Cray XC30 Hadoop Platform Jonathan (Bill) Sparks Howard Pritchard Martha Dumler
|
|
|
- Julian Watson
- 10 years ago
- Views:
Transcription
1 Cray XC30 Hadoop Platform Jonathan (Bill) Sparks Howard Pritchard Martha Dumler
2 Safe Harbor Statement This presentation may contain forward-looking statements that are based on our current expectations. Forward looking statements may include statements about our financial guidance and expected operating results, our opportunities and future potential, our product development and new product introduction plans, our ability to expand and penetrate our addressable markets and other statements that are not historical facts. These statements are only predictions and actual results may materially vary from those projected. Please refer to Cray's documents filed with the SEC from time to time concerning factors that could affect the Company and these forward-looking statements. 2
3 Hadoop MapReduce: new workload for XC30 Apache Hadoop is an open-source implementation of a big data application framework pioneered by Google. Typical commercial applications are things like Social networking, web 2.0 applications. Business Intelligence targeted marketing, sales analysis Inventory and sales pattern analysis HPC applications in areas like genomics and seismic (search) and generally in post-processing large data sets. Hadoop is a new/additional workload for your XC30 3
4 XC30 Hadoop Releases Aimed at existing XC30 customers that want to run hadoop on a subset of their compute nodes Provided to assist and optimize with installation and getting familiar with the hadoop environment and develop applications that take advantage of hadoop Download and go No cost No formal support contract 4
5 HPCS Challenges Workload Management Some Hadoop components are long-running, shared services HPCS is generally a batch-oriented platform Hadoop components that are batch-oriented (map-reduce/yarn) don t integrate well with traditional HPCS WLMs Storage and I/O Hadoop traditionally uses local, persistent storage Hadoop Distributed File System (HDFS) tightly coupled with many hadoop components HPC Systems utilize global parallel filesystems 5
6 Cray XC30: Cray Framework for Hadoop Typical Hadoop Components Sqoop Data exchange Flume Log collection Zookeeper coordination Oozie Workflow Pig Scripting Mahout Machine Learning R Connectors Statistics Apache MapReduce 2.x Distributed Processing Framework Hive SQL-like queries Hadoop Distributed File System (HDFS) HBase Columnar Storage Batch MyHadoop Components Cray Components XC30 Hadoop Optimization Best Practices Validation, and Documentation Cray XC-30 Integrated Aries Network, Cascade Compute, CLE, HSS Lustre Storage Hadoop Performance Enhancements Cray Framework for Hadoop < > < 6
7 XC30 Hadoop Initial Release December
8 XC30 Hadoop - Initial Release System Components: Batch template files for Moab/Torque, PBSPro XC30-specific configuration settings Batch Components: MapReduce, YARN, HDFS Plus environment components (Hive, Flume, HBase, Zookeeper, ) Sqoop Data exchange Flume Log collection Zookeeper coordination Oozie Workflow Pig Scripting Mahout Machine Learning R Connectors Statistics Apache MapReduce 2.x Distributed Processing Framework Hive SQL-like queries Hadoop Distributed File System (HDFS) HBase Columnar Storage XC30 Hadoop Optimization Best Practices Validation, and Documentation Cray XC-30 Integrated Aries Network, Cascade Compute, CLE, HSS Lustre Storage Hadoop Performance Enhancements 8
9 Initial Release Contents Site chooses Hadoop distribution Cray provides XC/XE instructions Apache, Bigtop, Cloudera, HortonWorks, IDH all used internally Hadoop environment packages optionally installed on re-purposed compute nodes Suggested Site Customizations Adjust YARN parameters to reflect number of cpus/node and mem/node Adjust default memory limits for mapper and reducer tasks Batch script and template files provided for quickstart examples PBS Pro MOAB/Torque Best when all nodes configured for same cpus/node and mem/node 9
10 MapReduce on XC30 Utilizes Global Filesystem single copy of input data XC30 High-speed Aries Network fast data movement Large compute farm easy to install/configure additional MR nodes Typical MapReduce XC30 MapReduce Mapper Node Mapper Node Mapper Node Mapper Node Mapper Node Mapper Node Mapper Node Mapper Node HDFS HDFS HDFS HDFS HDFS HDFS HDFS HDFS Copy/Shuffle Copy/Shuffle Reducer Node Reducer Node Result Lustre Global File System HDFS HDFS Reducer Node Reducer Node Result HDFS HDFS 10
11 PUMA Execution Details 11
12 Performance Improvement XC30 Tuning Achieved an average of 20% performance improvement of the PUMA benchmarks with XC30-specific tuning as compared to hadoop out of the box 450 Average Combined Execution Time (20% Overall Improvement) Execution Time (secs) PUMA Benchmarks 50 0 "Out of the Box" Config Accelerations Plus Compression 12
13 XC30 Hadoop Release Update April
