HPC ABDS: The Case for an Integrating Apache Big Data Stack
|
|
|
- Emmeline Doyle
- 10 years ago
- Views:
Transcription
1 HPC ABDS: The Case for an Integrating Apache Big Data Stack with HPC 1st JTC 1 SGBD Meeting SDSC San Diego March Judy Qiu Shantenu Jha (Rutgers) Geoffrey Fox [email protected] School of Informatics and Computing Digital Science Center Indiana University Bloomington
2 Enhanced Apache Big Data Stack ABDS ~120 Capabilities >40 Apache Green layers have strong HPC Integration opportunities Goal Functionality of ABDS Performance of HPC
3 Broad Layers in HPC ABDS Workflow Orchestration Application and Analytics High level Programming Basic Programming model and runtime SPMD, Streaming, MapReduce, MPI Inter process communication Collectives, point to point, publish subscribe In memory databases/caches Object relational mapping SQL and NoSQL, File management Data Transport Cluster Resource Management (Yarn, Slurm, SGE) File systems(hdfs, Lustre ) DevOps (Puppet, Chef ) IaaS Management from HPC to hypervisors (OpenStack) Cross Cutting Message Protocols Distributed Coordination Security & Privacy Monitoring
4
5
6 Getting High Performance on Data Analytics (e.g. Mahout, R ) On the systems side, we have two principles The Apache Big Data Stack with ~120 projects has important broad functionality with a vital large support organization HPC including MPI has striking success in delivering high performance with however a fragile sustainability model There are key systems abstractions which are levels in HPC ABDS software stack where Apache approach needs careful integration with HPC Resource management Storage Programming model horizontal scaling parallelism Collective and Point to Point communication Support of iteration Data interface (not just key value) In application areas, we define application abstractions to support Graphs/network Geospatial Images etc.
7 4 Forms of MapReduce (a) Map Only (b) Classic MapReduce (c) Iterative MapReduce (d) Loosely Synchronous Input map Input map Input Iterations map P ij Output reduce reduce BLAST Analysis High Energy Physics Expectation maximization Parametric sweep (HEP) Histograms Clustering e.g. Kmeans Pleasingly Parallel Distributed search Linear Algebra, Page Rank Domain of MapReduce and Iterative Extensions Science Clouds Classic MPI PDE Solvers and particle dynamics MPI Giraph MPI is Map followed by Point to Point or Collective Communication 7 as in style c) plus d)
8 HPC ABDS System (Middleware) HPC ABDS Hourglass 120 Software Projects System Abstractions/standards Data format Storage HPC Yarn for Resource management Horizontally scalable parallel programming model Collective and Point to Point communication Support of iteration High performance Applications Application Abstractions/standards Graphs, Networks, Images, Geospatial. SPIDAL (Scalable Parallel Interoperable Data Analytics Library) or High performance Mahout, R, Matlab..
9 Integrating Yarn with HPC
10 We are sort of working on Use Cases with HPC ABDS Use Case 10 Internet of Things: Yarn, Storm, ActiveMQ Use Case 19, 20 Genomics. Hadoop, Iterative MapReduce, MPI, Much better analytics than Mahout Use Case 26 Deep Learning. High performance distributed GPU (optimized collectives) with Python front end (planned) Variant of Use Case 26, 27 Image classification using Kmeans: Iterative MapReduce Use Case 28 Twitter with optimized index for Hbase, Hadoop and Iterative MapReduce Use Case 30 Network Science. MPI and Giraph for network structure and dynamics (planned) Use Case 39 Particle Physics. Iterative MapReduce (wrote proposal) Use Case 43 Radar Image Analysis. Hadoop for multiple individual images moving to Iterative MapReduce for global integration over all images Use Case 44 Radar Images. Running on Amazon
11 Features of Harp Hadoop Plug in Hadoop Plugin (on Hadoop and Hadoop 2.2.0) Hierarchical data abstraction on arrays, key values and graphs for easy programming expressiveness. Collective communication model to support various communication operations on the data abstractions. Caching with buffer management for memory allocation required from computation and communication BSP style parallelism Fault tolerance with check pointing
12 Architecture Application MapReduce Applications Map Collective Applications Framework MapReduce V2 Harp Resource Manager YARN
