ANALYTICS CENTER LEARNING PROGRAM
|
|
|
- Charity Stafford
- 10 years ago
- Views:
Transcription
1 Overview of Curriculum ANALYTICS CENTER LEARNING PROGRAM The following courses are offered by Analytics Center as part of its learning program: Course Duration Prerequisites 1- Math and Theory Fundamentals of Business Analytics 32 Hours Data- driven Decision Making 32 Hours 2- Software and Tools Data Engineering Introductory Data Analysis with Spreadsheets and Databases 12 Hours Management Information and Data Systems 24 Hours Data Analytics with Python 24 Hours Data Analytics with R 24 Hours Data Analytics with SAS 24 Hours Data Analytics with IBM Modeler(SPSS) 24 Hours Mastering Big Data Introduction to High Performance (Big Data) Analytics 24 Hours Big Data Management with Apache Tools: Hadoop, 30 Hours 211 Cassandra, Hbase, Hive, Drill, Pig) Big Data Analytics with Apache Spark & Mahout 24 Hours Applications Business Applications of Analytics 12 Hours Customer Analytics 24 Hours Debt Collection and Customer Risk Analytics 24 Hours Operations Analytics for Retailers 24 Hours Digital/Web Analytics 24 Hours Strategy and Management Big Data for Executives and Leaders 8 Hours Management and Organization of Analytics Practices 12 Hours 301 In the curriculum, courses starting with code 1 are "Math and Theory" track courses and require undergraduate level of math and linear algebra. These courses are for everyone who needs to develop fundamental theoretical background in the field. Courses starting with code 2 are "Software and Tools" track courses and involves programming and software tool usage which may require familiarity or background in programming and IT concepts depending on the course. Those courses are for profiles who are responsible for working with data, crunching numbers and responsible for hands- on data management, analysis and modeling. Typical
2 positions are analysts, modelers, data scientists, analytics consultants and leaders working in analytics or IT teams and departments. The courses starting with code 3 are "Application" track courses and aims to present and describe business applications of analytics and targets practitioners with a level of business experience. Typical positions targeted are analysts, specialists, managers and executives of related departments. The courses starting with code 4 are "Strategy and Management" track courses targeting executive professionals and leaders who are responsible for managing and organizing analytics projects, initiatives, functions, or organizations. Course Descriptions 1 - Math and Theory Track Fundamentals of Business Analytics The course covers main topics in the fields of analytics, statistics, data mining, machine learning and aims to build a theoretical and mathematical foundation. The following are some of the topics to be covered: Overview of linear algebra and statistical mathematics Concepts of business statistics and data mining Exploratory data analysis and data preparation Multivariate Statistical Methods Analysis of Variance (ANOVA) Discriminant analysis Regression analysis Structural equation modeling Principal component and factor analysis Multi dimensional Scaling Conjoint and correspondence analysis Design of experiments Time series analysis and forecasting Data mining methods and algorithms Descriptive methods: Clustering, association rules Predictive methods: Decision trees, logistic regression, support vector machines, neural networks. Advanced modeling approaches Model performance evaluation and model maintenance.
