Hadoop Ecosystem B Y R A H I M A.
|
|
|
- Lee Neal
- 10 years ago
- Views:
Transcription
1 Hadoop Ecosystem B Y R A H I M A.
2 History of Hadoop Hadoop was created by Doug Cutting, the creator of Apache Lucene, the widely used text search library. Hadoop has its origins in Apache Nutch, an open source web search engine, itself a part of the Lucene project. In 2003, Google published a paper described Google s distributed file system GFS. In 2004, Nutch s developers implemented open source version on GFS, the Nutch Distributed File System (NDFS) which evolved to HDFS In 2004, Google published the paper that introduced MapReduce In 2005, the Nutch developers implemented MapReduce in Nutch, and ported all the major Nutch algorithms to run using MapReduce and NDFS Thanks to Google, Hadoop including HDFS and MapReduce, was born in 2005
3 The Motivation for Hadoop In pioneer days they used oxen for heavy pulling, and when one ox couldn t budge a log, we didn t try to grow a larger ox. We shouldn t be trying for bigger computers, but for more systems of computers. Grace Hopper Main motivation for Hadoop is to utilize distributed systems for single job
4 Hadoop Vs. Traditional systems Traditional systems Data is stored in a central location Data is copied to processors at runtime Fine for limited amounts of data Hadoop Distribute data when the data is stored Run computation where the data is - bring the computation to the data Data is replicated Hadoop is scalable and fault tolerant
5 Impala HBASE Solr zookeeper Ambari Tez Flume Spark Pig Hive Oozie Sqoop Mahout Hadoop Related Project HUE MapReduce2 YARN HDFS (File types: Avro, Parquet, Snappy) ** Apart them there are also projects Storm, Kafka, Samza for streaming and message processing; Chukwa for data collection; Drill for interactive data analysis; Cascading, Flink, Whirl
6 Hadoop core components Hadoop common Common utilities to support other Hadoop modules Hadoop Distributed File System (HDFS) Distributed file system Yet Another Resource Negotiator (YARN) Framework for job scheduling and cluster resource manager MapReduce2 YARN based framework for parallel processing MapReduce1 Older and depreciated map reduce framework, based on own job scheduler forget about it!
7 HDFS Properties: Sits on top of a native filesystem - such as ext3, ext4 or xfs HDFS performs best with a modest number of large files millions, rather than billions, of files, Each file typically 100MB or more Files in HDFS are write once - no random writes to files HDFS is optimized for large, streaming reads of files rather than random reads HDFS deamons Datanode stores file blocks Namenode store filesystem s metadata (file name and path, number of blocks, number of block replicas, blocks locations) Secondary namenode bookkeeping and check points
8 HDFS: file storage
9 YARN Concepts YARN is cluster resource management system Provides APIs for requesting and working with cluster resources CPU and Memory YARN daemons Resource manager (one per cluster) - to manage the use of resources across the cluster Node managers - running on all the nodes in the cluster to launch and monitor containers. A container - executes an application-specific process with a constrained set of resources (memory, CPU) Application s history server only for map reduce jobs, stores job running histories
10 YARN features Scalability can run on larger clusters than MapReduce 1. It is designed to scale up to 10,000 nodes and 100,000 tasks. Availability provide HA for the resource manager, then for YARN applications Utilization In YARN, a node manager manages a pool of resources, rather than a fixed number of designated slots Multitenancy the biggest benefit of YARN is that it opens up Hadoop to other types of distributed application beyond MapReduce
11 YARN: how applications are run
12 MapReduce MapReduce is a method for distributing a task across multiple nodes Each node processes data stored on that node Where possible Consists of two phases: Map Reduce Features of MapReduce Automatic parallelization and distribution Fault tolerance A clean abstraction for programmers MapReduce programs are usually written in Java Can be written in any language using Hadoop Streaming MapReduce abstracts all the housekeeping away from the developer
13 MapReduce Key stages The Mapper Each Map task (typically) operates on a single HDFS block Map tasks (usually) run on the node where the block is stored Shuffle and Sort Sorts and consolidates intermediate data from all mappers Happens after all Map tasks are complete and before Reduce tasks start The Reducer Operates on shuffled/sorted intermediate data (Map task output) Produces final output
14 MapReduce Workflow