13 Performance on Madrid Cluster (8 nodes) K Means Clustering Harp v.s. Hadoop on Madrid Identical Computation Increasing Communication Execution Time (s) m m 5k 1m 50k Problem Size Hadoop 24 cores Harp 24 cores Hadoop 48 cores Harp 48 cores Hadoop 96 cores Harp 96 cores Note compute same in each case as product of centers times points identical
14 Mahout and Hadoop MR Slow due to MapReduce Python slow as Scripting Spark Iterative MapReduce, non optimal communication Harp Hadoop plug in with ~MPI collectives MPI fastest as C not Java Increasing Communication Identical Computation
15 Performance of MPI Kernel Operations MPI.NET C# in Tempest FastMPJ Java in FG OMPI nightly Java FG OMPI trunk Java FG OMPI trunk C FG 5000 MPI.NET C# in Tempest FastMPJ Java in FG OMPI nightly Java FG OMPI trunk Java FG OMPI trunk C FG Average time (us) B 2B 8B 32B Message size (bytes) 128B 512B Performance of MPI send and receive operations KB OMPI trunk C Madrid OMPI trunk Java Madrid OMPI trunk C FG OMPI trunk Java FG 8KB 32KB 128KB 512KB Average time (us) B 16B 64B 256B 1KB 4KB 16KB 64KB Message size (bytes) 256KB 1MB 4MB Performance of MPI allreduce operation OMPI trunk C Madrid OMPI trunk Java Madrid OMPI trunk C FG OMPI trunk Java FG Pure Java as in FastMPJ slower than Java interfacing to C version of MPI Average Time (us) B 2B 8B 32B 128B 512B 2KB 8KB Message Size (bytes) 32KB 128KB 512KB Performance of MPI send and receive on Infiniband and Ethernet Average Time (us) B 16B 64B 256B 1KB 4KB 16KB 64KB Message Size (bytes) 256KB 1MB 4MB Performance of MPI allreduce on Infiniband and Ethernet
16 Use case 28: Truthy: Information diffusion research from Twitter Data Building blocks: Yarn Parallel query evaluation using Hadoop MapReduce Related hashtag mining algorithm using Hadoop MapReduce: Meme daily frequency generation using MapReduce over index tables Parallel force directed graph layout algorithm using Twister (Harp) iterative MapReduce
17 Use case 28: Truthy: Information diffusion research from Twitter Data Two months data loading for varied cluster size Scalability of iterative graph layout algorithm on Twister Hadoop FS not indexed
18 Different Kmeans Implementation Total execution time vs. mapper number Pig Performance Total execution time (s) number of mappers Hadoop 100m,500 Hadoop 10m,5000 Hadoop 1m,50000 Harp 100m,500 Harp 10m,5000 Harp 1m,50000 Pig HD1 100m,500 Pig HD1 10m,5000 Pig HD1 1m,50000 Pig Yarn 100m,500 Pig Yarn 10m,5000 Pig Yarn 1m,50000
19 Lines of Code Pig Kmeans Hadoop Kmeans Pig IndexedHBase meme cooccurcount IndexedHBase meme cooccurcount Java ~ ~434 Pig Python / Bash ~ Total Lines
20 DACIDR for Gene Analysis (Use Case 19,20) Deterministic Annealing Clustering and Interpolative Dimension Reduction Method (DACIDR) Use Hadoop for pleasingly parallel applications, and Twister (replacing by Yarn) for iterative MapReduce applications Sequences Cluster Centers Add Existing data and find Phylogenetic Tree All Pair Sequence Alignment Pairwise Clustering Multidimensional Scaling Streaming Visualization Simplified Flow Chart of DACIDR
21 Summarize a million Fungi Sequences Spherical Phylogram Visualization RAxML result visualized in FigTree. Spherical Phylogram from new MDS method visualized in PlotViz
22 Lessons / Insights Integrate (don t compete) HPC with Commodity Big data (Google to Amazon to Enterprise data Analytics) i.e. improve Mahout; don t compete with it Use Hadoop plug ins rather than replacing Hadoop Enhanced Apache Big Data Stack HPC ABDS has 120 members please improve! HPC ABDS+ Integration areas include file systems, cluster resource management, file and object data management, inter process and thread communication, analytics libraries, Workflow monitoring
Pilot-Streaming: Design Considerations for a Stream Processing Framework for High- Performance Computing
Pilot-Streaming: Design Considerations for a Stream Processing Framework for High- Performance Computing Andre Luckow, Peter M. Kasson, Shantenu Jha STREAMING 2016, 03/23/2016 RADICAL, Rutgers, http://radical.rutgers.edu
INTERNATIONAL ADVANCED RESEARCH WORKSHOP ON HIGH PERFORMANCE COMPUTING
Returning to Java Grande: High Performance Architecture for Big Data INTERNATIONAL ADVANCED RESEARCH WORKSHOP ON HIGH PERFORMANCE COMPUTING From Clouds and Big Data to Exascale and Beyond Cetraro (Italy)
Twister4Azure: Data Analytics in the Cloud
Twister4Azure: Data Analytics in the Cloud Thilina Gunarathne, Xiaoming Gao and Judy Qiu, Indiana University Genome-scale data provided by next generation sequencing (NGS) has made it possible to identify
Cloud-based Analytics and Map Reduce