3 102 - Data- driven Decision Making The course covers topics from prescriptive analytics, operations research, system simulation and decision theory fields to provide a background on quantitative modeling. Main topics to be covered are: Mathematical programming and modeling Prescriptive analytics Decision systems Operations research and optimization Business and process simulation 2 - Tools and Software Track Data Engineering Introductory Data Analysis with Spreadsheets and Databases The course provides a basic training to develop skills for effective usage of spreadsheets and simple usage of database programs for quick data analysis. Working with spreadsheets (MS Excel) Working with databases (MS Access, MySQL etc.) Management Information and Data Systems The course aims to provide an understanding of systems, components and functions of information and data systems used in practice and fundamental skills for efficiently using these systems. Some of the topics to be covered are: Information and data systems Concepts of information and data Relational databases and SQL Data warehouses, OLAP NOSQL systems Data handling Accessing, Querying, Reporting ETL processes Data quality and cleansing Data visualization
4 203 - Data Analytics with Python with Python language, packages and libraries Data Analytics with R with Cran- R environment, language and packages Data Analytics with SAS with the SAS System Data Analytics with IBM Modeler (SPSS) with the IBM Modeler (SPSS) software. Mastering Big Data High Performance Analytics (Big Data) This course covers topics from high performance analytics and big data paradigms and aims to provide an hands- on introduction to emerging technologies in the field. Some of the topics to be covered are: Big data and high performance concepts Architectures, components and tools
5 NOSQL Distributed File Systems and Map- reduce Algorithms In- memory Databases and Systems Data storage, retrieval and processing in high performance systems Parallel algorithms Topics in high performance computing Big Data Management with Apache Software Foundation Tools Using Apache Hadoop and Pig : Distributed storage and programming for Big Data Apache Cassandra and Hbase: Distributed database management systems Apache Hive and Drill: Summarization, querying and analyzing Big Data Big Data Analytics Cluster computing and programming with Apache Spark and Pig Analytics and machine learning with Apache Mahout 3 - Business Applications Track Business Applications of Analytics The purpose of the course is to provide an understanding and broad overview on how analytics can help businesses to increase revenue, cut costs, improve efficiency, support growth and improve customer value. The course presents case studies and describes analytics applications in various industries and business functions: Marketing & customer analytics Risk analytics Financial analytics Supply chain and operations analytics Demand and price forecasting Web analytics Text analytics Customer Analytics This course provides and presents analytical applications and models in the functions of marketing, sales, service and customer management. Some of the topics to be covered are: Customer segmentation, profiling, and valuation. Churn/attrition modeling
6 Propensity, cross- sell, up- sell and uplift modeling Marketing and campaign optimization Models of customer experience, customer journey and lifecycle Social network analysis Debt Collection an Customer Risk Analytics This course provides and presents analytical applications and models used in the business functions of debt collection and risk analytics. Some of the topics to be covered are: Customer data enrichment Customer profiling Collection scoring Customer segmentation and treatment differentiation Treatment optimization Operations Analytics for Retailers This course provides and presents analytical applications and models in the retail industry. Some of the topics to be covered are: Demand forecasting Inventory models Network and route optimization Pricing Digital/Web Analytics This course provides and presents analytical applications and models in the digital/web businesses. Some of the topics to be covered are: Logfile, page tagging approaches Click data stream analysis Digital customer analytics Text analytics Recommendation systems
7 Strategy and Management Track 401- Big Data for Executives and Leaders This course aims to provide an overview of Big Data applications, best practices and ideas on how Big Data paradigm can help executives to transform their businesses Management and Organization of Analytics Practices and Initiatives This course aims to provide background, tips and tricks on how to successfully define, organize, manage and monitor practices involving analytics content and teams. The course presents how to successfully formulate and design strategies, organize analytics teams and functions, deploy efficient processes for successful analytics practices in enterprises.