15 Motivation for Hadoop related projects Complexity of writing MapReduce jobs Not all tasks fits MapReduce it is not good for complex directed-acyclic-graphs It is not suitable for iterative algorithms Address business and data analyst needs Performance issues Data ingestion and integration with traditional systems Provide ready to use frameworks and system build on big data
16 HIVE Apache Hive is a high level abstraction on top of MapReduce Uses an SQL like language called HiveQL Generates MapReduce jobs that run on the Hadoop cluster Originally developed by Facebook for data warehousing Hive Limitations Not all standard SQL is supported No correlated subqueries No support for UPDATE or DELETE No support for INSERTing single rows
17 PIG Apache Pig is a platform for data analysis and processing on Hadoop Offers an alternative to writing MapReduce code directly Originally developed at Yahoo Pig Goals: flexibility, productivity, and maintainability Main components: The data flow language (Pig Latin) The interactive shell (Grunt) The Pig interpreter and execution engine
18 High performance SQL engine for vast amounts of data Similar query language to HiveQL 10 to 50+ Ames faster than Hive, Pig, or MapReduce Developed by Cloudera MapReduce is not optimized for interactive queries -High latency even trivial queries can take 10 seconds or more Impala does not use MapReduce Uses the same Metastore as Hive Impala
19 SQOOP and Flume Sqoop Sqoop stands for SQL for Hadoop Imports tables from an RDBMS into HDFS and vice-versa Just one table All tables in a database Sqoop supports a WHERE clause Uses MapReduce to actually import the data to RDBMS Uses a JDBC interface Supports Oracle Database (connector developed with Quest Software) Flume Flume is a distributed, reliable, available service for efficiently moving large amounts of data as it is produced Ideally suited for file ingestions (web logs, network device logs etc.)
20 Sample Workflow
21 Oozie Oozie is a workflow engine Runs on a server, typically outside the cluster Runs workflows of Hadoop jobs Including Pig, Hive, Sqoop jobs Submits those jobs to the cluster based on a workflow definition Workflow definitions are in XML and submitted via HTTP Jobs can be scheduled One-off or recurring jobs
22 HBASE HBase is the Hadoop database - A NoSQL datastore Developed as open source version of Google s BigTable Can store massive amounts of data Petabytes+ High write throughput Scales to 100K inserts per second Handles sparse data well No wasted spaces for empty columns in a row Limited access model Optimized for lookup of a row by key rather than full queries No transactions: single row operations only Only one column (the row key ) is indexed
23 HBASE vs RDBMSs RDBMS HBASE Data layout Row oriented Column oriented Transaction Supported Single row only Query language SQL Put/get/scan Security Buit-in Authentication- Authorization Kerberos Indexes Any column Row key only Max data size TBs PB+ Read-write throughput Thousands Millions
24 Spark Spark is an open source project, started in 2009 as a research project in the UC Berkeley Spark is a cluster computing platform designed to be fast and general-purpose times faster than MapReduce so it is MapReduce killer Written in Scala, using Akka framework Spark can run as standalone cluster, on YARN, and on Apache Mesos cluster Spark components: Spark SQL Spark Streaming real-time ML Machine learning library GraphX Graph processing Spark core Standalone YARN Mesos
25 Spark components Spark Core task scheduling, memory management, fault recovery, interacting with storage systems, and more. API that defines resilient distributed datasets (RDDs), - RDDs represent a collection of items distributed across Spark cluster nodes that can be manipulated in parallel. Spark SQL Spark s package for working with structured data Spark Streaming Spark component that enables processing of live streams of data MLlib Provides classification, regression, clustering, collaborative filtering GraphX Library for manipulating graphs and performing graph-parallel computations
Large scale processing using Hadoop. Ján Vaňo
Large scale processing using Hadoop Ján Vaňo What is Hadoop? Software platform that lets one easily write and run applications that process vast amounts of data Includes: MapReduce offline computing engine
Hadoop Ecosystem Overview. CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook
Hadoop Ecosystem Overview CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook Agenda Introduce Hadoop projects to prepare you for your group work Intimate detail will be provided in future
Introduction to Hadoop HDFS and Ecosystems. Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data