1 Cloud-based Analytics and Map Reduce Datasets Many technologies converging around Big Data theme Cloud Computing, NoSQL, Graph Analytics Biology is becoming increasingly data intensive Sequencing, imaging,
Enabling High performance Big Data platform with RDMA
Enabling High performance Big Data platform with RDMA Tong Liu HPC Advisory Council Oct 7 th, 2014 Shortcomings of Hadoop Administration tooling Performance Reliability SQL support Backup and recovery
Architectures for Big Data Analytics A database perspective
Architectures for Big Data Analytics A database perspective Fernando Velez Director of Product Management Enterprise Information Management, SAP June 2013 Outline Big Data Analytics Requirements Spectrum
Lecture 32 Big Data. 1. Big Data problem 2. Why the excitement about big data 3. What is MapReduce 4. What is Hadoop 5. Get started with Hadoop
Lecture 32 Big Data 1. Big Data problem 2. Why the excitement about big data 3. What is MapReduce 4. What is Hadoop 5. Get started with Hadoop 1 2 Big Data Problems Data explosion Data from users on social
Case Study : 3 different hadoop cluster deployments
Case Study : 3 different hadoop cluster deployments Lee moon soo [email protected] HDFS as a Storage Last 4 years, our HDFS clusters, stored Customer 1500 TB+ data safely served 375,000 TB+ data to customer
Monitis Project Proposals for AUA. September 2014, Yerevan, Armenia
Monitis Project Proposals for AUA September 2014, Yerevan, Armenia Distributed Log Collecting and Analysing Platform Project Specifications Category: Big Data and NoSQL Software Requirements: Apache Hadoop
INTEGRATING R AND HADOOP FOR BIG DATA ANALYSIS
INTEGRATING R AND HADOOP FOR BIG DATA ANALYSIS Bogdan Oancea "Nicolae Titulescu" University of Bucharest Raluca Mariana Dragoescu The Bucharest University of Economic Studies, BIG DATA The term big data
Hadoop. Bioinformatics Big Data
Hadoop Bioinformatics Big Data Paolo D Onorio De Meo Mattia D Antonio [email protected] [email protected] Big Data Too much information! Big Data Explosive data growth proliferation of data capture
Hadoop in the Enterprise
Hadoop in the Enterprise Modern Architecture with Hadoop 2 Jeff Markham Technical Director, APAC Hortonworks Hadoop Wave ONE: Web-scale Batch Apps relative % customers 2006 to 2012 Web-Scale Batch Applications
Hadoop and Map-Reduce. Swati Gore
Hadoop and Map-Reduce Swati Gore Contents Why Hadoop? Hadoop Overview Hadoop Architecture Working Description Fault Tolerance Limitations Why Map-Reduce not MPI Distributed sort Why Hadoop? Existing Data
CSE-E5430 Scalable Cloud Computing Lecture 2
CSE-E5430 Scalable Cloud Computing Lecture 2 Keijo Heljanko Department of Computer Science School of Science Aalto University [email protected] 14.9-2015 1/36 Google MapReduce A scalable batch processing
A Brief Introduction to Apache Tez
A Brief Introduction to Apache Tez Introduction It is a fact that data is basically the new currency of the modern business world. Companies that effectively maximize the value of their data (extract value
ESS event: Big Data in Official Statistics. Antonino Virgillito, Istat
ESS event: Big Data in Official Statistics Antonino Virgillito, Istat v erbi v is 1 About me Head of Unit Web and BI Technologies, IT Directorate of Istat Project manager and technical coordinator of Web
Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware
Open source software framework designed for storage and processing of large scale data on clusters of commodity hardware Created by Doug Cutting and Mike Carafella in 2005. Cutting named the program after
Data-Intensive Applications on HPC Using Hadoop, Spark and RADICAL-Cybertools
Data-Intensive Applications on HPC Using Hadoop, Spark and RADICAL-Cybertools Shantenu Jha, Andre Luckow, Ioannis Paraskevakos RADICAL, Rutgers, http://radical.rutgers.edu Agenda 1. Motivation and Background
How Companies are! Using Spark
How Companies are! Using Spark And where the Edge in Big Data will be Matei Zaharia History Decreasing storage costs have led to an explosion of big data Commodity cluster software, like Hadoop, has made
Chukwa, Hadoop subproject, 37, 131 Cloud enabled big data, 4 Codd s 12 rules, 1 Column-oriented databases, 18, 52 Compression pattern, 83 84
Index A Amazon Web Services (AWS), 50, 58 Analytics engine, 21 22 Apache Kafka, 38, 131 Apache S4, 38, 131 Apache Sqoop, 37, 131 Appliance pattern, 104 105 Application architecture, big data analytics
Hadoop 只 支 援 用 Java 開 發 嘛? Is Hadoop only support Java? 總 不 能 全 部 都 重 新 設 計 吧? 如 何 與 舊 系 統 相 容? Can Hadoop work with existing software?