Integrating a Big Data Platform into Government:
Integrating a Big Data Platform into Government: Drive Better Decisions for Policy and Program Outcomes John Haddad, Senior Director Product Marketing, Informatica Digital Government Institute s Government
Big Data and Data Science: Behind the Buzz Words
Big Data and Data Science: Behind the Buzz Words Peggy Brinkmann, FCAS, MAAA Actuary Milliman, Inc. April 1, 2014 Contents Big data: from hype to value Deconstructing data science Managing big data Analyzing
Information and Decision Sciences (IDS)
University of Illinois at Chicago 1 Information and Decision Sciences (IDS) Courses IDS 400. Advanced Business Programming Using Java. 0-4 Visual extended business language capabilities, including creating
This Symposium brought to you by www.ttcus.com
This Symposium brought to you by www.ttcus.com Linkedin/Group: Technology Training Corporation @Techtrain Technology Training Corporation www.ttcus.com Big Data Analytics as a Service (BDAaaS) Big Data
Big Data. Lyle Ungar, University of Pennsylvania
Big Data Big data will become a key basis of competition, underpinning new waves of productivity growth, innovation, and consumer surplus. McKinsey Data Scientist: The Sexiest Job of the 21st Century -
Sunnie Chung. Cleveland State University
Sunnie Chung Cleveland State University Data Scientist Big Data Processing Data Mining 2 INTERSECT of Computer Scientists and Statisticians with Knowledge of Data Mining AND Big data Processing Skills:
Advanced Big Data Analytics with R and Hadoop
REVOLUTION ANALYTICS WHITE PAPER Advanced Big Data Analytics with R and Hadoop 'Big Data' Analytics as a Competitive Advantage Big Analytics delivers competitive advantage in two ways compared to the traditional
Integrating analytics into the Graduate DEGREE curriculum
Dakota State University 1 Integrating analytics into the Graduate DEGREE curriculum IBM Workshop: Smarter Analytics August 15, 2013 Amit Deokar Associate Professor Dakota State University Madison, South
Introduction to Big Data Analytics p. 1 Big Data Overview p. 2 Data Structures p. 5 Analyst Perspective on Data Repositories p.
Introduction p. xvii Introduction to Big Data Analytics p. 1 Big Data Overview p. 2 Data Structures p. 5 Analyst Perspective on Data Repositories p. 9 State of the Practice in Analytics p. 11 BI Versus
Prerequisites. Course Outline
MS-55040: Data Mining, Predictive Analytics with Microsoft Analysis Services and Excel PowerPivot Description This three-day instructor-led course will introduce the students to the concepts of data mining,
Hadoop Evolution In Organizations. Mark Vervuurt Cluster Data Science & Analytics
In Organizations Mark Vervuurt Cluster Data Science & Analytics AGENDA 1. Yellow Elephant 2. Data Ingestion & Complex Event Processing 3. SQL on Hadoop 4. NoSQL 5. InMemory 6. Data Science & Machine Learning
Navigating Big Data business analytics
mwd a d v i s o r s Navigating Big Data business analytics Helena Schwenk A special report prepared for Actuate May 2013 This report is the third in a series and focuses principally on explaining what
Operationalise Predictive Analytics
Operationalise Predictive Analytics Publish SPSS, Excel and R reports online Predict online using SPSS and R models Access models and reports via Android app Organise people and content into projects Monitor
ESS event: Big Data in Official Statistics. Antonino Virgillito, Istat
ESS event: Big Data in Official Statistics Antonino Virgillito, Istat v erbi v is 1 About me Head of Unit Web and BI Technologies, IT Directorate of Istat Project manager and technical coordinator of Web
WROX Certified Big Data Analyst Program by AnalytixLabs and Wiley
WROX Certified Big Data Analyst Program by AnalytixLabs and Wiley Disclaimer: This material is protected under copyright act AnalytixLabs, 2011. Unauthorized use and/ or duplication of this material or
BIG DATA & DATA SCIENCE
BIG DATA & DATA SCIENCE ACADEMY PROGRAMS IN-COMPANY TRAINING PORTFOLIO 2 TRAINING PORTFOLIO 2016 Synergic Academy Solutions BIG DATA FOR LEADING BUSINESS Big data promises a significant shift in the way
Mike Maxey. Senior Director Product Marketing Greenplum A Division of EMC. Copyright 2011 EMC Corporation. All rights reserved.