14 Update Release April 2014 Focus on batch myhadoop Tested at scale on XC30 and XE Support eslogin/jdk1.7 compatible Update to myhadoop (Apache 2.0.6) Simplified batch interaction Batch script reduced from 130 lines to 34 lines of code Dynamic parameter selection based on job size Hadoop rawfs support for native Lustre/Filesystem Reducer Shuffle update Additional Hadoop instructions (pig, mahout, crunch) Updated Documentation Avoiding Lustre problems. 14
15 Cray myhadoop Uses system batch system to create on-demand Hadoop instance. Works with PBS, Moab/Torque Includes Hadoop, Pig (scripting), Mahout (Machine Learning), Crunch (pipelining) Easy setup and install Pre-configured Dynamic configurations matching node count HDFS or nohdfs configuration switch 5/4/
16 myhadoop login qsub batch script Cray Compute WLM Allocation MapReduce Lustre Hadoop ResourceManager YARN Allocator Hadoop NodeManager YARN Task executor 5/4/
17 HDFS and Lustre A typical Hadoop deployment, makes extensive use of HDFS: Application jar files job logfiles to HDFS Input and output data,. HDFS on top of Lustre performance penalties Larger jobs cause problems with Lustre software stack Solution: Default config parameters set to run without HDFS Off-loading of files to tmpfs rather than writing to lustre FS 17
18 Puma Benchmarks HDFS/NoHDFS 1200 Puma Bechmarks: NoHDFS vs HDFS 1000 Exection time (secs) HDFS/Lustre NoHDFS/Luster Benchmark 18
19 Hadoop DFSIO test times Single node writing to HDFS/Lustre vs Lustre Throughput rate with/without HDFS XC30 - DFSIO Node bandwith 2, Total Bandwidth MB/s 2,000 1,500 1, ,008 1, , ,110 HDFS/Lustre Lustre ,000 10, ,000 File Sizes (MB) 19
20 XC30 Hadoop Next Release Date is TBD 20
21 Prototypes Aries RDMA - protocol over RDMA that supports a socketlevel API for applications Transparent bandwidth advantage without modifying a TCP sockets based application Bandwidth comparison: TCP sockets: ~25Gbps Gsockets: ~60 Gbps Lustre Filesystem class native Lustre Access Use of intermediate storage Integration with System Management allows provisioning/finer-grain management of compute nodes to grow/shrink map/reduce nodes 21
22 Additional Capabilities Scala GraphX (graph) Apache Spark (in-memory) Apache Giraph (graph) Apache Hadoop Core (batch) Apache Applications (crunch, mahout,.) Chapel Further capabilities Graph analytics In-memory map reduce Chapel with XC30 runtime Tachyon (in-memory filesystem) Tachyon (in-memory fs) Aries G-Sockets HDFS file system Class Plug-in XC30 Opt Runtime Lustre File System 22
23 XC30 Hadoop Roadmap LA Release Dec 2013 LA Update April 2014 Proposed XC30 config optimizations for 20% performance improvement Lustre-aware shuffle plug-in Batch myhadoop native hadoop for full env capabilities Lustre fixes and workarounds Easier install process Focus on batch myhadoop Lustre filesystem class plug-in (lustre shim ) Additional capabilities: In-memory mapreduce (spark) Aries RDMA GraphX Chapel HDFS I/O 23
24 Feedback What applications are you running or considering running with hadoop? What XC30 Hadoop roadmap components are being utilized? XE/XC Beta Sites providing feedback and sharing use cases via 24
25 Legal Disclaimer Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property rights is granted by this document. Cray Inc. may make changes to specifications and product descriptions at any time, without notice. All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice. Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request. Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the user. Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc. products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model number marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are the property of their respective owners. 25
26 26
Cray s Storage History and Outlook Lustre+ Jason Goodman, Cray LUG 2015 - Denver
Cray s Storage History and Outlook Lustre+ Jason Goodman, Cray - Denver Agenda Cray History from Supercomputers to Lustre Where we are Today Cray Business OpenSFS Flashback to the Future SSDs, DVS, and
Intel HPC Distribution for Apache Hadoop* Software including Intel Enterprise Edition for Lustre* Software. SC13, November, 2013
Intel HPC Distribution for Apache Hadoop* Software including Intel Enterprise Edition for Lustre* Software SC13, November, 2013 Agenda Abstract Opportunity: HPC Adoption of Big Data Analytics on Apache
Hadoop Ecosystem Overview. CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook
Hadoop Ecosystem Overview CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook Agenda Introduce Hadoop projects to prepare you for your group work Intimate detail will be provided in future
The Fusion of Supercomputing and Big Data: The Role of Global Memory Architectures in Future Large Scale Data Analytics
HPC 2014 High Performance Computing FROM clouds and BIG DATA to EXASCALE AND BEYOND An International Advanced Workshop July 7 11, 2014, Cetraro, Italy Session III Emerging Systems and Solutions The Fusion
Lustre* Testing: The Basics. Justin Miller, Cray Inc. James Nunez, Intel Corporation LAD 15 Paris, France
Lustre* Testing: The Basics Justin Miller, Cray Inc. James Nunez, Intel Corporation LAD 15 Paris, France 1 Legal Disclaimer Information in this document is provided in connection with Cray Inc. products.