Hadoop 只 支 援 用 Java 開 發 嘛? Is Hadoop only support Java? 總 不 能 全 部 都 重 新 設 計 吧? 如 何 與 舊 系 統 相 容? Can Hadoop work with existing software? 可 以 跟 資 料 庫 結 合 嘛? Can Hadoop work with Databases? 開 發 者 們 有 聽 到
Big Data. Lyle Ungar, University of Pennsylvania
Big Data Big data will become a key basis of competition, underpinning new waves of productivity growth, innovation, and consumer surplus. McKinsey Data Scientist: The Sexiest Job of the 21st Century -
CS555: Distributed Systems [Fall 2015] Dept. Of Computer Science, Colorado State University
CS 555: DISTRIBUTED SYSTEMS [SPARK] Shrideep Pallickara Computer Science Colorado State University Frequently asked questions from the previous class survey Streaming Significance of minimum delays? Interleaving
Challenges for Data Driven Systems
Challenges for Data Driven Systems Eiko Yoneki University of Cambridge Computer Laboratory Quick History of Data Management 4000 B C Manual recording From tablets to papyrus to paper A. Payberah 2014 2
Adapting scientific computing problems to cloud computing frameworks Ph.D. Thesis. Pelle Jakovits
Adapting scientific computing problems to cloud computing frameworks Ph.D. Thesis Pelle Jakovits Outline Problem statement State of the art Approach Solutions and contributions Current work Conclusions
Hadoop. MPDL-Frühstück 9. Dezember 2013 MPDL INTERN
Hadoop MPDL-Frühstück 9. Dezember 2013 MPDL INTERN Understanding Hadoop Understanding Hadoop What's Hadoop about? Apache Hadoop project (started 2008) downloadable open-source software library (current
Systems Engineering II. Pramod Bhatotia TU Dresden pramod.bhatotia@tu- dresden.de
Systems Engineering II Pramod Bhatotia TU Dresden pramod.bhatotia@tu- dresden.de About me! Since May 2015 2015 2012 Research Group Leader cfaed, TU Dresden PhD Student MPI- SWS Research Intern Microsoft
Introduction to Hadoop HDFS and Ecosystems. Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data
Introduction to Hadoop HDFS and Ecosystems ANSHUL MITTAL Slides credits: Cloudera Academic Partners Program & Prof. De Liu, MSBA 6330 Harvesting Big Data Topics The goal of this presentation is to give
Architecting for the next generation of Big Data Hortonworks HDP 2.0 on Red Hat Enterprise Linux 6 with OpenJDK 7
Architecting for the next generation of Big Data Hortonworks HDP 2.0 on Red Hat Enterprise Linux 6 with OpenJDK 7 Yan Fisher Senior Principal Product Marketing Manager, Red Hat Rohit Bakhshi Product Manager,
HPC data becomes Big Data. Peter Braam [email protected]
HPC data becomes Big Data Peter Braam [email protected] me 1983-2000 Academia Maths & Computer Science Entrepreneur with startups (5x) 4 startups sold Lustre emerged Held executive jobs with
Workshop on Hadoop with Big Data
Workshop on Hadoop with Big Data Hadoop? Apache Hadoop is an open source framework for distributed storage and processing of large sets of data on commodity hardware. Hadoop enables businesses to quickly
Convex Optimization for Big Data: Lecture 2: Frameworks for Big Data Analytics
Convex Optimization for Big Data: Lecture 2: Frameworks for Big Data Analytics Sabeur Aridhi Aalto University, Finland Sabeur Aridhi Frameworks for Big Data Analytics 1 / 59 Introduction Contents 1 Introduction
ANALYTICS CENTER LEARNING PROGRAM
Overview of Curriculum ANALYTICS CENTER LEARNING PROGRAM The following courses are offered by Analytics Center as part of its learning program: Course Duration Prerequisites 1- Math and Theory 101 - Fundamentals
You should have a working knowledge of the Microsoft Windows platform. A basic knowledge of programming is helpful but not required.
What is this course about? This course is an overview of Big Data tools and technologies. It establishes a strong working knowledge of the concepts, techniques, and products associated with Big Data. Attendees
Moving From Hadoop to Spark
+ Moving From Hadoop to Spark Sujee Maniyam Founder / Principal @ www.elephantscale.com [email protected] Bay Area ACM meetup (2015-02-23) + HI, Featured in Hadoop Weekly #109 + About Me : Sujee
MapReduce and Hadoop. Aaron Birkland Cornell Center for Advanced Computing. January 2012
MapReduce and Hadoop Aaron Birkland Cornell Center for Advanced Computing January 2012 Motivation Simple programming model for Big Data Distributed, parallel but hides this Established success at petabyte
Big Data and Apache Hadoop s MapReduce
Big Data and Apache Hadoop s MapReduce Michael Hahsler Computer Science and Engineering Southern Methodist University January 23, 2012 Michael Hahsler (SMU/CSE) Hadoop/MapReduce January 23, 2012 1 / 23
Scaling Out With Apache Spark. DTL Meeting 17-04-2015 Slides based on https://www.sics.se/~amir/files/download/dic/spark.pdf
Scaling Out With Apache Spark DTL Meeting 17-04-2015 Slides based on https://www.sics.se/~amir/files/download/dic/spark.pdf Your hosts Mathijs Kattenberg Technical consultant Jeroen Schot Technical consultant
A PERFORMANCE ANALYSIS of HADOOP CLUSTERS in OPENSTACK CLOUD and in REAL SYSTEM
A PERFORMANCE ANALYSIS of HADOOP CLUSTERS in OPENSTACK CLOUD and in REAL SYSTEM Ramesh Maharjan and Manoj Shakya Department of Computer Science and Engineering Dhulikhel, Kavre, Nepal [email protected],
Large-Scale Data Processing
Large-Scale Data Processing Eiko Yoneki [email protected] http://www.cl.cam.ac.uk/~ey204 Systems Research Group University of Cambridge Computer Laboratory 2010s: Big Data Why Big Data now? Increase
Hadoop Ecosystem B Y R A H I M A.
Hadoop Ecosystem B Y R A H I M A. History of Hadoop Hadoop was created by Doug Cutting, the creator of Apache Lucene, the widely used text search library. Hadoop has its origins in Apache Nutch, an open
Architectural patterns for building real time applications with Apache HBase. Andrew Purtell Committer and PMC, Apache HBase
Architectural patterns for building real time applications with Apache HBase Andrew Purtell Committer and PMC, Apache HBase Who am I? Distributed systems engineer Principal Architect in the Big Data Platform
MATLAB in Business Critical Applications Arvind Hosagrahara Principal Technical Consultant Arvind.Hosagrahara@mathworks.
MATLAB in Business Critical Applications Arvind Hosagrahara Principal Technical Consultant [email protected] 310-819-3970 2014 The MathWorks, Inc. 1 Outline Problem Statement The Big Picture
How To Scale Out Of A Nosql Database
Firebird meets NoSQL (Apache HBase) Case Study Firebird Conference 2011 Luxembourg 25.11.2011 26.11.2011 Thomas Steinmaurer DI +43 7236 3343 896 [email protected] www.scch.at Michael Zwick DI
HiBench Introduction. Carson Wang ([email protected]) Software & Services Group
HiBench Introduction Carson Wang ([email protected]) Agenda Background Workloads Configurations Benchmark Report Tuning Guide Background WHY Why we need big data benchmarking systems? WHAT What is
MapReduce Evaluator: User Guide
University of A Coruña Computer Architecture Group MapReduce Evaluator: User Guide Authors: Jorge Veiga, Roberto R. Expósito, Guillermo L. Taboada and Juan Touriño December 9, 2014 Contents 1 Overview
Jeffrey D. Ullman slides. MapReduce for data intensive computing
Jeffrey D. Ullman slides MapReduce for data intensive computing Single-node architecture CPU Machine Learning, Statistics Memory Classical Data Mining Disk Commodity Clusters Web data sets can be very
Scalable Cloud Computing Solutions for Next Generation Sequencing Data
Scalable Cloud Computing Solutions for Next Generation Sequencing Data Matti Niemenmaa 1, Aleksi Kallio 2, André Schumacher 1, Petri Klemelä 2, Eija Korpelainen 2, and Keijo Heljanko 1 1 Department of
BEYOND MAP REDUCE: THE NEXT GENERATION OF BIG DATA ANALYTICS
WHITE PAPER Abstract Co-Authors Brian Hellig ET International, Inc. [email protected] Stephen Turner ET International, Inc. [email protected] Rich Collier ET International, Inc. [email protected]
Information Processing, Big Data, and the Cloud
Information Processing, Big Data, and the Cloud James Horey Computational Sciences & Engineering Oak Ridge National Laboratory Fall Creek Falls 2010 Information Processing Systems Model Parameters Data-intensive
Introduction to Big Data! with Apache Spark" UC#BERKELEY#
Introduction to Big Data! with Apache Spark" UC#BERKELEY# This Lecture" The Big Data Problem" Hardware for Big Data" Distributing Work" Handling Failures and Slow Machines" Map Reduce and Complex Jobs"
HPC and Big Data. EPCC The University of Edinburgh. Adrian Jackson Technical Architect [email protected]
HPC and Big Data EPCC The University of Edinburgh Adrian Jackson Technical Architect [email protected] EPCC Facilities Technology Transfer European Projects HPC Research Visitor Programmes Training
CSE-E5430 Scalable Cloud Computing Lecture 11
CSE-E5430 Scalable Cloud Computing Lecture 11 Keijo Heljanko Department of Computer Science School of Science Aalto University [email protected] 30.11-2015 1/24 Distributed Coordination Systems Consensus
Intel HPC Distribution for Apache Hadoop* Software including Intel Enterprise Edition for Lustre* Software. SC13, November, 2013
Intel HPC Distribution for Apache Hadoop* Software including Intel Enterprise Edition for Lustre* Software SC13, November, 2013 Agenda Abstract Opportunity: HPC Adoption of Big Data Analytics on Apache
Using Data Mining and Machine Learning in Retail
Using Data Mining and Machine Learning in Retail Omeid Seide Senior Manager, Big Data Solutions Sears Holdings Bharat Prasad Big Data Solution Architect Sears Holdings Over a Century of Innovation A Fortune
Session 1: IT Infrastructure Security Vertica / Hadoop Integration and Analytic Capabilities for Federal Big Data Challenges
Session 1: IT Infrastructure Security Vertica / Hadoop Integration and Analytic Capabilities for Federal Big Data Challenges James Campbell Corporate Systems Engineer HP Vertica [email protected] Big
Hadoop Ecosystem Overview. CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook
Hadoop Ecosystem Overview CMSC 491 Hadoop-Based Distributed Computing Spring 2015 Adam Shook Agenda Introduce Hadoop projects to prepare you for your group work Intimate detail will be provided in future
How To Create A Data Visualization With Apache Spark And Zeppelin 2.5.3.5
Big Data Visualization using Apache Spark and Zeppelin Prajod Vettiyattil, Software Architect, Wipro Agenda Big Data and Ecosystem tools Apache Spark Apache Zeppelin Data Visualization Combining Spark
Unlocking the True Value of Hadoop with Open Data Science
Unlocking the True Value of Hadoop with Open Data Science Kristopher Overholt Solution Architect Big Data Tech 2016 MinneAnalytics June 7, 2016 Overview Overview of Open Data Science Python and the Big
Pla7orms for Big Data Management and Analysis. Michael J. Carey Informa(on Systems Group UCI CS Department
Pla7orms for Big Data Management and Analysis Michael J. Carey Informa(on Systems Group UCI CS Department Outline Big Data Pla6orm Space The Big Data Era Brief History of Data Pla6orms Dominant Pla6orms
Spark and the Big Data Library
Spark and the Big Data Library Reza Zadeh Thanks to Matei Zaharia Problem Data growing faster than processing speeds Only solution is to parallelize on large clusters» Wide use in both enterprises and
Map-Reduce for Machine Learning on Multicore
Map-Reduce for Machine Learning on Multicore Chu, et al. Problem The world is going multicore New computers - dual core to 12+-core Shift to more concurrent programming paradigms and languages Erlang,
TRAINING PROGRAM ON BIGDATA/HADOOP
Course: Training on Bigdata/Hadoop with Hands-on Course Duration / Dates / Time: 4 Days / 24th - 27th June 2015 / 9:30-17:30 Hrs Venue: Eagle Photonics Pvt Ltd First Floor, Plot No 31, Sector 19C, Vashi,
1. Introduction 2. A Cloud Defined
1. Introduction The importance of simulation is well established with large programs, especially in Europe, USA, Japan and China supporting it in a variety of academic and government initiatives. The requirements
Open source Google-style large scale data analysis with Hadoop
Open source Google-style large scale data analysis with Hadoop Ioannis Konstantinou Email: [email protected] Web: http://www.cslab.ntua.gr/~ikons Computing Systems Laboratory School of Electrical
Big Data in Test and Evaluation by Udaya Ranawake (HPCMP PETTT/Engility Corporation)
Big Data in Test and Evaluation by Udaya Ranawake (HPCMP PETTT/Engility Corporation) Approved for Public Release. Distribution Unlimited. Data Intensive Applications in T&E Win-T at ATC Automotive Data
Unified Big Data Analytics Pipeline. 连 城 [email protected]
Unified Big Data Analytics Pipeline 连 城 [email protected] What is A fast and general engine for large-scale data processing An open source implementation of Resilient Distributed Datasets (RDD) Has an
http://glennengstrand.info/analytics/fp
Functional Programming and Big Data by Glenn Engstrand (September 2014) http://glennengstrand.info/analytics/fp What is Functional Programming? It is a style of programming that emphasizes immutable state,
Big Data Analytics. with EMC Greenplum and Hadoop. Big Data Analytics. Ofir Manor Pre Sales Technical Architect EMC Greenplum
Big Data Analytics with EMC Greenplum and Hadoop Big Data Analytics with EMC Greenplum and Hadoop Ofir Manor Pre Sales Technical Architect EMC Greenplum 1 Big Data and the Data Warehouse Potential All
Big Data Course Highlights
Big Data Course Highlights The Big Data course will start with the basics of Linux which are required to get started with Big Data and then slowly progress from some of the basics of Hadoop/Big Data (like
Data Mining with Hadoop at TACC
Data Mining with Hadoop at TACC Weijia Xu Data Mining & Statistics Data Mining & Statistics Group Main activities Research and Development Developing new data mining and analysis solutions for practical
Lambda Architecture. Near Real-Time Big Data Analytics Using Hadoop. January 2015. Email: [email protected] Website: www.qburst.com
Lambda Architecture Near Real-Time Big Data Analytics Using Hadoop January 2015 Contents Overview... 3 Lambda Architecture: A Quick Introduction... 4 Batch Layer... 4 Serving Layer... 4 Speed Layer...
Accelerating and Simplifying Apache
Accelerating and Simplifying Apache Hadoop with Panasas ActiveStor White paper NOvember 2012 1.888.PANASAS www.panasas.com Executive Overview The technology requirements for big data vary significantly
Cray XC30 Hadoop Platform Jonathan (Bill) Sparks Howard Pritchard Martha Dumler
Cray XC30 Hadoop Platform Jonathan (Bill) Sparks Howard Pritchard Martha Dumler Safe Harbor Statement This presentation may contain forward-looking statements that are based on our current expectations.
I/O Considerations in Big Data Analytics
Library of Congress I/O Considerations in Big Data Analytics 26 September 2011 Marshall Presser Federal Field CTO EMC, Data Computing Division 1 Paradigms in Big Data Structured (relational) data Very
BIG DATA SOLUTION DATA SHEET
BIG DATA SOLUTION DATA SHEET Highlight. DATA SHEET HGrid247 BIG DATA SOLUTION Exploring your BIG DATA, get some deeper insight. It is possible! Another approach to access your BIG DATA with the latest
Mining Large Datasets: Case of Mining Graph Data in the Cloud
Mining Large Datasets: Case of Mining Graph Data in the Cloud Sabeur Aridhi PhD in Computer Science with Laurent d Orazio, Mondher Maddouri and Engelbert Mephu Nguifo 16/05/2014 Sabeur Aridhi Mining Large
Automating Big Data Benchmarking for Different Architectures with ALOJA
www.bsc.es Jan 2016 Automating Big Data Benchmarking for Different Architectures with ALOJA Nicolas Poggi, Postdoc Researcher Agenda 1. Intro on Hadoop performance 1. Current scenario and problematic 2.
Apache Flink Next-gen data analysis. Kostas Tzoumas [email protected] @kostas_tzoumas
Apache Flink Next-gen data analysis Kostas Tzoumas [email protected] @kostas_tzoumas What is Flink Project undergoing incubation in the Apache Software Foundation Originating from the Stratosphere research
Deploying Hadoop with Manager
Deploying Hadoop with Manager SUSE Big Data Made Easier Peter Linnell / Sales Engineer [email protected] Alejandro Bonilla / Sales Engineer [email protected] 2 Hadoop Core Components 3 Typical Hadoop Distribution
Unified Batch & Stream Processing Platform
Unified Batch & Stream Processing Platform Himanshu Bari Director Product Management Most Big Data Use Cases Are About Improving/Re-write EXISTING solutions To KNOWN problems Current Solutions Were Built
Final Project Proposal. CSCI.6500 Distributed Computing over the Internet
Final Project Proposal CSCI.6500 Distributed Computing over the Internet Qingling Wang 660795696 1. Purpose Implement an application layer on Hybrid Grid Cloud Infrastructure to automatically or at least
The Flink Big Data Analytics Platform. Marton Balassi, Gyula Fora" {mbalassi, gyfora}@apache.org
The Flink Big Data Analytics Platform Marton Balassi, Gyula Fora" {mbalassi, gyfora}@apache.org What is Apache Flink? Open Source Started in 2009 by the Berlin-based database research groups In the Apache
CIEL A universal execution engine for distributed data-flow computing
Reviewing: CIEL A universal execution engine for distributed data-flow computing Presented by Niko Stahl for R202 Outline 1. Motivation 2. Goals 3. Design 4. Fault Tolerance 5. Performance 6. Related Work
Storage Architectures for Big Data in the Cloud
Storage Architectures for Big Data in the Cloud Sam Fineberg HP Storage CT Office/ May 2013 Overview Introduction What is big data? Big Data I/O Hadoop/HDFS SAN Distributed FS Cloud Summary Research Areas
Data Analytics at NERSC. Joaquin Correa [email protected] NERSC Data and Analytics Services
Data Analytics at NERSC Joaquin Correa [email protected] NERSC Data and Analytics Services NERSC User Meeting August, 2015 Data analytics at NERSC Science Applications Climate, Cosmology, Kbase, Materials,
Outline. High Performance Computing (HPC) Big Data meets HPC. Case Studies: Some facts about Big Data Technologies HPC and Big Data converging
Outline High Performance Computing (HPC) Towards exascale computing: a brief history Challenges in the exascale era Big Data meets HPC Some facts about Big Data Technologies HPC and Big Data converging
A Performance Evaluation of Open Source Graph Databases. Robert McColl David Ediger Jason Poovey Dan Campbell David A. Bader
A Performance Evaluation of Open Source Graph Databases Robert McColl David Ediger Jason Poovey Dan Campbell David A. Bader Overview Motivation Options Evaluation Results Lessons Learned Moving Forward
A survey on platforms for big data analytics
Singh and Reddy Journal of Big Data 2014, 1:8 SURVEY PAPER Open Access A survey on platforms for big data analytics Dilpreet Singh and Chandan K Reddy * * Correspondence: [email protected] Department
Department of Computer Science University of Cyprus EPL646 Advanced Topics in Databases. Lecture 15
Department of Computer Science University of Cyprus EPL646 Advanced Topics in Databases Lecture 15 Big Data Management V (Big-data Analytics / Map-Reduce) Chapter 16 and 19: Abideboul et. Al. Demetris
BIG DATA TRENDS AND TECHNOLOGIES
BIG DATA TRENDS AND TECHNOLOGIES THE WORLD OF DATA IS CHANGING Cloud WHAT IS BIG DATA? Big data are datasets that grow so large that they become awkward to work with using onhand database management tools.
Data-intensive HPC: opportunities and challenges. Patrick Valduriez
Data-intensive HPC: opportunities and challenges Patrick Valduriez Big Data Landscape Multi-$billion market! Big data = Hadoop = MapReduce? No one-size-fits-all solution: SQL, NoSQL, MapReduce, No standard,