Mike Maxey Senior Director Product Marketing Greenplum A Division of EMC 1 Greenplum Becomes the Foundation of EMC s Big Data Analytics (July 2010) E M C A C Q U I R E S G R E E N P L U M For three years,
Transforming the Telecoms Business using Big Data and Analytics
Transforming the Telecoms Business using Big Data and Analytics Event: ICT Forum for HR Professionals Venue: Meikles Hotel, Harare, Zimbabwe Date: 19 th 21 st August 2015 AFRALTI 1 Objectives Describe
PROGRAM DIRECTOR: Arthur O Connor Email Contact: URL : THE PROGRAM Careers in Data Analytics Admissions Criteria CURRICULUM Program Requirements
Data Analytics (MS) PROGRAM DIRECTOR: Arthur O Connor CUNY School of Professional Studies 101 West 31 st Street, 7 th Floor New York, NY 10001 Email Contact: Arthur O Connor, [email protected] URL:
Management Information Systems
University of Illinois at Chicago 1 Management Information Systems Mailing Address: UIC Liautaud Graduate School of Business 1108 University Hall (MC 077) 601 South Morgan Street Chicago, IL 60607 Contact
Hadoop Beyond Hype: Complex Adaptive Systems Conference Nov 16, 2012. Viswa Sharma Solutions Architect Tata Consultancy Services
Hadoop Beyond Hype: Complex Adaptive Systems Conference Nov 16, 2012 Viswa Sharma Solutions Architect Tata Consultancy Services 1 Agenda What is Hadoop Why Hadoop? The Net Generation is here Sizing the
Data Mining + Business Intelligence. Integration, Design and Implementation
Data Mining + Business Intelligence Integration, Design and Implementation ABOUT ME Vijay Kotu Data, Business, Technology, Statistics BUSINESS INTELLIGENCE - Result Making data accessible Wider distribution
How to use Big Data in Industry 4.0 implementations. LAURI ILISON, PhD Head of Big Data and Machine Learning
How to use Big Data in Industry 4.0 implementations LAURI ILISON, PhD Head of Big Data and Machine Learning Big Data definition? Big Data is about structured vs unstructured data Big Data is about Volume
An interdisciplinary model for analytics education
An interdisciplinary model for analytics education Raffaella Settimi, PhD School of Computing, DePaul University Drew Conway s Data Science Venn Diagram http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram
Big Data Analytics. Copyright 2011 EMC Corporation. All rights reserved.
Big Data Analytics 1 Priority Discussion Topics What are the most compelling business drivers behind big data analytics? Do you have or expect to have data scientists on your staff, and what will be their
BIG DATA What it is and how to use?
BIG DATA What it is and how to use? Lauri Ilison, PhD Data Scientist 21.11.2014 Big Data definition? There is no clear definition for BIG DATA BIG DATA is more of a concept than precise term 1 21.11.14
Questionnaire about the skills necessary for people. working with Big Data in the Statistical Organisations
Questionnaire about the skills necessary for people working with Big Data in the Statistical Organisations Preliminary results of the survey (19.08 2014) More detailed analysis will be prepared by October
Course 803401 DSS. Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Oman College of Management and Technology Course 803401 DSS Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization CS/MIS Department Information Sharing
Data Analysis Bootcamp - What To Expect. Damian Herrick Founder, Principal Consultant Lake Hill Analytics, LLC
Data Analysis Bootcamp - What To Expect Damian Herrick Founder, Principal Consultant Lake Hill Analytics, LLC Why Are Companies Using Data and Analytics Today? Data + Predictive Ability + Optimization
The Internet of Things and Big Data: Intro
The Internet of Things and Big Data: Intro John Berns, Solutions Architect, APAC - MapR Technologies April 22 nd, 2014 1 What This Is; What This Is Not It s not specific to IoT It s not about any specific
2015 Analyst and Advisor Summit. Advanced Data Analytics Dr. Rod Fontecilla Vice President, Application Services, Chief Data Scientist
2015 Analyst and Advisor Summit Advanced Data Analytics Dr. Rod Fontecilla Vice President, Application Services, Chief Data Scientist Agenda Key Facts Offerings and Capabilities Case Studies When to Engage
Sunnie Chung. Cleveland State University
Sunnie Chung Cleveland State University They are very new technologies to Computer Science in rise of Web Service on Internet (IoT) They were fast developed and fast evolving Research and Developments
Big Data Analytics: Where is it Going and How Can it Be Taught at the Undergraduate Level?