Cloudera Enterprise Reference Architecture for Google Cloud Platform Deployments
Cloudera Enterprise Reference Architecture for Google Cloud Platform Deployments Important Notice 2010-2015 Cloudera, Inc. All rights reserved. Cloudera, the Cloudera logo, Cloudera Impala, Impala, and
Hadoop Ecosystem B Y R A H I M A.
Hadoop Ecosystem B Y R A H I M A. History of Hadoop Hadoop was created by Doug Cutting, the creator of Apache Lucene, the widely used text search library. Hadoop has its origins in Apache Nutch, an open
HiBench Introduction. Carson Wang ([email protected]) Software & Services Group
HiBench Introduction Carson Wang ([email protected]) Agenda Background Workloads Configurations Benchmark Report Tuning Guide Background WHY Why we need big data benchmarking systems? WHAT What is
Big Data for Big Science. Bernard Doering Business Development, EMEA Big Data Software
Big Data for Big Science Bernard Doering Business Development, EMEA Big Data Software Internet of Things 40 Zettabytes of data will be generated WW in 2020 1 SMART CLIENTS INTELLIGENT CLOUD Richer user
Workshop on Hadoop with Big Data
Workshop on Hadoop with Big Data Hadoop? Apache Hadoop is an open source framework for distributed storage and processing of large sets of data on commodity hardware. Hadoop enables businesses to quickly
Infomatics. Big-Data and Hadoop Developer Training with Oracle WDP
Big-Data and Hadoop Developer Training with Oracle WDP What is this course about? Big Data is a collection of large and complex data sets that cannot be processed using regular database management tools
Introduction to Hadoop HDFS and Ecosystems. Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data
Introduction to Hadoop HDFS and Ecosystems ANSHUL MITTAL Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data Topics The goal of this presentation is to give
Constructing a Data Lake: Hadoop and Oracle Database United!
Constructing a Data Lake: Hadoop and Oracle Database United! Sharon Sophia Stephen Big Data PreSales Consultant February 21, 2015 Safe Harbor The following is intended to outline our general product direction.
Hadoop: The Definitive Guide
FOURTH EDITION Hadoop: The Definitive Guide Tom White Beijing Cambridge Famham Koln Sebastopol Tokyo O'REILLY Table of Contents Foreword Preface xvii xix Part I. Hadoop Fundamentals 1. Meet Hadoop 3 Data!
ITG Software Engineering
Introduction to Apache Hadoop Course ID: Page 1 Last Updated 12/15/2014 Introduction to Apache Hadoop Course Overview: This 5 day course introduces the student to the Hadoop architecture, file system,
Hadoop & Spark Using Amazon EMR
Hadoop & Spark Using Amazon EMR Michael Hanisch, AWS Solutions Architecture 2015, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Agenda Why did we build Amazon EMR? What is Amazon EMR?