Introduction to Hadoop HDFS and Ecosystems ANSHUL MITTAL Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data Topics The goal of this presentation is to give
Hadoop implementation of MapReduce computational model. Ján Vaňo
Hadoop implementation of MapReduce computational model Ján Vaňo What is MapReduce? A computational model published in a paper by Google in 2004 Based on distributed computation Complements Google s distributed
Qsoft Inc www.qsoft-inc.com
Big Data & Hadoop Qsoft Inc www.qsoft-inc.com Course Topics 1 2 3 4 5 6 Week 1: Introduction to Big Data, Hadoop Architecture and HDFS Week 2: Setting up Hadoop Cluster Week 3: MapReduce Part 1 Week 4:
Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware
Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware Created by Doug Cutting and Mike Carafella in 2005. Cutting named the program after
Getting Started with Hadoop. Raanan Dagan Paul Tibaldi
Getting Started with Hadoop Raanan Dagan Paul Tibaldi What is Apache Hadoop? Hadoop is a platform for data storage and processing that is Scalable Fault tolerant Open source CORE HADOOP COMPONENTS Hadoop
Big Data Course Highlights
Big Data Course Highlights The Big Data course will start with the basics of Linux which are required to get started with Big Data and then slowly progress from some of the basics of Hadoop/Big Data (like
Moving From Hadoop to Spark
+ Moving From Hadoop to Spark Sujee Maniyam Founder / Principal @ www.elephantscale.com [email protected] Bay Area ACM meetup (2015-02-23) + HI, Featured in Hadoop Weekly #109 + About Me : Sujee
Big Data With Hadoop
With Saurabh Singh [email protected] The Ohio State University February 11, 2016 Overview 1 2 3 Requirements Ecosystem Resilient Distributed Datasets (RDDs) Example Code vs Mapreduce 4 5 Source: [Tutorials
Architectural patterns for building real time applications with Apache HBase. Andrew Purtell Committer and PMC, Apache HBase
Architectural patterns for building real time applications with Apache HBase Andrew Purtell Committer and PMC, Apache HBase Who am I? Distributed systems engineer Principal Architect in the Big Data Platform
Infomatics. Big-Data and Hadoop Developer Training with Oracle WDP
Big-Data and Hadoop Developer Training with Oracle WDP What is this course about? Big Data is a collection of large and complex data sets that cannot be processed using regular database management tools
Constructing a Data Lake: Hadoop and Oracle Database United!
Constructing a Data Lake: Hadoop and Oracle Database United! Sharon Sophia Stephen Big Data PreSales Consultant February 21, 2015 Safe Harbor The following is intended to outline our general product direction.
Introduction to Hadoop. New York Oracle User Group Vikas Sawhney
Introduction to Hadoop New York Oracle User Group Vikas Sawhney GENERAL AGENDA Driving Factors behind BIG-DATA NOSQL Database 2014 Database Landscape Hadoop Architecture Map/Reduce Hadoop Eco-system Hadoop
Programming Hadoop 5-day, instructor-led BD-106. MapReduce Overview. Hadoop Overview
Programming Hadoop 5-day, instructor-led BD-106 MapReduce Overview The Client Server Processing Pattern Distributed Computing Challenges MapReduce Defined Google's MapReduce The Map Phase of MapReduce
Overview. Big Data in Apache Hadoop. - HDFS - MapReduce in Hadoop - YARN. https://hadoop.apache.org. Big Data Management and Analytics
Overview Big Data in Apache Hadoop - HDFS - MapReduce in Hadoop - YARN https://hadoop.apache.org 138 Apache Hadoop - Historical Background - 2003: Google publishes its cluster architecture & DFS (GFS)
Workshop on Hadoop with Big Data
Workshop on Hadoop with Big Data Hadoop? Apache Hadoop is an open source framework for distributed storage and processing of large sets of data on commodity hardware. Hadoop enables businesses to quickly
Prepared By : Manoj Kumar Joshi & Vikas Sawhney
Prepared By : Manoj Kumar Joshi & Vikas Sawhney General Agenda Introduction to Hadoop Architecture Acknowledgement Thanks to all the authors who left their selfexplanatory images on the internet. Thanks
INTRODUCTION TO APACHE HADOOP MATTHIAS BRÄGER CERN GS-ASE
INTRODUCTION TO APACHE HADOOP MATTHIAS BRÄGER CERN GS-ASE AGENDA Introduction to Big Data Introduction to Hadoop HDFS file system Map/Reduce framework Hadoop utilities Summary BIG DATA FACTS In what timeframe
Hadoop Job Oriented Training Agenda
1 Hadoop Job Oriented Training Agenda Kapil CK [email protected] Module 1 M o d u l e 1 Understanding Hadoop This module covers an overview of big data, Hadoop, and the Hortonworks Data Platform. 1.1 Module
Hadoop: The Definitive Guide
FOURTH EDITION Hadoop: The Definitive Guide Tom White Beijing Cambridge Famham Koln Sebastopol Tokyo O'REILLY Table of Contents Foreword Preface xvii xix Part I. Hadoop Fundamentals 1. Meet Hadoop 3 Data!
