for Extremely Large-Scale Scientific Computing KGT2 Internal Meeting INRIA France Benoit Lange [email protected] Toàn Nguyên [email protected]
ANALYTICS CENTER LEARNING PROGRAM
Overview of Curriculum ANALYTICS CENTER LEARNING PROGRAM The following courses are offered by Analytics Center as part of its learning program: Course Duration Prerequisites 1- Math and Theory 101 - Fundamentals
An Introduction to High Performance Computing in the Department
An Introduction to High Performance Computing in the Department Ashley Ford & Chris Jewell Department of Statistics University of Warwick October 30, 2012 1 Some Background 2 How is Buster used? 3 Software
Architectures for Big Data Analytics A database perspective
Architectures for Big Data Analytics A database perspective Fernando Velez Director of Product Management Enterprise Information Management, SAP June 2013 Outline Big Data Analytics Requirements Spectrum
GPU System Architecture. Alan Gray EPCC The University of Edinburgh
GPU System Architecture EPCC The University of Edinburgh Outline Why do we want/need accelerators such as GPUs? GPU-CPU comparison Architectural reasons for GPU performance advantages GPU accelerated systems