Upcoming Announcements
Enterprise Hadoop Enterprise Hadoop Jeff Markham Technical Director, APAC [email protected] Page 1 Upcoming Announcements April 2 Hortonworks Platform 2.1 A continued focus on innovation within
Dell In-Memory Appliance for Cloudera Enterprise
Dell In-Memory Appliance for Cloudera Enterprise Hadoop Overview, Customer Evolution and Dell In-Memory Product Details Author: Armando Acosta Hadoop Product Manager/Subject Matter Expert [email protected]/
Cloudera Enterprise Reference Architecture for Google Cloud Platform Deployments
Cloudera Enterprise Reference Architecture for Google Cloud Platform Deployments Important Notice 2010-2016 Cloudera, Inc. All rights reserved. Cloudera, the Cloudera logo, Cloudera Impala, Impala, and
Comprehensive Analytics on the Hortonworks Data Platform
Comprehensive Analytics on the Hortonworks Data Platform We do Hadoop. Page 1 Page 2 Back to 2005 Page 3 Vertical Scaling Page 4 Vertical Scaling Page 5 Vertical Scaling Page 6 Horizontal Scaling Page
A Brief Introduction to Apache Tez
A Brief Introduction to Apache Tez Introduction It is a fact that data is basically the new currency of the modern business world. Companies that effectively maximize the value of their data (extract value
Qsoft Inc www.qsoft-inc.com
Big Data & Hadoop Qsoft Inc www.qsoft-inc.com Course Topics 1 2 3 4 5 6 Week 1: Introduction to Big Data, Hadoop Architecture and HDFS Week 2: Setting up Hadoop Cluster Week 3: MapReduce Part 1 Week 4:
Apache Hadoop: Past, Present, and Future
The 4 th China Cloud Computing Conference May 25 th, 2012. Apache Hadoop: Past, Present, and Future Dr. Amr Awadallah Founder, Chief Technical Officer [email protected], twitter: @awadallah Hadoop Past
Overview. Big Data in Apache Hadoop. - HDFS - MapReduce in Hadoop - YARN. https://hadoop.apache.org. Big Data Management and Analytics
Overview Big Data in Apache Hadoop - HDFS - MapReduce in Hadoop - YARN https://hadoop.apache.org 138 Apache Hadoop - Historical Background - 2003: Google publishes its cluster architecture & DFS (GFS)
SOLVING REAL AND BIG (DATA) PROBLEMS USING HADOOP. Eva Andreasson Cloudera
SOLVING REAL AND BIG (DATA) PROBLEMS USING HADOOP Eva Andreasson Cloudera Most FAQ: Super-Quick Overview! The Apache Hadoop Ecosystem a Zoo! Oozie ZooKeeper Hue Impala Solr Hive Pig Mahout HBase MapReduce
Implement Hadoop jobs to extract business value from large and varied data sets
Hadoop Development for Big Data Solutions: Hands-On You Will Learn How To: Implement Hadoop jobs to extract business value from large and varied data sets Write, customize and deploy MapReduce jobs to
Dominik Wagenknecht Accenture
Dominik Wagenknecht Accenture Improving Mainframe Performance with Hadoop October 17, 2014 Organizers General Partner Top Media Partner Media Partner Supporters About me Dominik Wagenknecht Accenture Vienna
Deploying Hadoop with Manager
Deploying Hadoop with Manager SUSE Big Data Made Easier Peter Linnell / Sales Engineer [email protected] Alejandro Bonilla / Sales Engineer [email protected] 2 Hadoop Core Components 3 Typical Hadoop Distribution
Hadoop* on Lustre* Liu Ying ([email protected]) High Performance Data Division, Intel Corporation
Hadoop* on Lustre* Liu Ying ([email protected]) High Performance Data Division, Intel Corporation Agenda Overview HAM and HAL Hadoop* Ecosystem with Lustre * Benchmark results Conclusion and future work
Extended Attributes and Transparent Encryption in Apache Hadoop
Extended Attributes and Transparent Encryption in Apache Hadoop Uma Maheswara Rao G Yi Liu ( 刘 轶 ) Who we are? Uma Maheswara Rao G - [email protected] - Software Engineer at Intel - PMC/committer, Apache
Chase Wu New Jersey Ins0tute of Technology
CS 698: Special Topics in Big Data Chapter 4. Big Data Analytics Platforms Chase Wu New Jersey Ins0tute of Technology Some of the slides have been provided through the courtesy of Dr. Ching-Yung Lin at
Hortonworks and ODP: Realizing the Future of Big Data, Now Manila, May 13, 2015
Hortonworks and ODP: Realizing the Future of Big Data, Now Manila, May 13, 2015 We Do Hadoop Fall 2014 Page 1 HDP delivers a comprehensive data management platform GOVERNANCE Hortonworks Data Platform
Moving From Hadoop to Spark
+ Moving From Hadoop to Spark Sujee Maniyam Founder / Principal @ www.elephantscale.com [email protected] Bay Area ACM meetup (2015-02-23) + HI, Featured in Hadoop Weekly #109 + About Me : Sujee
Peers Techno log ies Pv t. L td. HADOOP
Page 1 Peers Techno log ies Pv t. L td. Course Brochure Overview Hadoop is a Open Source from Apache, which provides reliable storage and faster process by using the Hadoop distibution file system and
Bringing Big Data to People
Bringing Big Data to People Microsoft s modern data platform SQL Server 2014 Analytics Platform System Microsoft Azure HDInsight Data Platform Everyone should have access to the data they need. Process
How Companies are! Using Spark
How Companies are! Using Spark And where the Edge in Big Data will be Matei Zaharia History Decreasing storage costs have led to an explosion of big data Commodity cluster software, like Hadoop, has made
Why Spark on Hadoop Matters
Why Spark on Hadoop Matters MC Srivas, CTO and Founder, MapR Technologies Apache Spark Summit - July 1, 2014 1 MapR Overview Top Ranked Exponential Growth 500+ Customers Cloud Leaders 3X bookings Q1 13
HADOOP. Revised 10/19/2015
HADOOP Revised 10/19/2015 This Page Intentionally Left Blank Table of Contents Hortonworks HDP Developer: Java... 1 Hortonworks HDP Developer: Apache Pig and Hive... 2 Hortonworks HDP Developer: Windows...
Pilot-Streaming: Design Considerations for a Stream Processing Framework for High- Performance Computing
Pilot-Streaming: Design Considerations for a Stream Processing Framework for High- Performance Computing Andre Luckow, Peter M. Kasson, Shantenu Jha STREAMING 2016, 03/23/2016 RADICAL, Rutgers, http://radical.rutgers.edu
Introduction to Big data. Why Big data? Case Studies. Introduction to Hadoop. Understanding Features of Hadoop. Hadoop Architecture.
Big Data Hadoop Administration and Developer Course This course is designed to understand and implement the concepts of Big data and Hadoop. This will cover right from setting up Hadoop environment in
What We Can Do in the Cloud (2) -Tutorial for Cloud Computing Course- Mikael Fernandus Simalango WISE Research Lab Ajou University, South Korea
What We Can Do in the Cloud (2) -Tutorial for Cloud Computing Course- Mikael Fernandus Simalango WISE Research Lab Ajou University, South Korea Overview Riding Google App Engine Taming Hadoop Summary Riding
HPCHadoop: MapReduce on Cray X-series
HPCHadoop: MapReduce on Cray X-series Scott Michael Research Analytics Indiana University Cray User Group Meeting May 7, 2014 1 Outline Motivation & Design of HPCHadoop HPCHadoop demo Benchmarking Methodology
brief contents PART 1 BACKGROUND AND FUNDAMENTALS...1 PART 2 PART 3 BIG DATA PATTERNS...253 PART 4 BEYOND MAPREDUCE...385
brief contents PART 1 BACKGROUND AND FUNDAMENTALS...1 1 Hadoop in a heartbeat 3 2 Introduction to YARN 22 PART 2 DATA LOGISTICS...59 3 Data serialization working with text and beyond 61 4 Organizing and
Maximizing Hadoop Performance and Storage Capacity with AltraHD TM
Maximizing Hadoop Performance and Storage Capacity with AltraHD TM Executive Summary The explosion of internet data, driven in large part by the growth of more and more powerful mobile devices, has created
Session 0202: Big Data in action with SAP HANA and Hadoop Platforms Prasad Illapani Product Management & Strategy (SAP HANA & Big Data) SAP Labs LLC,
Session 0202: Big Data in action with SAP HANA and Hadoop Platforms Prasad Illapani Product Management & Strategy (SAP HANA & Big Data) SAP Labs LLC, Bellevue, WA Legal disclaimer The information in this
Unified Big Data Analytics Pipeline. 连 城 [email protected]
Unified Big Data Analytics Pipeline 连 城 [email protected] What is A fast and general engine for large-scale data processing An open source implementation of Resilient Distributed Datasets (RDD) Has an
Programming Hadoop 5-day, instructor-led BD-106. MapReduce Overview. Hadoop Overview
Programming Hadoop 5-day, instructor-led BD-106 MapReduce Overview The Client Server Processing Pattern Distributed Computing Challenges MapReduce Defined Google's MapReduce The Map Phase of MapReduce
Enabling High performance Big Data platform with RDMA
Enabling High performance Big Data platform with RDMA Tong Liu HPC Advisory Council Oct 7 th, 2014 Shortcomings of Hadoop Administration tooling Performance Reliability SQL support Backup and recovery
Case Study : 3 different hadoop cluster deployments
Case Study : 3 different hadoop cluster deployments Lee moon soo [email protected] HDFS as a Storage Last 4 years, our HDFS clusters, stored Customer 1500 TB+ data safely served 375,000 TB+ data to customer
Unified Big Data Processing with Apache Spark. Matei Zaharia @matei_zaharia
Unified Big Data Processing with Apache Spark Matei Zaharia @matei_zaharia What is Apache Spark? Fast & general engine for big data processing Generalizes MapReduce model to support more types of processing
Hadoop Applications on High Performance Computing. Devaraj Kavali [email protected]
Hadoop Applications on High Performance Computing Devaraj Kavali [email protected] About Me Apache Hadoop Committer Yarn/MapReduce Contributor Senior Software Engineer @Intel Corporation 2 Agenda Objectives
TRAINING PROGRAM ON BIGDATA/HADOOP
Course: Training on Bigdata/Hadoop with Hands-on Course Duration / Dates / Time: 4 Days / 24th - 27th June 2015 / 9:30-17:30 Hrs Venue: Eagle Photonics Pvt Ltd First Floor, Plot No 31, Sector 19C, Vashi,
Extending the Enterprise Data Warehouse with Hadoop Robert Lancaster. Nov 7, 2012
Extending the Enterprise Data Warehouse with Hadoop Robert Lancaster Nov 7, 2012 Who I Am Robert Lancaster Solutions Architect, Hotel Supply Team [email protected] @rob1lancaster Organizer of Chicago
Next-Gen Big Data Analytics using the Spark stack
Next-Gen Big Data Analytics using the Spark stack Jason Dai Chief Architect of Big Data Technologies Software and Services Group, Intel Agenda Overview Apache Spark stack Next-gen big data analytics Our
and Hadoop Technology
SAS and Hadoop Technology Overview SAS Documentation The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2015. SAS and Hadoop Technology: Overview. Cary, NC: SAS Institute
Ali Ghodsi Head of PM and Engineering Databricks
Making Big Data Simple Ali Ghodsi Head of PM and Engineering Databricks Big Data is Hard: A Big Data Project Tasks Tasks Build a Hadoop cluster Challenges Clusters hard to setup and manage Build a data
IT@Intel How Intel IT Successfully Migrated to Cloudera Apache Hadoop*
White Paper April 2015 IT@Intel How Intel IT Successfully Migrated to Cloudera Apache Hadoop* From our original experience with Apache Hadoop software, Intel IT identified new opportunities to reduce IT
Performance Analysis of Mixed Distributed Filesystem Workloads
Performance Analysis of Mixed Distributed Filesystem Workloads Esteban Molina-Estolano, Maya Gokhale, Carlos Maltzahn, John May, John Bent, Scott Brandt Motivation Hadoop-tailored filesystems (e.g. CloudStore)
HADOOP ADMINISTATION AND DEVELOPMENT TRAINING CURRICULUM
HADOOP ADMINISTATION AND DEVELOPMENT TRAINING CURRICULUM 1. Introduction 1.1 Big Data Introduction What is Big Data Data Analytics Bigdata Challenges Technologies supported by big data 1.2 Hadoop Introduction
Data Security in Hadoop
Data Security in Hadoop Eric Mizell Director, Solution Engineering Page 1 What is Data Security? Data Security for Hadoop allows you to administer a singular policy for authentication of users, authorize
Apache Hadoop Ecosystem
Apache Hadoop Ecosystem Rim Moussa ZENITH Team Inria Sophia Antipolis DataScale project [email protected] Context *large scale systems Response time (RIUD ops: one hit, OLTP) Time Processing (analytics:
HPCHadoop: A framework to run Hadoop on Cray X-series supercomputers
HPCHadoop: A framework to run Hadoop on Cray X-series supercomputers Scott Michael, Abhinav Thota, and Robert Henschel Pervasive Technology Institute Indiana University Bloomington, IN, USA Email: [email protected]
A Tour of the Zoo the Hadoop Ecosystem Prafulla Wani
A Tour of the Zoo the Hadoop Ecosystem Prafulla Wani Technical Architect - Big Data Syntel Agenda Welcome to the Zoo! Evolution Timeline Traditional BI/DW Architecture Where Hadoop Fits In 2 Welcome to
Savanna Hadoop on. OpenStack. Savanna Technical Lead
Savanna Hadoop on OpenStack Sergey Lukjanov Savanna Technical Lead Mirantis, 2013 Agenda Savanna Overview Savanna Use Cases Roadmap & Current Status Architecture & Features Overview Hadoop vs. Virtualization
The Flink Big Data Analytics Platform. Marton Balassi, Gyula Fora" {mbalassi, gyfora}@apache.org
The Flink Big Data Analytics Platform Marton Balassi, Gyula Fora" {mbalassi, gyfora}@apache.org What is Apache Flink? Open Source Started in 2009 by the Berlin-based database research groups In the Apache
Collaborative Big Data Analytics. Copyright 2012 EMC Corporation. All rights reserved.
Collaborative Big Data Analytics 1 Big Data Is Less About Size, And More About Freedom TechCrunch!!!!!!!!! Total data: bigger than big data 451 Group Findings: Big Data Is More Extreme Than Volume Gartner!!!!!!!!!!!!!!!
COURSE CONTENT Big Data and Hadoop Training
COURSE CONTENT Big Data and Hadoop Training 1. Meet Hadoop Data! Data Storage and Analysis Comparison with Other Systems RDBMS Grid Computing Volunteer Computing A Brief History of Hadoop Apache Hadoop
BIG DATA TRENDS AND TECHNOLOGIES
BIG DATA TRENDS AND TECHNOLOGIES THE WORLD OF DATA IS CHANGING Cloud WHAT IS BIG DATA? Big data are datasets that grow so large that they become awkward to work with using onhand database management tools.
BIG DATA & HADOOP DEVELOPER TRAINING & CERTIFICATION
FACT SHEET BIG DATA & HADOOP DEVELOPER TRAINING & CERTIFICATION BIGDATA & HADOOP CLASS ROOM SESSION GreyCampus provides Classroom sessions for Big Data & Hadoop Developer Certification. This course will
ENABLING GLOBAL HADOOP WITH EMC ELASTIC CLOUD STORAGE
ENABLING GLOBAL HADOOP WITH EMC ELASTIC CLOUD STORAGE Hadoop Storage-as-a-Service ABSTRACT This White Paper illustrates how EMC Elastic Cloud Storage (ECS ) can be used to streamline the Hadoop data analytics
Hadoop Evolution In Organizations. Mark Vervuurt Cluster Data Science & Analytics
In Organizations Mark Vervuurt Cluster Data Science & Analytics AGENDA 1. Yellow Elephant 2. Data Ingestion & Complex Event Processing 3. SQL on Hadoop 4. NoSQL 5. InMemory 6. Data Science & Machine Learning
BIG DATA What it is and how to use?
BIG DATA What it is and how to use? Lauri Ilison, PhD Data Scientist 21.11.2014 Big Data definition? There is no clear definition for BIG DATA BIG DATA is more of a concept than precise term 1 21.11.14
<Insert Picture Here> Big Data
Big Data Kevin Kalmbach Principal Sales Consultant, Public Sector Engineered Systems Program Agenda What is Big Data and why it is important? What is your Big
Hadoop Introduction. Olivier Renault Solution Engineer - Hortonworks
Hadoop Introduction Olivier Renault Solution Engineer - Hortonworks Hortonworks A Brief History of Apache Hadoop Apache Project Established Yahoo! begins to Operate at scale Hortonworks Data Platform 2013
Fast, Low-Overhead Encryption for Apache Hadoop*
Fast, Low-Overhead Encryption for Apache Hadoop* Solution Brief Intel Xeon Processors Intel Advanced Encryption Standard New Instructions (Intel AES-NI) The Intel Distribution for Apache Hadoop* software
Survey of the Benchmark Systems and Testing Frameworks For Tachyon-Perf
Survey of the Benchmark Systems and Testing Frameworks For Tachyon-Perf Rong Gu,Qianhao Dong 2014/09/05 0. Introduction As we want to have a performance framework for Tachyon, we need to consider two aspects
Hadoop 101. Lars George. NoSQL- Ma4ers, Cologne April 26, 2013
Hadoop 101 Lars George NoSQL- Ma4ers, Cologne April 26, 2013 1 What s Ahead? Overview of Apache Hadoop (and related tools) What it is Why it s relevant How it works No prior experience needed Feel free
THE HADOOP DISTRIBUTED FILE SYSTEM
THE HADOOP DISTRIBUTED FILE SYSTEM Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler Presented by Alexander Pokluda October 7, 2013 Outline Motivation and Overview of Hadoop Architecture,
Department of Computer Science University of Cyprus EPL646 Advanced Topics in Databases. Lecture 15
Department of Computer Science University of Cyprus EPL646 Advanced Topics in Databases Lecture 15 Big Data Management V (Big-data Analytics / Map-Reduce) Chapter 16 and 19: Abideboul et. Al. Demetris
Architectural patterns for building real time applications with Apache HBase. Andrew Purtell Committer and PMC, Apache HBase
Architectural patterns for building real time applications with Apache HBase Andrew Purtell Committer and PMC, Apache HBase Who am I? Distributed systems engineer Principal Architect in the Big Data Platform
CSE-E5430 Scalable Cloud Computing Lecture 2
CSE-E5430 Scalable Cloud Computing Lecture 2 Keijo Heljanko Department of Computer Science School of Science Aalto University [email protected] 14.9-2015 1/36 Google MapReduce A scalable batch processing
Introduction to Big Data! with Apache Spark" UC#BERKELEY#
Introduction to Big Data! with Apache Spark" UC#BERKELEY# This Lecture" The Big Data Problem" Hardware for Big Data" Distributing Work" Handling Failures and Slow Machines" Map Reduce and Complex Jobs"
MapReduce and Lustre * : Running Hadoop * in a High Performance Computing Environment
MapReduce and Lustre * : Running Hadoop * in a High Performance Computing Environment Ralph H. Castain Senior Architect, Intel Corporation Omkar Kulkarni Software Developer, Intel Corporation Xu, Zhenyu
Apache Hadoop: The Big Data Refinery
Architecting the Future of Big Data Whitepaper Apache Hadoop: The Big Data Refinery Introduction Big data has become an extremely popular term, due to the well-documented explosion in the amount of data
Bright Cluster Manager
Bright Cluster Manager For HPC, Hadoop and OpenStack Craig Hunneyman Director of Business Development Bright Computing [email protected] Agenda Who is Bright Computing? What is Bright
#TalendSandbox for Big Data
Evalua&on von Apache Hadoop mit der #TalendSandbox for Big Data Julien Clarysse @whatdoesdatado @talend 2015 Talend Inc. 1 Connecting the Data-Driven Enterprise 2 Talend Overview Founded in 2006 BRAND
BIG DATA HADOOP TRAINING
BIG DATA HADOOP TRAINING DURATION 40hrs AVAILABLE BATCHES WEEKDAYS (7.00AM TO 8.30AM) & WEEKENDS (10AM TO 1PM) MODE OF TRAINING AVAILABLE ONLINE INSTRUCTOR LED CLASSROOM TRAINING (MARATHAHALLI, BANGALORE)
Hadoop MapReduce and Spark. Giorgio Pedrazzi, CINECA-SCAI School of Data Analytics and Visualisation Milan, 10/06/2015
Hadoop MapReduce and Spark Giorgio Pedrazzi, CINECA-SCAI School of Data Analytics and Visualisation Milan, 10/06/2015 Outline Hadoop Hadoop Import data on Hadoop Spark Spark features Scala MLlib MLlib
Bright Cluster Manager
Bright Cluster Manager A Unified Management Solution for HPC and Hadoop Martijn de Vries CTO Introduction Architecture Bright Cluster CMDaemon Cluster Management GUI Cluster Management Shell SOAP/ JSONAPI
Red Hat Enterprise Linux is open, scalable, and flexible
CHOOSING AN ENTERPRISE PLATFORM FOR BIG DATA Red Hat Enterprise Linux is open, scalable, and flexible TECHNOLOGY OVERVIEW 10 things your operating system should deliver for big data 1) Open source project
Big Data Approaches. Making Sense of Big Data. Ian Crosland. Jan 2016
Big Data Approaches Making Sense of Big Data Ian Crosland Jan 2016 Accelerate Big Data ROI Even firms that are investing in Big Data are still struggling to get the most from it. Make Big Data Accessible
Outline. High Performance Computing (HPC) Big Data meets HPC. Case Studies: Some facts about Big Data Technologies HPC and Big Data converging
Outline High Performance Computing (HPC) Towards exascale computing: a brief history Challenges in the exascale era Big Data meets HPC Some facts about Big Data Technologies HPC and Big Data converging
Data-Intensive Programming. Timo Aaltonen Department of Pervasive Computing
Data-Intensive Programming Timo Aaltonen Department of Pervasive Computing Data-Intensive Programming Lecturer: Timo Aaltonen University Lecturer [email protected] Assistants: Henri Terho and Antti
Understanding Hadoop Performance on Lustre
Understanding Hadoop Performance on Lustre Stephen Skory, PhD Seagate Technology Collaborators Kelsie Betsch, Daniel Kaslovsky, Daniel Lingenfelter, Dimitar Vlassarev, and Zhenzhen Yan LUG Conference 15
Benchmarking Sahara-based Big-Data-as-a-Service Solutions. Zhidong Yu, Weiting Chen (Intel) Matthew Farrellee (Red Hat) May 2015
Benchmarking Sahara-based Big-Data-as-a-Service Solutions Zhidong Yu, Weiting Chen (Intel) Matthew Farrellee (Red Hat) May 2015 Agenda o Why Sahara o Sahara introduction o Deployment considerations o Performance
YARN Apache Hadoop Next Generation Compute Platform
YARN Apache Hadoop Next Generation Compute Platform Bikas Saha @bikassaha Hortonworks Inc. 2013 Page 1 Apache Hadoop & YARN Apache Hadoop De facto Big Data open source platform Running for about 5 years