Hadoop IST 734 SS CHUNG
Hadoop IST 734 SS CHUNG Introduction What is Big Data?? Bulk Amount Unstructured Lots of Applications which need to handle huge amount of data (in terms of 500+ TB per day) If a regular machine need to
CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop)
CSE 590: Special Topics Course ( Supercomputing ) Lecture 10 ( MapReduce& Hadoop) Rezaul A. Chowdhury Department of Computer Science SUNY Stony Brook Spring 2016 MapReduce MapReduce is a programming model
Hadoop Evolution In Organizations. Mark Vervuurt Cluster Data Science & Analytics
In Organizations Mark Vervuurt Cluster Data Science & Analytics AGENDA 1. Yellow Elephant 2. Data Ingestion & Complex Event Processing 3. SQL on Hadoop 4. NoSQL 5. InMemory 6. Data Science & Machine Learning
Deploying Hadoop with Manager
Deploying Hadoop with Manager SUSE Big Data Made Easier Peter Linnell / Sales Engineer [email protected] Alejandro Bonilla / Sales Engineer [email protected] 2 Hadoop Core Components 3 Typical Hadoop Distribution
MySQL and Hadoop. Percona Live 2014 Chris Schneider
MySQL and Hadoop Percona Live 2014 Chris Schneider About Me Chris Schneider, Database Architect @ Groupon Spent the last 10 years building MySQL architecture for multiple companies Worked with Hadoop for
COURSE CONTENT Big Data and Hadoop Training
COURSE CONTENT Big Data and Hadoop Training 1. Meet Hadoop Data! Data Storage and Analysis Comparison with Other Systems RDBMS Grid Computing Volunteer Computing A Brief History of Hadoop Apache Hadoop
Introduction to Big data. Why Big data? Case Studies. Introduction to Hadoop. Understanding Features of Hadoop. Hadoop Architecture.
Big Data Hadoop Administration and Developer Course This course is designed to understand and implement the concepts of Big data and Hadoop. This will cover right from setting up Hadoop environment in
How To Scale Out Of A Nosql Database
Firebird meets NoSQL (Apache HBase) Case Study Firebird Conference 2011 Luxembourg 25.11.2011 26.11.2011 Thomas Steinmaurer DI +43 7236 3343 896 [email protected] www.scch.at Michael Zwick DI
Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related
Chapter 11 Map-Reduce, Hadoop, HDFS, Hbase, MongoDB, Apache HIVE, and Related Summary Xiangzhe Li Nowadays, there are more and more data everyday about everything. For instance, here are some of the astonishing
Pro Apache Hadoop. Second Edition. Sameer Wadkar. Madhu Siddalingaiah
Pro Apache Hadoop Second Edition Sameer Wadkar Madhu Siddalingaiah Contents J About the Authors About the Technical Reviewer Acknowledgments Introduction xix xxi xxiii xxv Chapter 1: Motivation for Big
Chase Wu New Jersey Ins0tute of Technology
CS 698: Special Topics in Big Data Chapter 4. Big Data Analytics Platforms Chase Wu New Jersey Ins0tute of Technology Some of the slides have been provided through the courtesy of Dr. Ching-Yung Lin at
Upcoming Announcements
Enterprise Hadoop Enterprise Hadoop Jeff Markham Technical Director, APAC [email protected] Page 1 Upcoming Announcements April 2 Hortonworks Platform 2.1 A continued focus on innovation within
CSE-E5430 Scalable Cloud Computing Lecture 2
CSE-E5430 Scalable Cloud Computing Lecture 2 Keijo Heljanko Department of Computer Science School of Science Aalto University [email protected] 14.9-2015 1/36 Google MapReduce A scalable batch processing
Data-Intensive Programming. Timo Aaltonen Department of Pervasive Computing
Data-Intensive Programming Timo Aaltonen Department of Pervasive Computing Data-Intensive Programming Lecturer: Timo Aaltonen University Lecturer [email protected] Assistants: Henri Terho and Antti
ITG Software Engineering
Introduction to Cloudera Course ID: Page 1 Last Updated 12/15/2014 Introduction to Cloudera Course : This 5 day course introduces the student to the Hadoop architecture, file system, and the Hadoop Ecosystem.