Big Data Analytics: Where is it Going and How Can it Be Taught at the Undergraduate Level? Dr. Frank Lee Chair, ECE/CS/IT New York Institute of Technology Old Westbury, NY 11568 Topics This talk describes:
Big Data and Data Science. The globally recognised training program
Big Data and Data Science The globally recognised training program Certificate in Big Data Analytics Duration 5 days Big Data and Data Science enables value creation from data, through the use of calculative
Oracle Big Data SQL Technical Update
Oracle Big Data SQL Technical Update Jean-Pierre Dijcks Oracle Redwood City, CA, USA Keywords: Big Data, Hadoop, NoSQL Databases, Relational Databases, SQL, Security, Performance Introduction This technical
Machine Learning with MATLAB David Willingham Application Engineer
Machine Learning with MATLAB David Willingham Application Engineer 2014 The MathWorks, Inc. 1 Goals Overview of machine learning Machine learning models & techniques available in MATLAB Streamlining the
Learning outcomes. Knowledge and understanding. Competence and skills
Syllabus Master s Programme in Statistics and Data Mining 120 ECTS Credits Aim The rapid growth of databases provides scientists and business people with vast new resources. This programme meets the challenges
The Future of Data Management
The Future of Data Management with Hadoop and the Enterprise Data Hub Amr Awadallah (@awadallah) Cofounder and CTO Cloudera Snapshot Founded 2008, by former employees of Employees Today ~ 800 World Class
A Tour of the Zoo the Hadoop Ecosystem Prafulla Wani
A Tour of the Zoo the Hadoop Ecosystem Prafulla Wani Technical Architect - Big Data Syntel Agenda Welcome to the Zoo! Evolution Timeline Traditional BI/DW Architecture Where Hadoop Fits In 2 Welcome to
Principles of Data Mining by Hand&Mannila&Smyth
Principles of Data Mining by Hand&Mannila&Smyth Slides for Textbook Ari Visa,, Institute of Signal Processing Tampere University of Technology October 4, 2010 Data Mining: Concepts and Techniques 1 Differences
Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Turban, Aronson, and Liang Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization
Chapter 5. Warehousing, Data Acquisition, Data. Visualization
Decision Support Systems and Intelligent Systems, Seventh Edition Chapter 5 Business Intelligence: Data Warehousing, Data Acquisition, Data Mining, Business Analytics, and Visualization 5-1 Learning Objectives
2015 Workshops for Professors
SAS Education Grow with us Offered by the SAS Global Academic Program Supporting teaching, learning and research in higher education 2015 Workshops for Professors 1 Workshops for Professors As the market
Building Your Big Data Team
Building Your Big Data Team With all the buzz around Big Data, many companies have decided they need some sort of Big Data initiative in place to stay current with modern data management requirements.
Is a Data Scientist the New Quant? Stuart Kozola MathWorks
Is a Data Scientist the New Quant? Stuart Kozola MathWorks 2015 The MathWorks, Inc. 1 Facts or information used usually to calculate, analyze, or plan something Information that is produced or stored by
Data Science and Business Analytics Certificate Data Science and Business Intelligence Certificate
Data Science and Business Analytics Certificate Data Science and Business Intelligence Certificate Description The Helzberg School of Management has launched two graduate-level certificates: one in Data
Big Data, Why All the Buzz? (Abridged) Anita Luthra, February 20, 2014
Big Data, Why All the Buzz? (Abridged) Anita Luthra, February 20, 2014 Defining Big Not Just Massive Data Big data refers to data sets whose size is beyond the ability of typical database software tools
Descriptive to Predictive to Prescriptive Analytics: Move Up the Value Chain. Suren Nathan CTO
Descriptive to Predictive to Prescriptive Analytics: Move Up the Value Chain Suren Nathan CTO What We Do Deliver cloud based predictive analytics solutions to the communications industry to help streamline
Big Data Explained. An introduction to Big Data Science.
Big Data Explained An introduction to Big Data Science. 1 Presentation Agenda What is Big Data Why learn Big Data Who is it for How to start learning Big Data When to learn it Objective and Benefits of
MSCA 31000 Introduction to Statistical Concepts
MSCA 31000 Introduction to Statistical Concepts This course provides general exposure to basic statistical concepts that are necessary for students to understand the content presented in more advanced
Cisco IT Hadoop Journey
Cisco IT Hadoop Journey Srini Desikan, Program Manager IT 2015 MapR Technologies 1 Agenda Hadoop Platform Timeline Key Decisions / Lessons Learnt Data Lake Hadoop s place in IT Data Platforms Use Cases
Hadoop Ecosystem Overview. CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook
Hadoop Ecosystem Overview CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook Agenda Introduce Hadoop projects to prepare you for your group work Intimate detail will be provided in future
CSE 427 CLOUD COMPUTING WITH BIG DATA APPLICATIONS
CSE 427 CLOUD COMPUTING WITH BIG DATA APPLICATIONS COURSE OVERVIEW & STRUCTURE Fall 2015 Marion Neumann ABOUT Marion Neumann email: m dot neumann at wustl dot edu office: Jolley Hall 403 office hours:
Collaborative Big Data Analytics. Copyright 2012 EMC Corporation. All rights reserved.
Collaborative Big Data Analytics 1 Big Data Is Less About Size, And More About Freedom TechCrunch!!!!!!!!! Total data: bigger than big data 451 Group Findings: Big Data Is More Extreme Than Volume Gartner!!!!!!!!!!!!!!!
Data Mining for Fun and Profit
Data Mining for Fun and Profit Data mining is the extraction of implicit, previously unknown, and potentially useful information from data. - Ian H. Witten, Data Mining: Practical Machine Learning Tools
Oracle Big Data Building A Big Data Management System
Oracle Big Building A Big Management System Copyright 2015, Oracle and/or its affiliates. All rights reserved. Effi Psychogiou ECEMEA Big Product Director May, 2015 Safe Harbor Statement The following
Predictive Analytics Certificate Program
Information Technologies Programs Predictive Analytics Certificate Program Accelerate Your Career Offered in partnership with: University of California, Irvine Extension s professional certificate and
IBM SPSS Modeler Professional
IBM SPSS Modeler Professional Make better decisions through predictive intelligence Highlights Create more effective strategies by evaluating trends and likely outcomes. Easily access, prepare and model
An Overview of Predictive Analytics for Practitioners. Dean Abbott, Abbott Analytics
An Overview of Predictive Analytics for Practitioners Dean Abbott, Abbott Analytics Thank You Sponsors Empower users with new insights through familiar tools while balancing the need for IT to monitor
#TalendSandbox for Big Data
Evalua&on von Apache Hadoop mit der #TalendSandbox for Big Data Julien Clarysse @whatdoesdatado @talend 2015 Talend Inc. 1 Connecting the Data-Driven Enterprise 2 Talend Overview Founded in 2006 BRAND
Introduction to Big Data! with Apache Spark" UC#BERKELEY#
Introduction to Big Data! with Apache Spark" UC#BERKELEY# So What is Data Science?" Doing Data Science" Data Preparation" Roles" This Lecture" What is Data Science?" Data Science aims to derive knowledge!
Big Data & QlikView. Democratizing Big Data Analytics. David Freriks Principal Solution Architect
Big Data & QlikView Democratizing Big Data Analytics David Freriks Principal Solution Architect TDWI Vancouver Agenda What really is Big Data? How do we separate hype from reality? How does that relate
Data Science Certificate Program
Information Technologies Programs Data Science Certificate Program Accelerate Your Career extension.uci.edu/datascience Offered in partnership with University of California, Irvine Extension s professional
Comprehensive Analytics on the Hortonworks Data Platform
Comprehensive Analytics on the Hortonworks Data Platform We do Hadoop. Page 1 Page 2 Back to 2005 Page 3 Vertical Scaling Page 4 Vertical Scaling Page 5 Vertical Scaling Page 6 Horizontal Scaling Page
Native Connectivity to Big Data Sources in MSTR 10
Native Connectivity to Big Data Sources in MSTR 10 Bring All Relevant Data to Decision Makers Support for More Big Data Sources Optimized Access to Your Entire Big Data Ecosystem as If It Were a Single
Course Syllabus For Operations Management. Management Information Systems
For Operations Management and Management Information Systems Department School Year First Year First Year First Year Second year Second year Second year Third year Third year Third year Third year Third
SOUTH DAKOTA BOARD OF REGENTS. Full Board ******************************************************************************
SOUTH DAKOTA BOARD OF REGENTS Full Board AGENDA ITEM: 26 2 (a) DATE: April 2-3, 2014 ****************************************************************************** SUBJECT: New Program: DSU Master of Science
HSD. W Business Analytics (M.Sc.) IT in Business Analytics. IT Applications in Business Analytics SS2016 / 01 Introduction Thomas Zeutschler
Hochschule Düsseldorf University of Applied Scienses Fachbereich Wirtschaftswissenschaften W Business Analytics (M.Sc.) IT in Business Analytics IT Applications in Business Analytics SS2016 / 01 Introduction
The State of Real-Time Big Data Analytics & the Internet of Things (IoT) January 2015 Survey Report
The State of Real-Time Big Data Analytics & the Internet of Things (IoT) January 2015 Survey Report Executive Summary Much of the value from the Internet of Things (IoT) will come from data, making Big
Using Data Mining and Machine Learning in Retail
Using Data Mining and Machine Learning in Retail Omeid Seide Senior Manager, Big Data Solutions Sears Holdings Bharat Prasad Big Data Solution Architect Sears Holdings Over a Century of Innovation A Fortune
Machine Learning for Understanding User Behaviours. Semi-Supervised Learning Applied to Click Streams
Machine Learning for Understanding User Behaviours Semi-Supervised Learning Applied to Click Streams Goals Motivation for semi-supervised learning and log analytics Overall Methodology Leveraging Hadoop
HIGH PERFORMANCE ANALYTICS FOR TERADATA
F HIGH PERFORMANCE ANALYTICS FOR TERADATA F F BORN AND BRED IN FINANCIAL SERVICES AND HEALTHCARE. DECADES OF EXPERIENCE IN PARALLEL PROGRAMMING AND ANALYTICS. FOCUSED ON MAKING DATA SCIENCE HIGHLY PERFORMING
Business Intelligence. Data Mining and Optimization for Decision Making
Brochure More information from http://www.researchandmarkets.com/reports/2325743/ Business Intelligence. Data Mining and Optimization for Decision Making Description: Business intelligence is a broad category
Introduction to Data Mining
Introduction to Data Mining Jay Urbain Credits: Nazli Goharian & David Grossman @ IIT Outline Introduction Data Pre-processing Data Mining Algorithms Naïve Bayes Decision Tree Neural Network Association
Advanced In-Database Analytics
Advanced In-Database Analytics Tallinn, Sept. 25th, 2012 Mikko-Pekka Bertling, BDM Greenplum EMEA 1 That sounds complicated? 2 Who can tell me how best to solve this 3 What are the main mathematical functions??
Chukwa, Hadoop subproject, 37, 131 Cloud enabled big data, 4 Codd s 12 rules, 1 Column-oriented databases, 18, 52 Compression pattern, 83 84
Index A Amazon Web Services (AWS), 50, 58 Analytics engine, 21 22 Apache Kafka, 38, 131 Apache S4, 38, 131 Apache Sqoop, 37, 131 Appliance pattern, 104 105 Application architecture, big data analytics
EMC Greenplum Driving the Future of Data Warehousing and Analytics. Tools and Technologies for Big Data
EMC Greenplum Driving the Future of Data Warehousing and Analytics Tools and Technologies for Big Data Steven Hillion V.P. Analytics EMC Data Computing Division 1 Big Data Size: The Volume Of Data Continues
Discovering, Not Finding. Practical Data Mining for Practitioners: Level II. Advanced Data Mining for Researchers : Level III
www.cognitro.com/training Predicitve DATA EMPOWERING DECISIONS Data Mining & Predicitve Training (DMPA) is a set of multi-level intensive courses and workshops developed by Cognitro team. it is designed
Big Data Approaches. Making Sense of Big Data. Ian Crosland. Jan 2016
Big Data Approaches Making Sense of Big Data Ian Crosland Jan 2016 Accelerate Big Data ROI Even firms that are investing in Big Data are still struggling to get the most from it. Make Big Data Accessible
Predictive modelling around the world 28.11.13
Predictive modelling around the world 28.11.13 Agenda Why this presentation is really interesting Introduction to predictive modelling Case studies Conclusions Why this presentation is really interesting
Business Intelligence. Advanced visualization. Reporting & dashboards. Mobile BI. Packaged BI
Data & Analytics 1 Data & Analytics Solutions - Overview Information Management Business Intelligence Advanced Analytics Data governance Data modeling & architecture Master data management Enterprise data
P4.1 Reference Architectures for Enterprise Big Data Use Cases Romeo Kienzler, Data Scientist, Advisory Architect, IBM Germany, Austria, Switzerland
P4.1 Reference Architectures for Enterprise Big Data Use Cases Romeo Kienzler, Data Scientist, Advisory Architect, IBM Germany, Austria, Switzerland IBM Center of Excellence for Data Science, Cognitive
How To Scale Out Of A Nosql Database
Firebird meets NoSQL (Apache HBase) Case Study Firebird Conference 2011 Luxembourg 25.11.2011 26.11.2011 Thomas Steinmaurer DI +43 7236 3343 896 [email protected] www.scch.at Michael Zwick DI
Data Mining: Overview. What is Data Mining?
Data Mining: Overview What is Data Mining? Recently * coined term for confluence of ideas from statistics and computer science (machine learning and database methods) applied to large databases in science,
Big Data Analytics. Analysis of high-volume and unstructured Data
Big Data Analytics Analysis of high-volume and unstructured Data Stefan Weingaertner, DYMATRIX CONSULTING GROUP KNIME Meetup Italia, 10 th October 2013 1 Agenda 1 Company Introduction 2 Big Data - an Introduction
Silvermine House Steenberg Office Park, Tokai 7945 Cape Town, South Africa Telephone: +27 21 702 4666 www.spss-sa.com
SPSS-SA Silvermine House Steenberg Office Park, Tokai 7945 Cape Town, South Africa Telephone: +27 21 702 4666 www.spss-sa.com SPSS-SA Training Brochure 2009 TABLE OF CONTENTS 1 SPSS TRAINING COURSES FOCUSING
BIG DATA TECHNOLOGY. Hadoop Ecosystem
BIG DATA TECHNOLOGY Hadoop Ecosystem Agenda Background What is Big Data Solution Objective Introduction to Hadoop Hadoop Ecosystem Hybrid EDW Model Predictive Analysis using Hadoop Conclusion What is Big
Real-Time Big Data Analytics + Internet of Things (IoT) = Value Creation
Real-Time Big Data Analytics + Internet of Things (IoT) = Value Creation January 2015 Market Insights Report Executive Summary According to a recent customer survey by Vitria, executives across the consumer,
Predictive Analytics
Predictive Analytics How many of you used predictive today? 2015 SAP SE. All rights reserved. 2 2015 SAP SE. All rights reserved. 3 How can you apply predictive to your business? Predictive Analytics is
