Big Data Research in the AMPLab: BDAS and Beyond
|
|
|
- Barrie Black
- 10 years ago
- Views:
Transcription
1 Big Data Research in the AMPLab: BDAS and Beyond Michael Franklin UC Berkeley 1 st Spark Summit December 2, 2013 UC BERKELEY
2 AMPLab: Collaborative Big Data Research Launched: January 2011, 6 year planned duration Personnel: ~60 Students, Postdocs, Faculty and Staff Expertise: Systems, Networking, Databases and Machine Learning In-House Apps: Crowdsourcing, Mobile Sensing, Cancer Genomics UC BERKELEY
3 AMPLab: Integrating Diverse Resources Algorithms Machine Learning, Statistical Methods Prediction, Business Intelligence Machines Clusters and Clouds Warehouse Scale Computing People Crowdsourcing, Human Computation Data Scientists, Analysts
4 Big Data Landscape Our Corner 4
5 Berkeley Data Analytics Stack AMP Alpha or Soon AMP Released BSD/Apache Shark (SQL) BlinkDB GraphX MLBase Spark Streaming Apache Spark ML-lib 3 rd Party Open Source Tachyon HDFS / Hadoop Storage Apache Mesos YARN Resource Manager
6 Our View of the Big Data Challenge Something s gotta give Time Money Massive Diverse and Growing Data Answer Quality 6
7 Speed/Accuracy Trade- off Interac:ve Queries Error Time to Execute on En:re Dataset 5 sec Execu&on Time 30 mins
8 Speed/Accuracy Trade- off Interac:ve Queries Error Time to Execute on En:re Dataset Pre- Exis:ng Noise 5 sec Execu&on Time 30 mins
9 A data analysis (warehouse) system that - builds on Shark and Spark - returns fast, approximate answers with error bars by executing queries on small samples of data - is compatible with Apache Hive (storage, serdes, UDFs, types, metadata) and supports Hive s SQLlike query structure with minor modifications Agarwal et al., BlinkDB: Queries with Bounded Errors and Bounded Response Times on Very Large Data. ACM EuroSys 2013, Best Paper Award
10 Sampling Vs. No Sampling Query Response Time (Seconds) x as response &me is dominated by I/O Frac:on of full data
11 Sampling Vs. No Sampling Query Response Time (Seconds) Error Bars (0.02%) 103 (0.07%) (1.1%) (3.4%) (11%) Frac:on of full data
12 People Resources Hybrid Human-Machine Computation Data Cleaning Active Learning Handling the last 5% Supporting Data Scientists Interactive Analytics Visual Analytics Collaboration CrowdSQL Statistics MetaData Parser Optimizer Executor Files Access Methods Disk 1 Disk 2 Results Turker Relationship Manager UI Creation Form Editor UI Template Manager HIT Manager Franklin et al., CrowdDB: Answering Queries with Crowdsourcing, SIGMOD 2011 Wang et al., CrowdER: Crowdsourcing Entity Resolution, VLDB 2012 Trushkowsky et al., Crowdsourcing Enumeration Queries, ICDE 2013 Best Paper Award 12
13 Less is More? Data Cleaning + Sampling J. Wang et al., Work in Progress
14 Working with the Crowd Incentives Fatigue, Fraud, & other Failure Modes Latency & Prediction Work Conditions Interface Impacts Answer Quality Task Structuring Task Routing 14
15 The 3E s of Big Data: Extreme Elasticity Everywhere Algorithms Approximate Answers ML Libraries and Ensemble Methods Active Learning Machines Cloud Computing esp. Spot Instances Multi- tenancy Relaxed (eventual) consistency/ Multi- version methods People Dynamic Task and Microtask Marketplaces Visual analytics Manipulative interfaces and mixed mode operation
16 The Research Challenge Integration + Extreme Elasticity + Tradeoffs + More Sophisticated Analytics = Extreme Complexity
17 Can we Take a Declarative Approach? Can reduce complexity through automa&on End Users tell the system what they want, not how to get it SQL Result MQL Model
18 Goals of MLbase ML Insights MLbase Systems Insights 1. Easy scalable ML development (ML Developers) 2. Easy/user- friendly ML at scale (End Users) Along the way, we gain insight into data intensive compu&ng
19 A Declara&ve Approach End Users tell the system what they want, not how to get it Example: Supervised Classifica&on var X = load( als_clinical, 2 to 10) var y = load( als_clinical, 1) var (fn- model, summary) = doclassify(x, y)
20 MLBase Query Compilation 20
21 Query Optimizer: A Search Problem System is responsible for searching through model space SVM 5min Opportuni&es for physical op&miza&on Boosting
22 MLbase: Progress MQL Parser ML Library ML Developer API Released July 2013 (Contracts) Query Planner / Optimizer Runtime initial release: Spring 2014
23 Other Things We re Working On GraphX: Unifying Graph Parallel & Data Parallel Analytics OLTP and Serving Workloads MDCC: Mutli Data Center Consistency HAT: Highly-Available Transactions PBS: Probabilistically Bounded Staleness PLANET: Predictive Latency-Aware Networked Transactions Fast Matrix Manipulation Libraries Cold Storage, Partitioning, Distributed Caching Machine Learning Pipelines, GPUs,
24 It s Been a Busy 3 Years
25 Be Sure to Join us for the Next 3 UC BERKELEY
What s next for the Berkeley Data Analytics Stack?
What s next for the Berkeley Data Analytics Stack? Michael Franklin June 30th 2014 Spark Summit San Francisco UC BERKELEY AMPLab: Collaborative Big Data Research 60+ Students, Postdocs, Faculty and Staff
The Berkeley Data Analytics Stack: Present and Future
The Berkeley Data Analytics Stack: Present and Future Michael Franklin 27 March 2014 Technion Big Day on Big Data UC BERKELEY BDAS in the Big Data Context 2 Sources Driving Big Data It s All Happening
The Berkeley AMPLab - Collaborative Big Data Research
The Berkeley AMPLab - Collaborative Big Data Research UC BERKELEY Anthony D. Joseph LASER Summer School September 2013 About Me Education: MIT SB, MS, PhD Joined Univ. of California, Berkeley in 1998 Current
CS 294: Big Data System Research: Trends and Challenges
CS 294: Big Data System Research: Trends and Challenges Fall 2015 (MW 9:30-11:00, 310 Soda Hall) Ion Stoica and Ali Ghodsi (http://www.cs.berkeley.edu/~istoica/classes/cs294/15/) 1 Big Data First papers:»
Beyond Hadoop with Apache Spark and BDAS
Beyond Hadoop with Apache Spark and BDAS Khanderao Kand Principal Technologist, Guavus 12 April GITPRO World 2014 Palo Alto, CA Credit: Some stajsjcs and content came from presentajons from publicly shared
Conquering Big Data with BDAS (Berkeley Data Analytics)
UC BERKELEY Conquering Big Data with BDAS (Berkeley Data Analytics) Ion Stoica UC Berkeley / Databricks / Conviva Extracting Value from Big Data Insights, diagnosis, e.g.,» Why is user engagement dropping?»
Ali Ghodsi Head of PM and Engineering Databricks
Making Big Data Simple Ali Ghodsi Head of PM and Engineering Databricks Big Data is Hard: A Big Data Project Tasks Tasks Build a Hadoop cluster Challenges Clusters hard to setup and manage Build a data
Next-Gen Big Data Analytics using the Spark stack
Next-Gen Big Data Analytics using the Spark stack Jason Dai Chief Architect of Big Data Technologies Software and Services Group, Intel Agenda Overview Apache Spark stack Next-gen big data analytics Our
Spark in Action. Fast Big Data Analytics using Scala. Matei Zaharia. www.spark- project.org. University of California, Berkeley UC BERKELEY
Spark in Action Fast Big Data Analytics using Scala Matei Zaharia University of California, Berkeley www.spark- project.org UC BERKELEY My Background Grad student in the AMP Lab at UC Berkeley» 50- person
How To Create A Data Visualization With Apache Spark And Zeppelin 2.5.3.5
Big Data Visualization using Apache Spark and Zeppelin Prajod Vettiyattil, Software Architect, Wipro Agenda Big Data and Ecosystem tools Apache Spark Apache Zeppelin Data Visualization Combining Spark
Azure Data Lake Analytics
Azure Data Lake Analytics Compose and orchestrate data services at scale Fully managed service to support orchestration of data movement and processing Connect to relational or non-relational data
Moving From Hadoop to Spark
+ Moving From Hadoop to Spark Sujee Maniyam Founder / Principal @ www.elephantscale.com [email protected] Bay Area ACM meetup (2015-02-23) + HI, Featured in Hadoop Weekly #109 + About Me : Sujee
Unified Big Data Processing with Apache Spark. Matei Zaharia @matei_zaharia
Unified Big Data Processing with Apache Spark Matei Zaharia @matei_zaharia What is Apache Spark? Fast & general engine for big data processing Generalizes MapReduce model to support more types of processing
How Companies are! Using Spark
How Companies are! Using Spark And where the Edge in Big Data will be Matei Zaharia History Decreasing storage costs have led to an explosion of big data Commodity cluster software, like Hadoop, has made
Unified Big Data Analytics Pipeline. 连 城 [email protected]
Unified Big Data Analytics Pipeline 连 城 [email protected] What is A fast and general engine for large-scale data processing An open source implementation of Resilient Distributed Datasets (RDD) Has an
Introduction to Big Data! with Apache Spark" UC#BERKELEY#
Introduction to Big Data! with Apache Spark" UC#BERKELEY# This Lecture" The Big Data Problem" Hardware for Big Data" Distributing Work" Handling Failures and Slow Machines" Map Reduce and Complex Jobs"
Spark: Making Big Data Interactive & Real-Time
Spark: Making Big Data Interactive & Real-Time Matei Zaharia UC Berkeley / MIT www.spark-project.org What is Spark? Fast and expressive cluster computing system compatible with Apache Hadoop Improves efficiency
In-memory data pipeline and warehouse at scale using Spark, Spark SQL, Tachyon and Parquet
In-memory data pipeline and warehouse at scale using Spark, Spark SQL, Tachyon and Parquet Ema Iancuta [email protected] Radu Chilom [email protected] Buzzwords Berlin - 2015 Big data analytics / machine
Spark and Shark. High- Speed In- Memory Analytics over Hadoop and Hive Data
Spark and Shark High- Speed In- Memory Analytics over Hadoop and Hive Data Matei Zaharia, in collaboration with Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Cliff Engle, Michael Franklin, Haoyuan Li,
Architectures for massive data management
Architectures for massive data management Apache Spark Albert Bifet [email protected] October 20, 2015 Spark Motivation Apache Spark Figure: IBM and Apache Spark What is Apache Spark Apache
1. The orange button 2. Audio Type 3. Close apps 4. Enlarge my screen 5. Headphones 6. Questions Pane. SparkR 2
SparkR 1. The orange button 2. Audio Type 3. Close apps 4. Enlarge my screen 5. Headphones 6. Questions Pane SparkR 2 Lecture slides and/or video will be made available within one week Live Demonstration
Developing Scalable Smart Grid Infrastructure to Enable Secure Transmission System Control
Developing Scalable Smart Grid Infrastructure to Enable Secure Transmission System Control EP/K006487/1 UK PI: Prof Gareth Taylor (BU) China PI: Prof Yong-Hua Song (THU) Consortium UK Members: Brunel University
Apache Spark 11/10/15. Context. Reminder. Context. What is Spark? A GrowingStack
Apache Spark Document Analysis Course (Fall 2015 - Scott Sanner) Zahra Iman Some slides from (Matei Zaharia, UC Berkeley / MIT& Harold Liu) Reminder SparkConf JavaSpark RDD: Resilient Distributed Datasets
Databricks. A Primer
Databricks A Primer Who is Databricks? Databricks was founded by the team behind Apache Spark, the most active open source project in the big data ecosystem today. Our mission at Databricks is to dramatically
Hadoop Ecosystem B Y R A H I M A.
Hadoop Ecosystem B Y R A H I M A. History of Hadoop Hadoop was created by Doug Cutting, the creator of Apache Lucene, the widely used text search library. Hadoop has its origins in Apache Nutch, an open
From Spark to Ignition:
From Spark to Ignition: Fueling Your Business on Real-Time Analytics Eric Frenkiel, MemSQL CEO June 29, 2015 San Francisco, CA What s in Store For This Presentation? 1. MemSQL: A real-time database for
Fast and Expressive Big Data Analytics with Python. Matei Zaharia UC BERKELEY
Fast and Expressive Big Data Analytics with Python Matei Zaharia UC Berkeley / MIT UC BERKELEY spark-project.org What is Spark? Fast and expressive cluster computing system interoperable with Apache Hadoop
Shark Installation Guide Week 3 Report. Ankush Arora
Shark Installation Guide Week 3 Report Ankush Arora Last Updated: May 31,2014 CONTENTS Contents 1 Introduction 1 1.1 Shark..................................... 1 1.2 Apache Spark.................................
Streaming items through a cluster with Spark Streaming
Streaming items through a cluster with Spark Streaming Tathagata TD Das @tathadas CME 323: Distributed Algorithms and Optimization Stanford, May 6, 2015 Who am I? > Project Management Committee (PMC) member
Databricks. A Primer
Databricks A Primer Who is Databricks? Databricks vision is to empower anyone to easily build and deploy advanced analytics solutions. The company was founded by the team who created Apache Spark, a powerful
Learning. Spark LIGHTNING-FAST DATA ANALYTICS. Holden Karau, Andy Konwinski, Patrick Wendell & Matei Zaharia
Compliments of Learning Spark LIGHTNING-FAST DATA ANALYTICS Holden Karau, Andy Konwinski, Patrick Wendell & Matei Zaharia Bring Your Big Data to Life Big Data Integration and Analytics Learn how to power
Systems Engineering II. Pramod Bhatotia TU Dresden pramod.bhatotia@tu- dresden.de
Systems Engineering II Pramod Bhatotia TU Dresden pramod.bhatotia@tu- dresden.de About me! Since May 2015 2015 2012 Research Group Leader cfaed, TU Dresden PhD Student MPI- SWS Research Intern Microsoft
How To Handle Big Data With A Data Scientist
III Big Data Technologies Today, new technologies make it possible to realize value from Big Data. Big data technologies can replace highly customized, expensive legacy systems with a standard solution
Write Once, Run Anywhere Pat McDonough
Write Once, Run Anywhere Pat McDonough Write Once, Run Anywhere Write Once, Run Anywhere You Might Have Heard This Before! Java, According to Wikipedia Java, According to Wikipedia Java is a computer programming
Hadoop & Spark Using Amazon EMR
Hadoop & Spark Using Amazon EMR Michael Hanisch, AWS Solutions Architecture 2015, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Agenda Why did we build Amazon EMR? What is Amazon EMR?
Berkeley Data Analytics Stack:! Experience and Lesson Learned
UC BERKELEY Berkeley Data Analytics Stack:! Experience and Lesson Learned Ion Stoica UC Berkeley, Databricks, Conviva Research Philosophy Follow real problems Focus on novel usage scenarios Build real
Pulsar Realtime Analytics At Scale. Tony Ng April 14, 2015
Pulsar Realtime Analytics At Scale Tony Ng April 14, 2015 Big Data Trends Bigger data volumes More data sources DBs, logs, behavioral & business event streams, sensors Faster analysis Next day to hours
Pilot-Streaming: Design Considerations for a Stream Processing Framework for High- Performance Computing
Pilot-Streaming: Design Considerations for a Stream Processing Framework for High- Performance Computing Andre Luckow, Peter M. Kasson, Shantenu Jha STREAMING 2016, 03/23/2016 RADICAL, Rutgers, http://radical.rutgers.edu
Hadoop Evolution In Organizations. Mark Vervuurt Cluster Data Science & Analytics
In Organizations Mark Vervuurt Cluster Data Science & Analytics AGENDA 1. Yellow Elephant 2. Data Ingestion & Complex Event Processing 3. SQL on Hadoop 4. NoSQL 5. InMemory 6. Data Science & Machine Learning
Big Data for Big Value @ Intel
Big Data for Big Value @ Intel Moty Fania, PE Big data Analytics Assaf Araki, Sr. Arch. Big data Analytics Advanced Analytics team @ Intel IT Corporate ownership of advanced analytics Team charter Solve
Big Data Analytics with Spark and Oscar BAO. Tamas Jambor, Lead Data Scientist at Massive Analytic
Big Data Analytics with Spark and Oscar BAO Tamas Jambor, Lead Data Scientist at Massive Analytic About me Building a scalable Machine Learning platform at MA Worked in Big Data and Data Science in the
Dell In-Memory Appliance for Cloudera Enterprise
Dell In-Memory Appliance for Cloudera Enterprise Hadoop Overview, Customer Evolution and Dell In-Memory Product Details Author: Armando Acosta Hadoop Product Manager/Subject Matter Expert [email protected]/
Real-Time Analytical Processing (RTAP) Using the Spark Stack. Jason Dai [email protected] Intel Software and Services Group
Real-Time Analytical Processing (RTAP) Using the Spark Stack Jason Dai [email protected] Intel Software and Services Group Project Overview Research & open source projects initiated by AMPLab in UC Berkeley
TE's Analytics on Hadoop and SAP HANA Using SAP Vora
TE's Analytics on Hadoop and SAP HANA Using SAP Vora Naveen Narra Senior Manager TE Connectivity Santha Kumar Rajendran Enterprise Data Architect TE Balaji Krishna - Director, SAP HANA Product Mgmt. -
An Open Source Memory-Centric Distributed Storage System
An Open Source Memory-Centric Distributed Storage System Haoyuan Li, Tachyon Nexus [email protected] September 30, 2015 @ Strata and Hadoop World NYC 2015 Outline Open Source Introduction to Tachyon
Archiving and Sharing Big Data Digital Repositories, Libraries, Cloud Storage
Archiving and Sharing Big Data Digital Repositories, Libraries, Cloud Storage Cyrus Shahabi, Ph.D. Professor of Computer Science & Electrical Engineering Director, Integrated Media Systems Center (IMSC)
BIG DATA ANALYTICS For REAL TIME SYSTEM
BIG DATA ANALYTICS For REAL TIME SYSTEM Where does big data come from? Big Data is often boiled down to three main varieties: Transactional data these include data from invoices, payment orders, storage
StratioDeep. An integration layer between Cassandra and Spark. Álvaro Agea Herradón Antonio Alcocer Falcón
StratioDeep An integration layer between Cassandra and Spark Álvaro Agea Herradón Antonio Alcocer Falcón StratioDeep An integration layer between Cassandra and Spark Álvaro Agea Herradón Antonio Alcocer
Analytics on Spark & Shark @Yahoo
Analytics on Spark & Shark @Yahoo PRESENTED BY Tim Tully December 3, 2013 Overview Legacy / Current Hadoop Architecture Reflection / Pain Points Why the movement towards Spark / Shark New Hybrid Environment
Apache Flink Next-gen data analysis. Kostas Tzoumas [email protected] @kostas_tzoumas
Apache Flink Next-gen data analysis Kostas Tzoumas [email protected] @kostas_tzoumas What is Flink Project undergoing incubation in the Apache Software Foundation Originating from the Stratosphere research
Near Real Time Indexing Kafka Message to Apache Blur using Spark Streaming. by Dibyendu Bhattacharya
Near Real Time Indexing Kafka Message to Apache Blur using Spark Streaming by Dibyendu Bhattacharya Pearson : What We Do? We are building a scalable, reliable cloud-based learning platform providing services
Second Credit Seminar Presentation on Big Data Analytics Platforms: A Survey
Second Credit Seminar Presentation on Big Data Analytics Platforms: A Survey By, Mr. Brijesh B. Mehta Admission No.: D14CO002 Supervised By, Dr. Udai Pratap Rao Computer Engineering Department S. V. National
Mr. Apichon Witayangkurn [email protected] Department of Civil Engineering The University of Tokyo
Sensor Network Messaging Service Hive/Hadoop Mr. Apichon Witayangkurn [email protected] Department of Civil Engineering The University of Tokyo Contents 1 Introduction 2 What & Why Sensor Network
Unified Batch & Stream Processing Platform
Unified Batch & Stream Processing Platform Himanshu Bari Director Product Management Most Big Data Use Cases Are About Improving/Re-write EXISTING solutions To KNOWN problems Current Solutions Were Built
Programming Hadoop 5-day, instructor-led BD-106. MapReduce Overview. Hadoop Overview
Programming Hadoop 5-day, instructor-led BD-106 MapReduce Overview The Client Server Processing Pattern Distributed Computing Challenges MapReduce Defined Google's MapReduce The Map Phase of MapReduce
More Data in Less Time
More Data in Less Time Leveraging Cloudera CDH as an Operational Data Store Daniel Tydecks, Systems Engineering DACH & CE Goals of an Operational Data Store Load Data Sources Traditional Architecture Operational
Workshop on Hadoop with Big Data
Workshop on Hadoop with Big Data Hadoop? Apache Hadoop is an open source framework for distributed storage and processing of large sets of data on commodity hardware. Hadoop enables businesses to quickly
Machine- Learning Summer School - 2015
Machine- Learning Summer School - 2015 Big Data Programming David Franke Vast.com hbp://www.cs.utexas.edu/~dfranke/ Goals for Today Issues to address when you have big data Understand two popular big data
Big Data Spatial Analytics An Introduction
2013 Esri International User Conference July 8 12, 2013 San Diego, California Technical Workshop Big Data Spatial Analytics An Introduction Marwa Mabrouk Mansour Raad Esri iu UC2013. Technical Workshop
Hadoop MapReduce and Spark. Giorgio Pedrazzi, CINECA-SCAI School of Data Analytics and Visualisation Milan, 10/06/2015
Hadoop MapReduce and Spark Giorgio Pedrazzi, CINECA-SCAI School of Data Analytics and Visualisation Milan, 10/06/2015 Outline Hadoop Hadoop Import data on Hadoop Spark Spark features Scala MLlib MLlib
CS555: Distributed Systems [Fall 2015] Dept. Of Computer Science, Colorado State University
CS 555: DISTRIBUTED SYSTEMS [SPARK] Shrideep Pallickara Computer Science Colorado State University Frequently asked questions from the previous class survey Streaming Significance of minimum delays? Interleaving
A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM
A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM Sneha D.Borkar 1, Prof.Chaitali S.Surtakar 2 Student of B.E., Information Technology, J.D.I.E.T, [email protected] Assistant Professor, Information
An Industrial Perspective on the Hadoop Ecosystem. Eldar Khalilov Pavel Valov
An Industrial Perspective on the Hadoop Ecosystem Eldar Khalilov Pavel Valov agenda 03.12.2015 2 agenda Introduction 03.12.2015 2 agenda Introduction Research goals 03.12.2015 2 agenda Introduction Research
Collaborative Big Data Analytics. Copyright 2012 EMC Corporation. All rights reserved.
Collaborative Big Data Analytics 1 Big Data Is Less About Size, And More About Freedom TechCrunch!!!!!!!!! Total data: bigger than big data 451 Group Findings: Big Data Is More Extreme Than Volume Gartner!!!!!!!!!!!!!!!
Spark. Fast, Interactive, Language- Integrated Cluster Computing
Spark Fast, Interactive, Language- Integrated Cluster Computing Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael Franklin, Scott Shenker, Ion Stoica UC
Processing NGS Data with Hadoop-BAM and SeqPig
Processing NGS Data with Hadoop-BAM and SeqPig Keijo Heljanko 1, André Schumacher 1,2, Ridvan Döngelci 1, Luca Pireddu 3, Matti Niemenmaa 1, Aleksi Kallio 4, Eija Korpelainen 4, and Gianluigi Zanetti 3
Brave New World: Hadoop vs. Spark
Brave New World: Hadoop vs. Spark Dr. Kurt Stockinger Associate Professor of Computer Science Director of Studies in Data Science Zurich University of Applied Sciences Datalab Seminar, Zurich, Oct. 7,
Building Scalable Big Data Infrastructure Using Open Source Software. Sam William sampd@stumbleupon.
Building Scalable Big Data Infrastructure Using Open Source Software Sam William sampd@stumbleupon. What is StumbleUpon? Help users find content they did not expect to find The best way to discover new
MLlib: Scalable Machine Learning on Spark
MLlib: Scalable Machine Learning on Spark Xiangrui Meng Collaborators: Ameet Talwalkar, Evan Sparks, Virginia Smith, Xinghao Pan, Shivaram Venkataraman, Matei Zaharia, Rean Griffith, John Duchi, Joseph
Hadoop2, Spark Big Data, real time, machine learning & use cases. Cédric Carbone Twitter : @carbone
Hadoop2, Spark Big Data, real time, machine learning & use cases Cédric Carbone Twitter : @carbone Agenda Map Reduce Hadoop v1 limits Hadoop v2 and YARN Apache Spark Streaming : Spark vs Storm Machine
Conjugating data mood and tenses: Simple past, infinite present, fast continuous, simpler imperative, conditional future perfect
Matteo Migliavacca (mm53@kent) School of Computing Conjugating data mood and tenses: Simple past, infinite present, fast continuous, simpler imperative, conditional future perfect Simple past - Traditional
A Novel Cloud Based Elastic Framework for Big Data Preprocessing
School of Systems Engineering A Novel Cloud Based Elastic Framework for Big Data Preprocessing Omer Dawelbeit and Rachel McCrindle October 21, 2014 University of Reading 2008 www.reading.ac.uk Overview
A Brief Introduction to Apache Tez
A Brief Introduction to Apache Tez Introduction It is a fact that data is basically the new currency of the modern business world. Companies that effectively maximize the value of their data (extract value
HiBench Introduction. Carson Wang ([email protected]) Software & Services Group
HiBench Introduction Carson Wang ([email protected]) Agenda Background Workloads Configurations Benchmark Report Tuning Guide Background WHY Why we need big data benchmarking systems? WHAT What is
Survey of the Benchmark Systems and Testing Frameworks For Tachyon-Perf
Survey of the Benchmark Systems and Testing Frameworks For Tachyon-Perf Rong Gu,Qianhao Dong 2014/09/05 0. Introduction As we want to have a performance framework for Tachyon, we need to consider two aspects
SEIZE THE DATA. 2015 SEIZE THE DATA. 2015
1 Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. BIG DATA CONFERENCE 2015 Boston August 10-13 Predicting and reducing deforestation
Mambo Running Analytics on Enterprise Storage
Mambo Running Analytics on Enterprise Storage Jingxin Feng, Xing Lin 1, Gokul Soundararajan Advanced Technology Group 1 University of Utah Motivation No easy way to analyze data stored in enterprise storage
Hortonworks & SAS. Analytics everywhere. Page 1. Hortonworks Inc. 2011 2014. All Rights Reserved
Hortonworks & SAS Analytics everywhere. Page 1 A change in focus. A shift in Advertising From mass branding A shift in Financial Services From Educated Investing A shift in Healthcare From mass treatment
Big Data Approaches. Making Sense of Big Data. Ian Crosland. Jan 2016
Big Data Approaches Making Sense of Big Data Ian Crosland Jan 2016 Accelerate Big Data ROI Even firms that are investing in Big Data are still struggling to get the most from it. Make Big Data Accessible
Data-intensive HPC: opportunities and challenges. Patrick Valduriez
Data-intensive HPC: opportunities and challenges Patrick Valduriez Big Data Landscape Multi-$billion market! Big data = Hadoop = MapReduce? No one-size-fits-all solution: SQL, NoSQL, MapReduce, No standard,
Petabyte Scale Data at Facebook. Dhruba Borthakur, Engineer at Facebook, SIGMOD, New York, June 2013
Petabyte Scale Data at Facebook Dhruba Borthakur, Engineer at Facebook, SIGMOD, New York, June 2013 Agenda 1 Types of Data 2 Data Model and API for Facebook Graph Data 3 SLTP (Semi-OLTP) and Analytics
SAS BIG DATA SOLUTIONS ON AWS SAS FORUM ESPAÑA, OCTOBER 16 TH, 2014 IAN MEYERS SOLUTIONS ARCHITECT / AMAZON WEB SERVICES
SAS BIG DATA SOLUTIONS ON AWS SAS FORUM ESPAÑA, OCTOBER 16 TH, 2014 IAN MEYERS SOLUTIONS ARCHITECT / AMAZON WEB SERVICES AWS GLOBAL INFRASTRUCTURE 10 Regions 25 Availability Zones 51 Edge locations WHAT
Big Data and Analytics: Challenges and Opportunities
Big Data and Analytics: Challenges and Opportunities Dr. Amin Beheshti Lecturer and Senior Research Associate University of New South Wales, Australia (Service Oriented Computing Group, CSE) Talk: Sharif
NoSQL for SQL Professionals William McKnight
NoSQL for SQL Professionals William McKnight Session Code BD03 About your Speaker, William McKnight President, McKnight Consulting Group Frequent keynote speaker and trainer internationally Consulted to
Implement Hadoop jobs to extract business value from large and varied data sets
Hadoop Development for Big Data Solutions: Hands-On You Will Learn How To: Implement Hadoop jobs to extract business value from large and varied data sets Write, customize and deploy MapReduce jobs to
Chukwa, Hadoop subproject, 37, 131 Cloud enabled big data, 4 Codd s 12 rules, 1 Column-oriented databases, 18, 52 Compression pattern, 83 84
Index A Amazon Web Services (AWS), 50, 58 Analytics engine, 21 22 Apache Kafka, 38, 131 Apache S4, 38, 131 Apache Sqoop, 37, 131 Appliance pattern, 104 105 Application architecture, big data analytics
The Flink Big Data Analytics Platform. Marton Balassi, Gyula Fora" {mbalassi, gyfora}@apache.org
The Flink Big Data Analytics Platform Marton Balassi, Gyula Fora" {mbalassi, gyfora}@apache.org What is Apache Flink? Open Source Started in 2009 by the Berlin-based database research groups In the Apache
ESS event: Big Data in Official Statistics. Antonino Virgillito, Istat
ESS event: Big Data in Official Statistics Antonino Virgillito, Istat v erbi v is 1 About me Head of Unit Web and BI Technologies, IT Directorate of Istat Project manager and technical coordinator of Web
Federated SQL on Hadoop and Beyond: Leveraging Apache Geode to Build a Poor Man's SAP HANA. by Christian Tzolov @christzolov
Federated SQL on Hadoop and Beyond: Leveraging Apache Geode to Build a Poor Man's SAP HANA by Christian Tzolov @christzolov Whoami Christian Tzolov Technical Architect at Pivotal, BigData, Hadoop, SpringXD,
COMP9321 Web Application Engineering
COMP9321 Web Application Engineering Semester 2, 2015 Dr. Amin Beheshti Service Oriented Computing Group, CSE, UNSW Australia Week 11 (Part II) http://webapps.cse.unsw.edu.au/webcms2/course/index.php?cid=2411
Big Data Processing. Patrick Wendell Databricks
Big Data Processing Patrick Wendell Databricks About me Committer and PMC member of Apache Spark Former PhD student at Berkeley Left Berkeley to help found Databricks Now managing open source work at Databricks
SAP Predictive Analytics: An Overview and Roadmap. Charles Gadalla, SAP @cgadalla SESSION CODE: 603
SAP Predictive Analytics: An Overview and Roadmap Charles Gadalla, SAP @cgadalla SESSION CODE: 603 Advanced Analytics SAP Vision Embed Smart Agile Analytics into Decision Processes to Deliver Business
Why Spark on Hadoop Matters
Why Spark on Hadoop Matters MC Srivas, CTO and Founder, MapR Technologies Apache Spark Summit - July 1, 2014 1 MapR Overview Top Ranked Exponential Growth 500+ Customers Cloud Leaders 3X bookings Q1 13
Hybrid Software Architectures for Big Data. [email protected] @hurence http://www.hurence.com
Hybrid Software Architectures for Big Data [email protected] @hurence http://www.hurence.com Headquarters : Grenoble Pure player Expert level consulting Training R&D Big Data X-data hot-line
Cloudera Enterprise Reference Architecture for Google Cloud Platform Deployments
Cloudera Enterprise Reference Architecture for Google Cloud Platform Deployments Important Notice 2010-2015 Cloudera, Inc. All rights reserved. Cloudera, the Cloudera logo, Cloudera Impala, Impala, and