Lecture 10: HBase! Claudia Hauff (Web Information Systems)! [email protected]
Big Data Processing, 2014/15 Lecture 10: HBase!! Claudia Hauff (Web Information Systems)! [email protected] 1 Course content Introduction Data streams 1 & 2 The MapReduce paradigm Looking behind the
How to Hadoop Without the Worry: Protecting Big Data at Scale
How to Hadoop Without the Worry: Protecting Big Data at Scale SESSION ID: CDS-W06 Davi Ottenheimer Senior Director of Trust EMC Corporation @daviottenheimer Big Data Trust. Redefined Transparency Relevance
SQL on NoSQL (and all of the data) With Apache Drill
SQL on NoSQL (and all of the data) With Apache Drill Richard Shaw Solutions Architect @aggress Who What Where NoSQL DB Very Nice People Open Source Distributed Storage & Compute Platform (up to 1000s of
Implement Hadoop jobs to extract business value from large and varied data sets
Hadoop Development for Big Data Solutions: Hands-On You Will Learn How To: Implement Hadoop jobs to extract business value from large and varied data sets Write, customize and deploy MapReduce jobs to
HADOOP ADMINISTATION AND DEVELOPMENT TRAINING CURRICULUM
HADOOP ADMINISTATION AND DEVELOPMENT TRAINING CURRICULUM 1. Introduction 1.1 Big Data Introduction What is Big Data Data Analytics Bigdata Challenges Technologies supported by big data 1.2 Hadoop Introduction
Unified Big Data Processing with Apache Spark. Matei Zaharia @matei_zaharia
Unified Big Data Processing with Apache Spark Matei Zaharia @matei_zaharia What is Apache Spark? Fast & general engine for big data processing Generalizes MapReduce model to support more types of processing
<Insert Picture Here> Big Data
Big Data Kevin Kalmbach Principal Sales Consultant, Public Sector Engineered Systems Program Agenda What is Big Data and why it is important? What is your Big
Unified Big Data Analytics Pipeline. 连 城 [email protected]
Unified Big Data Analytics Pipeline 连 城 [email protected] What is A fast and general engine for large-scale data processing An open source implementation of Resilient Distributed Datasets (RDD) Has an
MapReduce with Apache Hadoop Analysing Big Data
MapReduce with Apache Hadoop Analysing Big Data April 2010 Gavin Heavyside [email protected] About Journey Dynamics Founded in 2006 to develop software technology to address the issues
BIG DATA What it is and how to use?
BIG DATA What it is and how to use? Lauri Ilison, PhD Data Scientist 21.11.2014 Big Data definition? There is no clear definition for BIG DATA BIG DATA is more of a concept than precise term 1 21.11.14
Case Study : 3 different hadoop cluster deployments
Case Study : 3 different hadoop cluster deployments Lee moon soo [email protected] HDFS as a Storage Last 4 years, our HDFS clusters, stored Customer 1500 TB+ data safely served 375,000 TB+ data to customer
Beyond Hadoop with Apache Spark and BDAS
Beyond Hadoop with Apache Spark and BDAS Khanderao Kand Principal Technologist, Guavus 12 April GITPRO World 2014 Palo Alto, CA Credit: Some stajsjcs and content came from presentajons from publicly shared
Session: Big Data get familiar with Hadoop to use your unstructured data Udo Brede Dell Software. 22 nd October 2013 10:00 Sesión B - DB2 LUW
Session: Big Data get familiar with Hadoop to use your unstructured data Udo Brede Dell Software 22 nd October 2013 10:00 Sesión B - DB2 LUW 1 Agenda Big Data The Technical Challenges Architecture of Hadoop
Hadoop 101. Lars George. NoSQL- Ma4ers, Cologne April 26, 2013
Hadoop 101 Lars George NoSQL- Ma4ers, Cologne April 26, 2013 1 What s Ahead? Overview of Apache Hadoop (and related tools) What it is Why it s relevant How it works No prior experience needed Feel free
Hadoop & Spark Using Amazon EMR
Hadoop & Spark Using Amazon EMR Michael Hanisch, AWS Solutions Architecture 2015, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Agenda Why did we build Amazon EMR? What is Amazon EMR?
Hadoop. http://hadoop.apache.org/ Sunday, November 25, 12
Hadoop http://hadoop.apache.org/ What Is Apache Hadoop? The Apache Hadoop software library is a framework that allows for the distributed processing of large data sets across clusters of computers using
Oracle Big Data Fundamentals Ed 1 NEW
Oracle University Contact Us: +90 212 329 6779 Oracle Big Data Fundamentals Ed 1 NEW Duration: 5 Days What you will learn In the Oracle Big Data Fundamentals course, learn to use Oracle's Integrated Big
Why Spark on Hadoop Matters
Why Spark on Hadoop Matters MC Srivas, CTO and Founder, MapR Technologies Apache Spark Summit - July 1, 2014 1 MapR Overview Top Ranked Exponential Growth 500+ Customers Cloud Leaders 3X bookings Q1 13
Self-service BI for big data applications using Apache Drill
Self-service BI for big data applications using Apache Drill 2015 MapR Technologies 2015 MapR Technologies 1 Management - MCS MapR Data Platform for Hadoop and NoSQL APACHE HADOOP AND OSS ECOSYSTEM Batch
Hadoop2, Spark Big Data, real time, machine learning & use cases. Cédric Carbone Twitter : @carbone
Hadoop2, Spark Big Data, real time, machine learning & use cases Cédric Carbone Twitter : @carbone Agenda Map Reduce Hadoop v1 limits Hadoop v2 and YARN Apache Spark Streaming : Spark vs Storm Machine
SOLVING REAL AND BIG (DATA) PROBLEMS USING HADOOP. Eva Andreasson Cloudera
SOLVING REAL AND BIG (DATA) PROBLEMS USING HADOOP Eva Andreasson Cloudera Most FAQ: Super-Quick Overview! The Apache Hadoop Ecosystem a Zoo! Oozie ZooKeeper Hue Impala Solr Hive Pig Mahout HBase MapReduce
Certified Big Data and Apache Hadoop Developer VS-1221
Certified Big Data and Apache Hadoop Developer VS-1221 Certified Big Data and Apache Hadoop Developer Certification Code VS-1221 Vskills certification for Big Data and Apache Hadoop Developer Certification
Cloudera Certified Developer for Apache Hadoop
Cloudera CCD-333 Cloudera Certified Developer for Apache Hadoop Version: 5.6 QUESTION NO: 1 Cloudera CCD-333 Exam What is a SequenceFile? A. A SequenceFile contains a binary encoding of an arbitrary number
Introduction to Big Data! with Apache Spark" UC#BERKELEY#
Introduction to Big Data! with Apache Spark" UC#BERKELEY# This Lecture" The Big Data Problem" Hardware for Big Data" Distributing Work" Handling Failures and Slow Machines" Map Reduce and Complex Jobs"
Apache HBase. Crazy dances on the elephant back
Apache HBase Crazy dances on the elephant back Roman Nikitchenko, 16.10.2014 YARN 2 FIRST EVER DATA OS 10.000 nodes computer Recent technology changes are focused on higher scale. Better resource usage
Dell In-Memory Appliance for Cloudera Enterprise
Dell In-Memory Appliance for Cloudera Enterprise Hadoop Overview, Customer Evolution and Dell In-Memory Product Details Author: Armando Acosta Hadoop Product Manager/Subject Matter Expert [email protected]/
Complete Java Classes Hadoop Syllabus Contact No: 8888022204
1) Introduction to BigData & Hadoop What is Big Data? Why all industries are talking about Big Data? What are the issues in Big Data? Storage What are the challenges for storing big data? Processing What
HDP Hadoop From concept to deployment.
HDP Hadoop From concept to deployment. Ankur Gupta Senior Solutions Engineer Rackspace: Page 41 27 th Jan 2015 Where are you in your Hadoop Journey? A. Researching our options B. Currently evaluating some
Hadoop Big Data for Processing Data and Performing Workload
Hadoop Big Data for Processing Data and Performing Workload Girish T B 1, Shadik Mohammed Ghouse 2, Dr. B. R. Prasad Babu 3 1 M Tech Student, 2 Assosiate professor, 3 Professor & Head (PG), of Computer
A Tour of the Zoo the Hadoop Ecosystem Prafulla Wani
A Tour of the Zoo the Hadoop Ecosystem Prafulla Wani Technical Architect - Big Data Syntel Agenda Welcome to the Zoo! Evolution Timeline Traditional BI/DW Architecture Where Hadoop Fits In 2 Welcome to
Peers Techno log ies Pv t. L td. HADOOP
Page 1 Peers Techno log ies Pv t. L td. Course Brochure Overview Hadoop is a Open Source from Apache, which provides reliable storage and faster process by using the Hadoop distibution file system and
Internals of Hadoop Application Framework and Distributed File System
International Journal of Scientific and Research Publications, Volume 5, Issue 7, July 2015 1 Internals of Hadoop Application Framework and Distributed File System Saminath.V, Sangeetha.M.S Abstract- Hadoop
A Brief Outline on Bigdata Hadoop
A Brief Outline on Bigdata Hadoop Twinkle Gupta 1, Shruti Dixit 2 RGPV, Department of Computer Science and Engineering, Acropolis Institute of Technology and Research, Indore, India Abstract- Bigdata is
BIG DATA - HADOOP PROFESSIONAL amron
0 Training Details Course Duration: 30-35 hours training + assignments + actual project based case studies Training Materials: All attendees will receive: Assignment after each module, video recording
Hadoop Introduction. Olivier Renault Solution Engineer - Hortonworks
Hadoop Introduction Olivier Renault Solution Engineer - Hortonworks Hortonworks A Brief History of Apache Hadoop Apache Project Established Yahoo! begins to Operate at scale Hortonworks Data Platform 2013
Dominik Wagenknecht Accenture
Dominik Wagenknecht Accenture Improving Mainframe Performance with Hadoop October 17, 2014 Organizers General Partner Top Media Partner Media Partner Supporters About me Dominik Wagenknecht Accenture Vienna
Lecture 32 Big Data. 1. Big Data problem 2. Why the excitement about big data 3. What is MapReduce 4. What is Hadoop 5. Get started with Hadoop
Lecture 32 Big Data 1. Big Data problem 2. Why the excitement about big data 3. What is MapReduce 4. What is Hadoop 5. Get started with Hadoop 1 2 Big Data Problems Data explosion Data from users on social
White Paper: What You Need To Know About Hadoop
CTOlabs.com White Paper: What You Need To Know About Hadoop June 2011 A White Paper providing succinct information for the enterprise technologist. Inside: What is Hadoop, really? Issues the Hadoop stack
BIG DATA TECHNOLOGY. Hadoop Ecosystem
BIG DATA TECHNOLOGY Hadoop Ecosystem Agenda Background What is Big Data Solution Objective Introduction to Hadoop Hadoop Ecosystem Hybrid EDW Model Predictive Analysis using Hadoop Conclusion What is Big
Self-service BI for big data applications using Apache Drill
Self-service BI for big data applications using Apache Drill 2015 MapR Technologies 2015 MapR Technologies 1 Data Is Doubling Every Two Years Unstructured data will account for more than 80% of the data
Cloudera Enterprise Reference Architecture for Google Cloud Platform Deployments
Cloudera Enterprise Reference Architecture for Google Cloud Platform Deployments Important Notice 2010-2015 Cloudera, Inc. All rights reserved. Cloudera, the Cloudera logo, Cloudera Impala, Impala, and
Hadoop MapReduce and Spark. Giorgio Pedrazzi, CINECA-SCAI School of Data Analytics and Visualisation Milan, 10/06/2015
Hadoop MapReduce and Spark Giorgio Pedrazzi, CINECA-SCAI School of Data Analytics and Visualisation Milan, 10/06/2015 Outline Hadoop Hadoop Import data on Hadoop Spark Spark features Scala MLlib MLlib
How Companies are! Using Spark
How Companies are! Using Spark And where the Edge in Big Data will be Matei Zaharia History Decreasing storage costs have led to an explosion of big data Commodity cluster software, like Hadoop, has made
Hadoop Distributed File System. Dhruba Borthakur Apache Hadoop Project Management Committee [email protected] June 3 rd, 2008
Hadoop Distributed File System Dhruba Borthakur Apache Hadoop Project Management Committee [email protected] June 3 rd, 2008 Who Am I? Hadoop Developer Core contributor since Hadoop s infancy Focussed
Department of Computer Science University of Cyprus EPL646 Advanced Topics in Databases. Lecture 14
Department of Computer Science University of Cyprus EPL646 Advanced Topics in Databases Lecture 14 Big Data Management IV: Big-data Infrastructures (Background, IO, From NFS to HFDS) Chapter 14-15: Abideboul
Like what you hear? Tweet it using: #Sec360
Like what you hear? Tweet it using: #Sec360 HADOOP SECURITY Like what you hear? Tweet it using: #Sec360 HADOOP SECURITY About Robert: School: UW Madison, U St. Thomas Programming: 15 years, C, C++, Java
Hadoop: A Framework for Data- Intensive Distributed Computing. CS561-Spring 2012 WPI, Mohamed Y. Eltabakh
1 Hadoop: A Framework for Data- Intensive Distributed Computing CS561-Spring 2012 WPI, Mohamed Y. Eltabakh 2 What is Hadoop? Hadoop is a software framework for distributed processing of large datasets
How To Create A Data Visualization With Apache Spark And Zeppelin 2.5.3.5
Big Data Visualization using Apache Spark and Zeppelin Prajod Vettiyattil, Software Architect, Wipro Agenda Big Data and Ecosystem tools Apache Spark Apache Zeppelin Data Visualization Combining Spark
International Journal of Advancements in Research & Technology, Volume 3, Issue 2, February-2014 10 ISSN 2278-7763
International Journal of Advancements in Research & Technology, Volume 3, Issue 2, February-2014 10 A Discussion on Testing Hadoop Applications Sevuga Perumal Chidambaram ABSTRACT The purpose of analysing
Data processing goes big
Test report: Integration Big Data Edition Data processing goes big Dr. Götz Güttich Integration is a powerful set of tools to access, transform, move and synchronize data. With more than 450 connectors,
BIG DATA SERIES: HADOOP DEVELOPER TRAINING PROGRAM. An Overview
BIG DATA SERIES: HADOOP DEVELOPER TRAINING PROGRAM An Overview Contents Contents... 1 BIG DATA SERIES: HADOOP DEVELOPER TRAINING PROGRAM... 1 Program Overview... 4 Curriculum... 5 Module 1: Big Data: Hadoop
Big Data and Hadoop. Module 1: Introduction to Big Data and Hadoop. Module 2: Hadoop Distributed File System. Module 3: MapReduce
Big Data and Hadoop Module 1: Introduction to Big Data and Hadoop Learn about Big Data and the shortcomings of the prevailing solutions for Big Data issues. You will also get to know, how Hadoop eradicates
E6893 Big Data Analytics Lecture 2: Big Data Analytics Platforms
E6893 Big Data Analytics Lecture 2: Big Data Analytics Platforms Ching-Yung Lin, Ph.D. Adjunct Professor, Dept. of Electrical Engineering and Computer Science Mgr., Dept. of Network Science and Big Data
Ali Ghodsi Head of PM and Engineering Databricks
Making Big Data Simple Ali Ghodsi Head of PM and Engineering Databricks Big Data is Hard: A Big Data Project Tasks Tasks Build a Hadoop cluster Challenges Clusters hard to setup and manage Build a data
The Future of Big Data SAS Automotive Roundtable Los Angeles, CA 5 March 2015 Mike Olson Chief Strategy Officer, Cofounder @mikeolson
The Future of Big Data SAS Automotive Roundtable Los Angeles, CA 5 March 2015 Mike Olson Chief Strategy Officer, Cofounder @mikeolson 1 A New Platform for Pervasive Analytics Multiple big data opportunities
ITG Software Engineering
Introduction to Apache Hadoop Course ID: Page 1 Last Updated 12/15/2014 Introduction to Apache Hadoop Course Overview: This 5 day course introduces the student to the Hadoop architecture, file system,
HOW TO LIVE WITH THE ELEPHANT IN THE SERVER ROOM APACHE HADOOP WORKSHOP
HOW TO LIVE WITH THE ELEPHANT IN THE SERVER ROOM APACHE HADOOP WORKSHOP AGENDA Introduction What is Hadoop and the rationale behind it Hadoop Distributed File System (HDFS) and MapReduce Common Hadoop
Using Hadoop for Webscale Computing. Ajay Anand Yahoo! [email protected] Usenix 2008
Using Hadoop for Webscale Computing Ajay Anand Yahoo! [email protected] Agenda The Problem Solution Approach / Introduction to Hadoop HDFS File System Map Reduce Programming Pig Hadoop implementation
Apache Hadoop. Alexandru Costan
1 Apache Hadoop Alexandru Costan Big Data Landscape No one-size-fits-all solution: SQL, NoSQL, MapReduce, No standard, except Hadoop 2 Outline What is Hadoop? Who uses it? Architecture HDFS MapReduce Open
Application Development. A Paradigm Shift
Application Development for the Cloud: A Paradigm Shift Ramesh Rangachar Intelsat t 2012 by Intelsat. t Published by The Aerospace Corporation with permission. New 2007 Template - 1 Motivation for the
Apache Hadoop Ecosystem
Apache Hadoop Ecosystem Rim Moussa ZENITH Team Inria Sophia Antipolis DataScale project [email protected] Context *large scale systems Response time (RIUD ops: one hit, OLTP) Time Processing (analytics:
