Trading Forward in the Brazilian Electricity Market
|
|
|
- Augusta Dawson
- 10 years ago
- Views:
Transcription
1 Trad Forward te Brazla Eletrty Maret Paulo Couto Adre Ross de Olvera Te paper odels te terato betwee a otrat ad pot aret wose features are borrowed fro te Brazla eletrty aret. Te spot aret s odeled as a rado eas tat yelds spot pres of eletrty. Te otrat aret s oprsed of supplers, osuers, ad areters. Supplers ad osuers are pre taers, wle areters ave aret power. It s sow tat, we te uber of osuers reases te otrat aret, t s possble for te pre of te eery tey buy forward to derease, eve f tere s oly a oopolst areter te aret. Moreover, te quatty of eery traded te otrat aret approaes te total aout of eery avalable te syste (et of eery sold to aptve osuers) we te uber of areters reases wtout boud. Feld of Resear: Eoos Keywords: Brazla eletrty setor, forward arets, rs averso, areters, Courot equlbru JEL Classfato Nubers: L13, L94 G10, C61, C7 Paulo Couto Afflato: Aout Departet, Uversdade de Brasíla, Brazl. Address: Uversdade de Brasla, Capus Dary Rbero, FACE, Departaeto de Cêas Cotábes e Atuaras - CCA, Brasla D.F , Brazl. E-al: [email protected] Adre Ross de Olvera Afflato: Fae ad Eoos Departet, Woodbury Sool of Busess, Uta Valley Uversty. Address: 800 Uversty Parway, Woodbury Busess Sool, Uta valley Uversty, Ore, UT E-al: [email protected] 1
2 1. Itroduto Trad Forward te Brazla Eletrty Maret I ts paper we vestate te terato betwee forward ad spot arets a odel based o te Brazla eletrty aret. Altou t draws ts a features fro te Brazla ase, our odel s of terest ad of tself, se t brs ew eleets to te aalyss of otrat arets, partular te role played by areters. Te Brazla eletrty setor uderwet two ajor overauls te last two deades. Te frst started 1995, we Law # 8.987, ow as te Coessos Law, was passed by te Brazla Coress. By establs te leal fraewor to reulate te oesso of publ serves, t usered a ew era te eletrty setor w several dstrbuto ad a few eerato opaes were prvatzed, a reulator ad yste operator were reated, ad a wolesale aret was strutured. Ts ew fraewor was desed to proote opetto eerato ad oeralzato, ad provde ope aess to te trassso ad dstrbuto rds, wle eep dstrbuto ad trassso uder (etve) reulato. Te seod overaul too plae te wae of a eery rss tat fored te federal overet to tae drast easures to urtal osupto, ad te advet of a ew overet, 003, tat ae to power wt a prora all for refor of te eletrty setor. Its aeda ae to fruto wt te troduto of te so-alled New Eletrty Setor Model, 004. Ts ew odel aed several aspets of te oral des of te Brazla eletrty aret, but t ept ope a otrat aret were free (.e. ot aptve) osuers ad eerators ould trade eletrty forward. Ts opeed te door for areters, aets wo purase ad resell eery ad/or elp lose deals betwee buyers ad sellers, to eter te aret. I Brazl, tese areters a be eter depedet or afflated wt eerators ad/or dstrbutors. Te presee of areters s ot a exlusve feature of te Brazla eletrty aret. Several oter arets aroud te world, le te PJM ad te Texas arets te Uted States, also ave areters. Tere s o sortae of papers te lterature tat study te terfae betwee spot ad otrat arets. Soe of te are teoretal papers terested te eeral features of ts terato. Oters are applatos to dfferet produt arets le tat of eletrty. We wll revew ts lterature te ext seto. Our paper dffers fro te reet lterature two a respets. Frst, t does ot allow supplers (eerators) to set quattes or subt supply sedules te spot aret. Tey atually do t ave ay otrol over te spot pre. Seod, bot supplers ad osuers of eletrty beave opettvely te otrat aret. Ts s otrast wt te reet lterature o futures ad forward arets, w aowledes tat ay oodtes traded o tose arets are ot produed opettvely, but several eletrty arets te uber of supplers ad osuers s atually relatvely lare. I te Brazla aret, for stae, tere are urretly 579 free osuers ad 495 eerators. I our odel, all te aret power te otrat aret belos to te areters, aoter ovelty trodued by our paper. Te paper s orazed as follows. Seto provdes a bref lterature revew, wle seto 3 desrbes te a features of te Brazla eletrty aret. Seto 4 develops te bas fraewor of aalyss ad presets te a fds. It s dvded to two sub-setos, oe tat vestates te ase of a oopolst areter, ad te oter osders te ase of several
3 areters play a Courot ae. Seto 5 oludes ad te Appedx presets te a proofs.. Lterature Revew Te seal result te teoretal lterature about te terato betwee spot ad forward arets s Allaz ad Vla [1993]. Tey develop a eeral odel (w apples to several stuatos, ot oly eery arets) to sow tat forward arets a eere eve te absee of uertaty. Ter a odel s a two-perod ae were (duopoly) produers frst buy or sell forward (bd ad observable) otrats ad te, te seod perod, play a Courot ae quattes pot aret. A ey assupto of ter odel s perfet forest, w etals o arbtrae, tat s, te forward pre s equal to te pre tat wll obta te spot aret. Tey sow frst tat produers ave stro etves to sell forward part of ter produto, for we oe of te sueeds be te oly produer to trade forward, e reatly beefts fro do so. Trad o te forward aret, owever, s a prsoers dlea for te produers, se bot ed up worse off we tey trade forward. Tey also sow tat Courot spot arets wt forward arets are effet te lt, as te uber of trad perods oes to fty. Several later papers ae te assuptos of te odel used by Allaz ad Vla [1993] ad sow tat ter a oluso tat forward arets are soal desrable eve te absee of uertaty ay ot old. Mae ad Salaé [004], for stae, sow tat a odel wt pre-sett duopolsts wt dfferetated produts, forward trad results produers buy forward ter ow produto, so tat equlbru pres are reased opared to te ase wtout forward trad. Gree ad Le Coq [010] try to aswer a dfferet questo, aely ow te let of otrats affets te possblty of olluso a repeated pre-sett ae. Tey olude tat frs a always sustoe ollusve pre above aral ost f tey sell te rt uber of otrats, watever ter dsout fator. As te durato of otrats reases, owever, olluso beoes ore dffult to susta. Tere s also a lare u of te lterature tat fouses o te eletrty setor. Te seal paper ts are Gree ad Newbery [199], te frst oe to apply te oept of supply futo equlbru developed by Kleperer ad Meyer [1989] to eletrty arets. I ter odel, eerators subt upply sedule of pres for eerato ad reeve te aretlear pre, w vares wt dead. Tey sow tat te Nas equlbru supply sedules yelds a arup o aral ost ad substatal deadwet losses, ad use ter fds to expla te early outoes observed te Brts eletrty spot aret. Powell [1993] odels te otrat aret Brta, were faal otrats ow as otrats for dfferees (CfDs) are traded. Dead for eletrty oes ostly fro dstrbuto opaes wt ea-varae utlty. Geerators are pre setters te otrat aret ad quatty setters te spot aret. Hs a olusos are te follow: We eerators are o-ooperatve bot arets, te opettve result (aral ost pr ad otrat pre equal to expeted spot pre) ay eere; we eerators ollude bot arets, spot pres are above aral osts, future pres are above expeted spot pres, ad ed s oly partal; we eerators ollude oly te otrat aret, ed ay be lower stll (we rs averso s suffetly low). Oter early otrbutos to te study of te UK eletrty aret are vo der Fer ad Harbord [1993] ad Wolfra [1998]. 3
4 Gree [1999] s aoter portat referee ts lterature. He odels te eletrty aret te UK as a two-stae ae of pot aret ad a ed otrat (CfDs) aret, just le Powell [1993]. Geerators stratees te spot aret are dfferet, owever. Tey sultaeously subt supply futos 1 ad te Pool (aret operator) osders bds ased order. Te otrat pre s detered by a arbtrae odto, w states tat t ust equal te expeted spot pre, ve te uber of otrats sold. Te a olusos of te paper are: (a) A fr wt Bertrad ojetures wll over all of ts expeted output te otrat aret ad wll sell at aral osts bot arets; (b) A fr wt Courot ojetures wll sell o otrats equlbru ( te lear odel ase); ore eerally, a rs-eutral fr wll ot wat to use te otrat aret uless ts wll affet ts rvals stratees; () Geerators ay over ost of ter output te otrat aret ad stll rase pres above ter aral osts; (d) If buyers are rs averse, te otrat pre ay exeed te expeted spot pre, reas te eerators etve to sell te otrat aret. More reet otrbutos to te lterature are Busell [007] (US aret), Carreta ad Esposa [010] (Spas aret), ad Adlov [010]. Te lterature o te wors of te Brazla eletrty aret s ostly Portuuese ad does t o u beyod provd aouts of te storal evoluto of te eletrty setor ad desrb te urret syste. Exeptos are Dutra ad Meezes [005], wo study te propertes ad outoes of te autos arred out te reulated part of te Brazla otrat aret, ad Wola [008], wo presets a proposal for sort-ter pre deterato te wolesale aret. 3. Te Brazla eletrty aret Oe of te a features of te New Eletrty Setor Model, trodued 004, s te exstee of two separate eery trad evroets. I te frst oe, aed te Reulated Cotrat Evroet (RCE), eery s sold by eletr utltes, depedet power produers, self-eerators ad power areters, ad te oly buyers are dstrbuto opaes, wo are requred to otrat ter etre foreast dead for aptve osuers. Cotrats are autoed off over te wt delvery dates of oe, tree, ad fve years after te date of te auto, ad separate autos for ew ad exst eletrty 3. Cotrats for ew eletrty are loer (durato of ore ta 15 years) ta tose for exst eletrty (et years). Tere are also aual adjustet autos were dstrbuto opaes a buy addtoal eery we ter foreasts are off te ar. Mareters are oly allowed to partpate tese adjustet autos te reulated evroet. Te seod trad evroet s alled te Free Cotrat Evroet (FCE), ad brs toeter eletr utltes, depedet power produers, self-eerators, areters, porters, exporters, ad free osuers (tose tat do ot eed to buy power fro dstrbuto opaes, typally dustral ad oeral frs). Buyers ad sellers are free to eter blateral otrats ad eotate pres, quattes ad delvery dates ad odtos. Mareters 1 Gree (1999) wors wt lear supply futos ost of te te. Abete de Cotrataão Reulada ad Abete de Cotrataão Lvre, respetvely, Portuuese. 3 New eletrty refers to power to be eerated by plats yet to be bult, ad exst eletrty refers to power eerated by exst plats. 4
5 a be eter depedet or afflated wt eerators ad/or dstrbutors. Tey ay eter purase ad resell eery or oly elp lose deals betwee buyers ad sellers. Te FCE, also ow as te free aret Brazla eletrty setor parlae, as bee row steadly te past few years. It ossted of aroud 1,100 free ad speal 4 osuers 011, w aouted for approxately 8% of total osupto te Brazla eletrty syste (ABRACEEL [011]). Dfferees betwee te eery otrated ad te eery effetvely produed or osued by aret partpats are lqudated te spot aret at te so-alled Lqudato of Dfferees Pre. I otrast wt oter spot arets aroud te world, o sort-ter eery trad taes plae te Brazla aret. It s purely a eas for ultlateral lear of eery surpluses or defts. Geerators, partular, do ot dede ow u eery to produe. Tat s detered by te syste operator based o a dya prora odel explaed below. Te spot pre s oputed weely (by subaret) ad s based o te aral operatoal ost of te syste, wt lower ad upper bouds set by te reulator. Se te Brazlyste s prepoderatly ydroeletr, te spot pre s oputed by toast dya prora alort tat sees to fd te optal balae betwee us water today ad stor t for future use. To use as u water as possble today to produe eletrty s te best sort ter soluto, but tat would rease te lelood of eletrty sortfalls te future. O te oter ad, to oserve water today by eep reservors full s te ost relable soluto, but t requres er teral eerato ad, tus, er eletrty osts ad pres. 4. Model ad fds I ts seto, we are terested vestat te pat of power areters a eletrty aret wt te aratersts of te Brazla aret. I order to do tat, we eed to odel two separate but terled arets, te otrat ad te spot aret. I addto, we eed to tae to aout te fat tat te otrat aret s atually dvded to two subarets, a reulated (te RCE) ad a free aret (te FCE). Let s start wt te otrat aret. Free osuers do ot buy te reulated aret, so we do t eed to odel ay terato betwee tat ad te free aret as far as dead s oered. As for te supply sde, we ae te assupto tat eerators sell bot (sub) arets, frst te reulated ad te te free aret. We a desos about ow u to sell te latter, tey tae ter otets te reulated aret as ve. Eve tou t s ot etrely realst, ts assupto aes sese f we tae to aout te fat tat te Brazla aret eerators subt bds autos arred out wt te RCE, ad eter lo ter otrats wt dstrbuto opaes f ter bds are suessful. We ted to vestate te possble opportutes for strate beavor avalable to supplers as a result of ter presee bot arets future wor. Te spot aret 5 s odeled as a eas tat yelds a rado spot pre. Ts pre s tur depedet o te dead for eletrty foreast by te syste operator. Altou ot a perfet represetato of realty, ts way of odel te spot aret bears out te a aratersts of te alulato of te spot pre te Brazla ydroeletr-doated 4 Speal osuers are tose ettled to buy eery fro etvzed soures (wd, sall ydroeletr plats, boass ad solar). 5 Eve tou teally t s ot a aret, we wll otue to use ts ter. 5
6 syste. I addto to te foreast dead, puts to te alort used by te Brazlyste operator to opute te spot pre are stoast varables su as te level of water reservors, preptato, evaporato, ad oter uses of water (rrato, water supply et.) 6. I wat follows, we frst study te ase were tere s le areter preset te otrat aret, ad te 4.1 Cotrat aret wt oe areter Tere are two perods our odel. I perod 0, a forward otrat aret wt eletrty supplers (dexed by ), osuers (dexed by ), ad oe areter opes. Te syste operator publly aoues te foreast dead to be used te alulato of te spot pre perod 1 7, ad te areter buys forward otrats fro supplers ad sells te to osuers at a preu. Te spot aret opes perod 1, we dfferees betwee observed ad otrated quattes of eletrty are settled at te spot pre. Forward otrats are also settled perod 1. As etoed above, te spot aret s a rado eas tat yelds pot pre p. We odel te spot pre as a rado varable e p a - bq e, (1) were e Q s te foreast dead ad e s a orally dstrbuted rado varable wt ea ad varae s. Bot supplers ad osuers are rs averse ad ave eatve expoetal - a utlty futos ve by u( p) - e p, were p s proft. Te proft futo of osuer s ve by were ( ) ( ) ( ) p r f R - p R - y - q y - f R, () q s te pre of a ut of otrated eletrty as quoted by te areter to te osuer, r s te ve retal pre of ts produt, te osuer to produe ( ) R s te atual aout of eletrty used by f R uts of ts produt, f s ts produto futo, s ts ostat aral (ad averae) produto ost, ad y s te quatty t buys forward. Reveue () s equal to te output te osuer produes fro a volue R of eletrty (reall tat a free osuer te forward aret s a produer ts produt aret) tes te retal pre of ts produt. We oralze te aral produto ost to zero, ad so te ost part of osuer s proft ludes oly te ost of buy eery te spot aret ad te ost of buy t te otrat aret. Note tat te quatty t buys te spot aret s te dfferee betwee ow u eletrty t atually osues ad ow u t buys forward. Se te osuer s utlty futo as a eatve expoetal for, ts axzato proble a be expressed ters of te ertaty equvalet easure: 6 For a detaled exposto of te stoast dual dya prora based alorts used by te Brazla syste operator, see Maera et al. [008]. 7 A alteratve but equvalet assupto would be tat te dead for eletrty foreast by aret aets (supplers, osuers, ad areters) odes wt tat used by te syste operator te alort tat deteres te spot pre. 6
7 ax E a - (3) ( p ) V ar ( p ) s were ts oeffet of rs averso. Before we a opute te expeted value ad te varae of osuer s proft, we eed to uderstad ow t fors ts expetatos about ts sales te produt aret. It would be pratal to odel ea osuer s produt aret, so we assue t a perfetly foreast ow u of ts produt t wll be produ ad sell perod 1. Hee R s ve 8, ad ( p ) ( )- ( - ) - ( ) ( ( ) ) ( ) p - ( - ) - - s E r f R p R y q y V ar Var r f R p R y q y R y e were p a - bq s te expeted value of te spot pre. Te soluto to proble (3) a be easly alulated: y p q a σ R R p q a σ a σ A B q, (5) p 1 were A R ad B. Note tat A > 0 ad B > 0. Te suppler s a pre taer bot te spot ad otrat arets. Aordly, ts proft futo s ve by: ( ) were y s te quatty of output sold forward, quoted by te areter to te suppler, (4) p p F - y q y - v F, (6) q s te ut pre of otrated eletrty F s te suppler s atual eletrty output et of ts v s ts ostat aral (ad averae) ost. sales te reulated aret, ad I te forulato above, te suppler eeds to ow ow u t wll atually be requred to produe by te syste operator perod 1 order to fure out te aout of eery to sell forward. We ae te splfy assupto tat supplers are syetr ad so ea wll produe a quatty of eletrty equal to te foreast dead dvded by te uber of supplers. e Tus ( ) F Q - F for all, were R R F s te eletrty te suppler sold te reulated aret. Moreover, we a, wtout loss of eeralty, set aral osts to zero. Note tat, ve te defto of F, we ave F Q e 1 1 R ( ) F Q e R F, ad so F R. Te suppler s proble a ow be expressed ters of te ertaty equvalet easure: a ( ) ( ( ) ) ax p F - y q y - Var p F - y q y, (7) 8 A equvalet assupto would be tat e R as ea R ad varae
8 were te suppler s oeffet of rs averso. Te soluto to ts proble s y q p a σ F F p a σ q a σ C D q, (8) p 1 were C F - ad D. It a be easly see tat D > 0. Te areter s a oopolst te otrat aret. It quotes ell pre to osuers ad a buy pre to supplers. It s rs eutral ad tus wats to axze ts profts, ve by te spread d q - q tes te quatty traded y. I our odel, all trades o trou areters, ad so y y s y. Se quatty deaded s equal to quatty suppled te 1 1 otrat aret, we ave 1 1 B B s a ad F 1 1 -, were A A R p 1, σ a A Bq C Dq å å, C å C F - å, D å D å, å F. 1 p Te areter solves te follow axzato proble: ax( q - q ) y s. t. q - q ³ 0, s a s a 1 1 (9) R 1 å R, Te proposto below follows fro te soluto to (9). Te proof a be foud te Appedx. Proposto 1.1: Te equlbru quattes ad pres a forward aret were (a) supplers ad osuers are pre taers, (b) te areter as oopoly power, () supplers ave te sae oeffet of rs averso, ad (d) osuers ave te sae oeffet of rs averso, are te follow: æ ö æ ö q p R, q p F -, è ø è ø æ R s öæa a ö R F d, y R - ad y F -, è øè ø (10) 1 s s were a a " 1, K, ad a a 1,, " K. Upo speto, we a edately see tat te forward pre of eery sold (by supplers) s lower ta te expeted spot pre, wereas te pre of eery bout (by 8
9 osuers) s er ta te expeted spot pre. Aordly, supplers sell forward less ta ter (et) produto ad osuers buy forward less ta ter osupto of eletrty. Rs-averse aets wat to ede aast rs. I our odel, tey do tat te forward aret, ad ay fator tat reases te rs (of be exposed to te spot aret) or aes te aet ore rs-averse reases ts dead for ed, affet te forward pre aordly. Terefore te follow results sould oe as o surprse: () Te forward pre pad by (to) a osuer (suppler) s er (lower) te ore rs averse t s. Ts aes sese beause a ore rs-averse aet asss ore value to less exposure to te spot aret. () Te forward pre pad by (to) a osuer (suppler) s er (lower) te larer te varae of te spot pre, se ts eas ore rs. () Te forward pre pad by (to) a osuer (suppler) reases (dereases) wt total atual osupto (produto) for a fxed uber of osuers (supplers). We averae osupto (produto) s er, ea osuer (suppler) dvdually as to trade ore eery te aret, ad ts reases ts rs of exposure. A ore terest result a be obtaed by lett, te uber of osuers, rease wle total dead for eletrty does ot ae. Ts orrespods to tuato were soe aptve osuers rate fro te reulated aret to te (free) otrat aret. Se does t ae, ad, by defto, F R, te pre of eery sold forward dereases after te rato taes plae. O te oter ad, te beavor of te pre of eery bout forward depeds o wat appes to te rato R. If t s larer after te rato, te q reases. If t s lower, dereases. Te latter s urprs result, se te areter as oopoly power te otrat aret. Te explaato s tat se averae osupto dereases, te averae osuer s exposed to less spot pre rs. As a osequee, te elastty of dead for otrats reases, for rs sar beoes less portat to te averae osuer. Let s ow tur to te areter. Frst ote tat spread d s strtly postve, ad, as expeted, reases wt te deree of rs averso of supplers, wt tat of osuers, ad wt te varae of te spot pre. Moreover, se alf of te syste s (et) eery s traded te otrat aret 9, te areter s proft s equal to æ R s öæa a öær ö æ s öæa a ö p d y R d 4. We tere s rato to te free è øè øè è øè ø aret, wat appes to ts proft depeds o te beavor of averae osupto. Te ext seto dsusses a odel were tere s ore ta oe areter. q 9 æ Te frst way to see ts s: F ö F F y º y F - F è ø æ s R ö R R F y º å y å R - R è å å. Aoter way to see t s: 9
10 4. Cotrat aret wt ore ta oe areter Aord to Proposto 1.1, te oopolst areter obtas trtly postve spread ad, osequetly, aes postve proft trou ts operatos te forward aret. Ts sould ete oter frs to eter te aret as areters. Te stuato were tere are ay areters s te fous of ts seto. Tere are ow H detal areters ad tey play a Courot ae. Mareter s proft futo s ( ) p q - q y, were Mareter as to solve te follow proble, were y å y : ax y ( - ) y s te quatty of eery traded by areter. q q y s. t. y A - Bq C Dq H 1 (11) Ts proble s equvalet to æa - y y - C ö ax - y B D è ø were te ostrat as already bee plued to te objetve futo. (1) Proposto.1: Te equlbru quattes ad pres a forward aret were (a) eerators ad supplers are pre taers, (b) tere are ay areters wo play a Courot ae, () all eerators ave te sae oeffet of rs averso ad (d) all supplers ave te sae oeffet of rs averso, are ve by: æ öæ R ö æ öæ F ö q p, q p -, H 1 H 1 è ø è è ø è æ s öæa a ö r s R d F, y R, H 1 - (13) è øè ( H 1) F F æ H ö y F -, y ad y F ( H 1) H 1 H 1 è As far as ow tey deped o derees of rs averso ad varaes s oered, pres ad quattes bout ad sold forward ave slar propertes to tose tey featured te oopolst aret ase, so we wll ot oet o te. As a atter of fat, te results of Proposto.1 bol dow to tose of Proposto 1.1 we H 1. Te total aout of eletrty traded trou forward otrats s aa less ta te (et) eery avalable, but o loer exatly equal to alf of t. We tur our atteto to te effets of a larer uber of areters o te equlbru values of te varables. Frst, t s easy to see tat te pre of eery bout forward dereases wt te uber of areters. Tat s exatly wat a Courot odel sould yeld: Te ore areters tere are, te stroer te opetto betwee te, ad ts drves dow te pre tey are osuers. I te lt, tey a are o ore ta te expeted spot pre. 10
11 Aaloously, te pre of eery sold forward reases wt te uber of areters, aa as a osequee of te eaed opetto betwee areters. I te lt, te expeted spot pre s aeved. It oes as o surprse tat te spread ared by areters oes to zero as te uber of areters reases wtout boud. We a also see edately upo speto of te forulas for y ad y tat, as te uber of areters reases, te eery sold forward by uppler approaes ts (et) produto, wle te eery bout forward by a osuer approaes ts atual osupto. Ts s a trval osequee of te fat tat, se te pre pad by osuers dereases ad te pre reeved by supplers reases wt te uber of areters, eerators ad supplers are faed wt stroer etves to ede ter postos te otrat aret. Fally, we sould eto tat, as te uber of areters reases, te portfolos eld by dvdual areters sr sze ad te total aout of eery traded te otrat aret oves toward te avalable (et) eery te syste. Ts was expeted, se bot osuers ad supplers are forward trad alost all te eery tey eed or ave, respetvely. Ts dates tat te role played by te spot aret teds to ds due to reas opetto betwee areters. 5. Colusos I ts paper, we odeled te terato betwee areters, supplers, ad osuers a eletrty forward aret we tere are o bds allowed te spot aret. Ts s essetally ow te Brazla eletrty aret s set up, wt te spot pre be oe of te outputs of a dya prora alort wose objetve s to fd te optal balae betwee us water today ad stor t for future use. We frst obta results tat are stadard te lterature. Forward pres pad by osuers are reas ter deree of rs averso ad te varae of te spot pre, wle pres supplers sell ter eletrty forward for derease wt tose sae dators. We also sow tat a oopolst areter wll be able to are pres tat yeld a postve spread, ad tat t reases wt te rs averso of supplers ad osuers, as well as wt te varae of te spot pre. Oe of our ost portat otrbutos oes fro te aalyss of wat appes we te uber of osuers te otrat aret reases, w our odel orrespods to a searo were aptve osuers rate fro te reulated aret to te otrat (free) aret ad tere s o ae te total dead for eletrty. We pot out tat oe of te osequees s tat te pre of eery sold forward dereases, w, oter ts be equal, urts supplers. As for te effet o te pre of eery bout forward, t depeds o te beavor of averae osupto. If averae osupto s larer after te rato, te te pre osuers pay reases. If averae osupto s lower, te t dereases. Te seod possblty s a o-stadard result, se te areter as oopoly power te otrat aret. To uderstad t, ote tat we averae osupto dereases te averae osuer s exposed to less spot pre rs. Ts eas tat rs sar beoes less portat to, ad so areters fae reased opetto fro te spot aret, w dlutes ter aret power. Ts s sue tat, despte ts portae to ay eletrty arets, s ot addressed te lterature. For stae, Gree [1999], Allaz ad Vla [1993] ad Powell [1993] all odel te eerat setor as a duopoly. As for te dead sde of te otrat aret, Gree [1999] 11
12 assues buyers detere te aret-lear pre, Powell [1993] assues tey set quattes, ad Allaz ad Vla [1993] odels te as speulators. Aoter portat otrbuto of our paper s to sow tat te total aout of eery traded te otrat aret approaes te syste s avalable eery (et of reulated trades) as te uber of areters reases. Ts eas tat spot arets ay beoe less portat we tere s reased opetto betwee areters te otrat aret, ad s soet eletrty reulators sould ertaly reo wt. Fally, we also sow tat te pre of eery bout forward dereases wt te uber of areters. Te ore areters tere are, te stroer te opetto betwee te, ad ts drves dow te pre tey are osuers. I te lt, tey a are o ore ta te expeted spot pre. Aaloously, te pre of eery sold forward reases wt te uber of areters, ad equals te spot pre te lt. Tere are ay ways w our odel a be proved. We loo forward to te opportuty of vestat ssues su as te strate terato betwee free ad reulated (were te eletrty deaded by aptve osuers s traded) otrat arets, pre opetto betwee areters, ad oters. Appedx Proof of Proposto 1.1: Se A Bq C Dq -, we a rewrte te proble (9) as æa - C D ö ax - q - q C Dq B B è s. t. q - q ³ 0 ( ) (14) We wll frst solve te uostraed proble ad te sow tat te ostrat s satsfed at te optu. But frst let s sow tat te objetve futo s oave. Let æ A - C D ö ( A - C ) C T ( q ) º - q - q ( C Dq ) B B è ø B ( A - C ) D DC D q - q - ( q ) - Cq - D( q ), B B B Se D > 0, B > 0, we ave - q B B B T - D - D < 0. ( q ) B T ( A C ) D DC D - - q - C - Dq 1
13 Tus te frst order odto s bot eessary ad suffet for a axu. Te frst order odto for ts proble s ve by ( A - C ) D DC D - - q - C - Dq 0 B B B D AD - DC - BC Þ q Dq B B Ts equato a be solved to obta ad so A D - DC - BC A D - C ( D B ) q, (15) æ D ö D( D B ) B D B è A - C D æa D - C ( D B ) ö A - C A D - C ( D B ) q - - B B D( D B ) è B B( D B ) ( A - C )( D B ) - A D C ( D B ) A D AB - BC B( D B ) B( D B ) AD B( A - C ) B( D B ) Te odto q q s satsfed f A D - C ( D B ) A D B( A - C ) D( D B ) B( D B ) Se B > 0 ad D > 0, ts s equvalet to [ A D - C ( D B )] B [ A D B( A - C )] D Û - - < - A BD BCD CB A D A BD BCD A BD BCD A D CB Û > Now let s use te splfy assuptos tat supplers ave te sae oeffet of rs averso,.e. a a " 1, K,, ad tat osuers also ave te sae oeffet of rs p averso,.e. a a " 1, K,. Te A R, B, p C F -, D, ad so 0, (16) 13
14 æ p öæ öæ ö æ p öæ öæ ö - è øè øè ø è øè øè a s ø A BD CBD A D CB R F æ öæ ö æ öæ ö p p R F - è øè ø è øè a s ø ( R F æ öæ ö ép p ùæ öæ ö ) - a a a a a a è s øè s ø ê s s ú s ë û è øè s ø æ p öæ ö æ p öæ ö R F - è øè ø è øè a s ø æ ( R F) ö æ ö æ p öæ öæ ö a a è s ø è s ø è øè øè a s ø æp öæ öæ ö æ ö æp öæ ö - R è øè øè ø è ø è øè a s ø æ p F ö æ öæ ö - a è s ø èa s øè a s ø æ öæ ö æ ö æ ö ( R F) R F > 0 è øè ø è ø è ø w proves tat te restrto s satsfed at te optu. Let s o ba to odto (15). It a be rewrtte as q æ p öæ ö æ p öæ ö R - F - è øè ø è øè ø æ öæ ö è øè ø R p F F p p - - a a a a a æ ö æ ö è ø è ø ( R - F ) F p p - a a ( s ) ( a ) ( s ) æ öæ ö è øè ø ( R - F) æ ö p F æ ö - è ø è ø æ öæ ö æ öæ ö è øè ø ( s ) ( ) ( s ) ( s ) è øè ø 14
15 ( ) æ R - F ö p - F æ ö è ø è ø Slarly, (16) a be expressed as q Se R to (5) to et: (17) æ p öæ ö æ öæ p p ö R R - F è øè è øè æ öæ ö è øè R p ( R - F) p p a a ( s ) ( a ) ( s ) a a ( s ) æ ö æ ö è è æ ö p æ ö R ( R - F) è è ø æ öæ ö æ öæ ö è øè è øè æ ö R - F p R è æ ö è ø (18) F, we a wrte Slarly, plu (17) to (8) to obta a q p R æ s ö è ad q p - F æ ö è ø. Now plu (18) p æ 1 öé æa s öù y R - êp R è ø ê ê ë è øú û p p R R - - R R - p æ 1 öé æa s öù y F - êp - F è ø ê ê ë è øú û p p F F - - F F - 15
16 Fally, te spread a be alulated as æ ö æ ö d q - q p R p F - è ø è ø æ s öæra Fa ö è øè ø w, ve tat R F, bols dow to d æ öæ ö æ öæ ö R s a a F s a a è øè ø è øè ø. Proof of Proposto.1: Proble (1) a be rewrtte as æa D BC ( D B ) y ö ax - y y BD è Te frst order odto for ts proble s: ( D B ) AD BC - ( D B ) y - y 0 BD BD Þ - ( D B ) y A D BC - ( D B ) y - ( D B ) y 0 ( ) Þ y ( D B ) A D BC - ( D B ) y y A D BC j ¹ Þ y - ( D B ) j j ¹ å j j ¹ j å å (19) (0) Se te areters are syetr, y y ( H - 1) y ad å y j H H j ¹. Terefore A D BC ( H - 1) y y - ( D B ) H H( AD BC ) H( H - 1) y Þ y - ( D B ) H ( H - 1) H( A D BC ) Þ y y ( D B ) éh ( AD BC ) ùé ù H( AD BC ) Þ y úê ê ( D B ) úêh 1 ú ë ûë û ( H 1)( D B ) AD BC ad y ( H 1)( D B ) Now we plu te forulas for A, B, C ad D to (1) to et (1) 16
17 y were we used te fat tat R æ p ö æ p ö R F - è ø è ø æ ö ( H 1) è R p F p - a a ( s ) a a ( s ) æ ö ( H 1) è æ ö F a a s s è F æ H ö ad y F, æ ö ( H 1) H 1 H 1 è è F. Te ext step s to alulate te pres: () ad q p æ H ö R - F A y H 1 - è B R æ H öæ ö æa s öæ 1 ö p - R p R H 1 H 1 è øè è è ø (3) q æ H ö p F F H 1 - y - C è ø D p æ 1 ö - F H 1 è ø æa s öæ 1 ö p - F H 1 è øè Te spread a ow be easly alulated: æ ö æ ö æ 1 ö æ 1 ö d q - q p F p F - H 1 H 1 è ø è ø è ø è ø æ s öæa a ö F è H 1 øè ø (4) 17
18 Quattes otrated by supplers ad osuers a be obtaed by us (5), (8), (3) ad (4): ad p 1 æ a 1 y F p F æ s öæ ö - - H 1 è è ø è ø p p F F F - - F - ( H 1) ( H 1) p 1 æ a 1 y R p R æ s öæ ö - a a s s H 1 è è ø è ø p p R R R - - R - ( H 1) ( H 1) Fally, we a e our alulatos as follows: y æ F ö F H F æ ö F - - F ( H 1) H 1 H 1 è è y æ R ö R æ H ö R - R R ( H 1) - H 1 H 1 è è F æ H ö F H 1 H 1 è å å 1 1 å å 1 1 H H å y å 1 1 (5) (6) 18
19 Referees ABRACEEL (011). Relatóro Aual 011. Avalable at ttp:// Adlov, N. (010). Blateral forward otrats ad spot pres. Te Eery Joural 31(3): Allaz, B., ad J. L. Vla (1993). Courot opetto, forward arets ad effey. Joural of Eoo Teory 59(1): Busell, J. (007). Olopoly equlbra eletrty otrat arets. Joural of Reulatory Eoos 3: Carreta, A., ad M. P. Esposa (010). Supply futo opetto te Spas wolesale eletrty aret. Te Eery Joural 31(4): Dutra, J., ad F. Meezes (005). Lessos fro te eletrty autos Brazl. Te Eletrty Joural 18(10): Gree, R. (1996). Ireas opetto te Brts eletrty spot aret. Joural of Idustral Eoos 44: Gree, R. (1999). Te eletrty otrat aret Elad ad Wales. Te Joural of Idustral Eoos 47(1): Gree, R., ad C. Le Coq (010). Te let of otrats ad olluso. Iteratoal Joural of Idustral Orazato 8: 1 9. Gree, R., ad D. M. Newbery (199). Copetto te Brts eletrty spot aret. Joural of Poltal Eooy 110(5): Kleperer, P. D., ad M. A. Meyer (1989). Supply futo equlbra olopoly uder uertaty. Eooetra 57(6): Maera, M., et al. (008). Te years of applato of stoast dual dya prora offal ad aet studes Brazl - Desrpto of te NEWAVE prora. Paper preseted at te 16t PSCC, Glasow, Sotlad, July Mae, P., ad F. Salaé (004). Softe opetto trou forward trad. Joural of Eoo Teory 116: Powell, A. (1993). Trad forward a perfet aret: Te ase of eletrty Brta. Te Eoo Joural 103(Mar):
20 vo der Fer, N.-H. M., ad D. Harbord (1993). Spot aret opetto te UK eletrty dustry. Te Eoo Joural 103: Wola, F. (008). Optos for Sort-Ter Pre Deterato te Brazla Wolesale Eletrty Maret. Report Prepared for Câara de Coeralzaão de Eera Elétra (CCEE). Avalable at ttp://s-db.staford.edu/pubs/874/brazl_report_ee_wola.pdf. Wolfra, C. D. (1998). Strate bdd a ultut auto: A epral Aalyss of bds to supply eletrty Elad ad Wales. RAND Joural of Eoos 9:
A Hierarchical Fuzzy Linear Regression Model for Forecasting Agriculture Energy Demand: A Case Study of Iran
3rd Iteratoal Coferee o Iformato ad Faal Egeerg IPEDR vol. ( ( IACSIT Press, Sgapore A Herarhal Fuzz Lear Regresso Model for Foreastg Agrulture Eerg Demad: A Case Stud of Ira A. Kazem, H. Shakour.G, M.B.
A Study of Unrelated Parallel-Machine Scheduling with Deteriorating Maintenance Activities to Minimize the Total Completion Time
Joural of Na Ka, Vol. 0, No., pp.5-9 (20) 5 A Study of Urelated Parallel-Mache Schedulg wth Deteroratg Mateace Actvtes to Mze the Total Copleto Te Suh-Jeq Yag, Ja-Yuar Guo, Hs-Tao Lee Departet of Idustral
Average Price Ratios
Average Prce Ratos Morgstar Methodology Paper August 3, 2005 2005 Morgstar, Ic. All rghts reserved. The formato ths documet s the property of Morgstar, Ic. Reproducto or trascrpto by ay meas, whole or
Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time.
Computatoal Geometry Chapter 6 Pot Locato 1 Problem Defto Preprocess a plaar map S. Gve a query pot p, report the face of S cotag p. S Goal: O()-sze data structure that eables O(log ) query tme. C p E
Measuring the Quality of Credit Scoring Models
Measur the Qualty of Credt cor Models Mart Řezáč Dept. of Matheatcs ad tatstcs, Faculty of cece, Masaryk Uversty CCC XI, Edurh Auust 009 Cotet. Itroducto 3. Good/ad clet defto 4 3. Measur the qualty 6
STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1
STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ
ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data
ANOVA Notes Page Aalss of Varace for a Oe-Wa Classfcato of Data Cosder a sgle factor or treatmet doe at levels (e, there are,, 3, dfferet varatos o the prescrbed treatmet) Wth a gve treatmet level there
Fuzzy Risk Evaluation Method for Information Technology Service
Fuzzy Rsk Evaluato Method for Iformato Tehology Serve Outsourg Qasheg Zhag Yrog Huag Fuzzy Rsk Evaluato Method for Iformato Tehology Serve Outsourg 1 Qasheg Zhag 2 Yrog Huag 1 Shool of Iformats Guagdog
Checking Out the Doght Stadard Odors in Polygamy
Cosstey Test o Mass Calbrato of Set of Weghts Class ad Lowers Lus Oar Beerra, Igao Herádez, Jorge Nava, Fél Pezet Natoal Ceter of Metrology (CNAM) Querétaro, Meo Abstrat: O weghts albrato oe by oe there
Single machine stochastic appointment sequencing and scheduling
Sgle mahe stohast aotmet sequeg ad shedulg We develo algorthms for a sgle mahe stohast aotmet sequeg ad shedulg roblem th atg tme, dle tme, ad overtme osts. Ths s a bas stohast shedulg roblem that has
A Single-Producer Multi-Retailer Integrated Inventory System with Scrap in Production
Research Joural of Appled Sceces, Egeerg ad Techology 5(4): 54-59, 03 ISSN: 040-7459; e-issn: 040-7467 Maxwell Scetfc Orgazato, 03 Subtted: July 09, 0 Accepted: August 08, 0 Publshed: February 0, 03 A
Chapter 22 Heat Engines, Entropy, and the Second Law of Thermodynamics
apter 22 Heat Engnes, Entropy, and te Seond Law o erodynas 1. e Zerot Law o erodynas: equlbru -> te sae 2. e Frst Law o erodynas: de d + d > adabat, sobar, sovoluetr, soteral 22.1 Heat Engnes and te Seond
Numerical Comparisons of Quality Control Charts for Variables
Global Vrtual Coferece Aprl, 8. - 2. 203 Nuercal Coparsos of Qualty Cotrol Charts for Varables J.F. Muñoz-Rosas, M.N. Pérez-Aróstegu Uversty of Graada Facultad de Cecas Ecoócas y Epresarales Graada, pa
Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract
Preset Value of Autes Uder Radom Rates of Iterest By Abraham Zas Techo I.I.T. Hafa ISRAEL ad Uversty of Hafa, Hafa ISRAEL Abstract Some attempts were made to evaluate the future value (FV) of the expected
10.5 Future Value and Present Value of a General Annuity Due
Chapter 10 Autes 371 5. Thomas leases a car worth $4,000 at.99% compouded mothly. He agrees to make 36 lease paymets of $330 each at the begg of every moth. What s the buyout prce (resdual value of the
T = 1/freq, T = 2/freq, T = i/freq, T = n (number of cash flows = freq n) are :
Bullets bods Let s descrbe frst a fxed rate bod wthout amortzg a more geeral way : Let s ote : C the aual fxed rate t s a percetage N the otoal freq ( 2 4 ) the umber of coupo per year R the redempto of
HEAT EXCHANGERS. Associate Professor. IIT Delhi E-mail: [email protected]. Mech/IITD
HEAT EXHANGES Prabal Talukdar Assoate Professor Departent of Meanal Engneerng IIT Del E-al: prabal@etdan Heat Exangers Heat exangers are deves tat faltate te exange of eat between two fluds tat are at
Classic Problems at a Glance using the TVM Solver
C H A P T E R 2 Classc Problems at a Glace usg the TVM Solver The table below llustrates the most commo types of classc face problems. The formulas are gve for each calculato. A bref troducto to usg the
ECONOMIC CHOICE OF OPTIMUM FEEDER CABLE CONSIDERING RISK ANALYSIS. University of Brasilia (UnB) and The Brazilian Regulatory Agency (ANEEL), Brazil
ECONOMIC CHOICE OF OPTIMUM FEEDER CABE CONSIDERING RISK ANAYSIS I Camargo, F Fgueredo, M De Olvera Uversty of Brasla (UB) ad The Brazla Regulatory Agecy (ANEE), Brazl The choce of the approprate cable
APPENDIX III THE ENVELOPE PROPERTY
Apped III APPENDIX III THE ENVELOPE PROPERTY Optmzato mposes a very strog structure o the problem cosdered Ths s the reaso why eoclasscal ecoomcs whch assumes optmzg behavour has bee the most successful
Aggregation Functions and Personal Utility Functions in General Insurance
Acta Polytechca Huarca Vol. 7, No. 4, 00 Areato Fuctos ad Persoal Utlty Fuctos Geeral Isurace Jaa Šprková Departmet of Quattatve Methods ad Iformato Systems, Faculty of Ecoomcs, Matej Bel Uversty Tajovského
Fuzzy Task Assignment Model of Web Services Supplier in Collaborative Development Environment
, pp.199-210 http://dx.do.org/10.14257/uesst.2015.8.6.19 Fuzzy Task Assget Model of Web Servces Suppler Collaboratve Developet Evroet Su Ja 1,2, Peg Xu-ya 1, *, Xu Yg 1,3, Wag Pe-e 2 ad Ma Na- 4,2 1. College
Chapter Eight. f : R R
Chapter Eght f : R R 8. Itroducto We shall ow tur our atteto to the very mportat specal case of fuctos that are real, or scalar, valued. These are sometmes called scalar felds. I the very, but mportat,
How do bookmakers (or FdJ 1 ) ALWAYS manage to win?
How do bookakers (or FdJ ALWAYS aage to w? Itroducto otatos & varables Bookaker's beeft eected value 4 4 Bookaker's strateges5 4 The hoest bookaker 6 4 "real lfe" bookaker 6 4 La FdJ 8 5 How ca we estate
The analysis of annuities relies on the formula for geometric sums: r k = rn+1 1 r 1. (2.1) k=0
Chapter 2 Autes ad loas A auty s a sequece of paymets wth fxed frequecy. The term auty orgally referred to aual paymets (hece the ame), but t s ow also used for paymets wth ay frequecy. Autes appear may
of the relationship between time and the value of money.
TIME AND THE VALUE OF MONEY Most agrbusess maagers are famlar wth the terms compoudg, dscoutg, auty, ad captalzato. That s, most agrbusess maagers have a tutve uderstadg that each term mples some relatoshp
IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki
IDENIFICAION OF HE DYNAMICS OF HE GOOGLE S RANKING ALGORIHM A. Khak Sedgh, Mehd Roudak Cotrol Dvso, Departmet of Electrcal Egeerg, K.N.oos Uversty of echology P. O. Box: 16315-1355, ehra, Ira [email protected],
The Cox-Ross-Rubinstein Option Pricing Model
Fnance 400 A. Penat - G. Pennacc Te Cox-Ross-Rubnsten Opton Prcng Model Te prevous notes sowed tat te absence o arbtrage restrcts te prce o an opton n terms o ts underlyng asset. However, te no-arbtrage
Chapter 7 Dynamics. 7.1 Newton-Euler Formulation of Equations of Motion
Itroduto to Robots,. arry Asada Chapter 7 Dyams I ths hapter, we aalyze the dyam behavor of robot mehasms. he dyam behavor s desrbed terms of the tme rate of hage of the robot ofgurato relato to the ot
Chapter 3 0.06 = 3000 ( 1.015 ( 1 ) Present Value of an Annuity. Section 4 Present Value of an Annuity; Amortization
Chapter 3 Mathematcs of Face Secto 4 Preset Value of a Auty; Amortzato Preset Value of a Auty I ths secto, we wll address the problem of determg the amout that should be deposted to a accout ow at a gve
1. The Time Value of Money
Corporate Face [00-0345]. The Tme Value of Moey. Compoudg ad Dscoutg Captalzato (compoudg, fdg future values) s a process of movg a value forward tme. It yelds the future value gve the relevat compoudg
CHAPTER 2. Time Value of Money 6-1
CHAPTER 2 Tme Value of Moey 6- Tme Value of Moey (TVM) Tme Les Future value & Preset value Rates of retur Autes & Perpetutes Ueve cash Flow Streams Amortzato 6-2 Tme les 0 2 3 % CF 0 CF CF 2 CF 3 Show
Report 52 Fixed Maturity EUR Industrial Bond Funds
Rep52, Computed & Prted: 17/06/2015 11:53 Report 52 Fxed Maturty EUR Idustral Bod Fuds From Dec 2008 to Dec 2014 31/12/2008 31 December 1999 31/12/2014 Bechmark Noe Defto of the frm ad geeral formato:
CHAPTER 4: NET PRESENT VALUE
EMBA 807 Corporate Fiace Dr. Rodey Boehe CHAPTER 4: NET PRESENT VALUE (Assiged probles are, 2, 7, 8,, 6, 23, 25, 28, 29, 3, 33, 36, 4, 42, 46, 50, ad 52) The title of this chapter ay be Net Preset Value,
The simple linear Regression Model
The smple lear Regresso Model Correlato coeffcet s o-parametrc ad just dcates that two varables are assocated wth oe aother, but t does ot gve a deas of the kd of relatoshp. Regresso models help vestgatg
Stochastic Programming Models for International Asset Allocation Problems
Stohast Programmg Models or teratoal Asset Alloato Problems Herules Vladmrou Nolas Topaloglou, Stavros Zeos HERMES eter o omputatoal Fae & Eooms Shool o Eooms & Maagemet Uversty o yprus RsLab Meetg Madrd,
Opinion Extraction, Summarization and Tracking in News and Blog Corpora
Opo Extrato, Suarzato ad Trakg ews ad Blog Corpora Lu-We Ku, Yu-Tg Lag ad Hs-Hs Che Departet of Coputer See ad Iforato Egeerg atoal Tawa Uversty Tape, Tawa {lwku, eaga}@lg.se.tu.edu.tw; [email protected]
What is Advanced Corporate Finance? What is finance? What is Corporate Finance? Deciding how to optimally manage a firm s assets and liabilities.
Wat is? Spring 2008 Note: Slides are on te web Wat is finance? Deciding ow to optimally manage a firm s assets and liabilities. Managing te costs and benefits associated wit te timing of cas in- and outflows
Spatial Keyframing for Performance-driven Animation
Eurographs/ACSIGGRAPH Symposum o Computer Amato (25) K. Ajyo, P. Faloutsos (Edtors) Spatal Keyframg for Performae-drve Amato T. Igarash,3, T. osovh 2, ad J. F. Hughes 2 The Uversty of Tokyo 2 Brow Uversty
Hi-Tech Authentication for Palette Images Using Digital Signature and Data Hiding
The Iteratoal Arab Joural of Iformato Tehology, Vol. 8, No., Aprl 0 7 H-Teh Authetato for Palette Images Usg Dgtal Sgature ad Data Hdg Aroka Jasra, Regasvaguruatha Rajesh, Ramasamy Balasubramaa, ad Perumal
Can a Lump-Sum Transfer Make Everyone Enjoy the Gains. from Free Trade?
Can a Lump-Sum Transfer Make Everyone Enjoy te Gains from Free Trade? Yasukazu Icino Department of Economics, Konan University June 30, 2010 Abstract I examine lump-sum transfer rules to redistribute te
A 360 Degree Feedback Model for Performance Appraisal Based on Fuzzy AHP and TOPSIS
Iteratoal Joural of Ecooy, aaeet ad Socal Sceces, () Noveber 03, Paes: 969-976 TI Jourals Iteratoal Joural of Ecooy, aaeet ad Socal Sceces www.tourals.co ISSN 306-776 A 360 Deree Feedback odel for Perforace
THE EQUILIBRIUM MODELS IN OLIGOPOLY ELECTRICITY MARKET
Iteratoal Coferee The Euroea Eletrty Market EEM-4 etember -, 4, Lodz, Polad Proeedg Volume,. 35-4 THE EQUILIBRIUM MODEL IN OLIGOPOLY ELECTRICITY MARKET Agezka Wyłomańka Wrolaw Uverty of Tehology Wrolaw
Numerical Methods with MS Excel
TMME, vol4, o.1, p.84 Numercal Methods wth MS Excel M. El-Gebely & B. Yushau 1 Departmet of Mathematcal Sceces Kg Fahd Uversty of Petroleum & Merals. Dhahra, Saud Araba. Abstract: I ths ote we show how
Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS R =
Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS Objectves of the Topc: Beg able to formalse ad solve practcal ad mathematcal problems, whch the subjects of loa amortsato ad maagemet of cumulatve fuds are
The Gompertz-Makeham distribution. Fredrik Norström. Supervisor: Yuri Belyaev
The Gompertz-Makeham dstrbuto by Fredrk Norström Master s thess Mathematcal Statstcs, Umeå Uversty, 997 Supervsor: Yur Belyaev Abstract Ths work s about the Gompertz-Makeham dstrbuto. The dstrbuto has
Polyphase Filters. Section 12.4 Porat 1/39
Polyphase Flters Secto.4 Porat /39 .4 Polyphase Flters Polyphase s a way of dog saplg-rate coverso that leads to very effcet pleetatos. But ore tha that, t leads to very geeral vewpots that are useful
DECISION MAKING WITH THE OWA OPERATOR IN SPORT MANAGEMENT
ESTYLF08, Cuecas Meras (Meres - Lagreo), 7-9 de Septembre de 2008 DECISION MAKING WITH THE OWA OPERATOR IN SPORT MANAGEMENT José M. Mergó Aa M. Gl-Lafuete Departmet of Busess Admstrato, Uversty of Barceloa
Reinsurance and the distribution of term insurance claims
Resurace ad the dstrbuto of term surace clams By Rchard Bruyel FIAA, FNZSA Preseted to the NZ Socety of Actuares Coferece Queestow - November 006 1 1 Itroducto Ths paper vestgates the effect of resurace
Contention-Free Periodic Message Scheduler Medium Access Control in Wireless Sensor / Actuator Networks
Coteto-Free Perodc Message Sceduler Medum Access Cotrol Wreless Sesor / Actuator Networks Tomas W. Carley ECE Departmet Uversty of Marylad [email protected] Moussa A. Ba Embedded Researc Solutos [email protected]
Improving website performance for search engine optimization by using a new hybrid MCDM model
Improvg webste performae for searh ege optmzato by usg a ew hybrd MDM model Ye-hag he Isttute of ha ad Asa-Paf Studes, Natoal Su Yat-se Uversty, awa, R.O.. [email protected] Yu-Sheg Lu Departmet of
6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis
6.7 Network aalyss Le data that explctly store topologcal formato are called etwork data. Besdes spatal operatos, several methods of spatal aalyss are applcable to etwork data. Fgure: Network data Refereces
An inquiry into the multiplier process in IS-LM model
An inquiry into te multiplier process in IS-LM model Autor: Li ziran Address: Li ziran, Room 409, Building 38#, Peing University, Beijing 00.87,PRC. Pone: (86) 00-62763074 Internet Address: [email protected]
RUSSIAN ROULETTE AND PARTICLE SPLITTING
RUSSAN ROULETTE AND PARTCLE SPLTTNG M. Ragheb 3/7/203 NTRODUCTON To stuatos are ecoutered partcle trasport smulatos:. a multplyg medum, a partcle such as a eutro a cosmc ray partcle or a photo may geerate
An Electricity Trade Model for Microgrid Communities in Smart Grid
An Electrcty Trade Model for Mcrogrd Countes n Sart Grd Tansong Cu, Yanzh Wang, Shahn Nazaran and Massoud Pedra Unversty of Southern Calforna Departent of Electrcal Engneerng Los Angeles, CA, USA {tcu,
Credibility Premium Calculation in Motor Third-Party Liability Insurance
Advaces Mathematcal ad Computatoal Methods Credblty remum Calculato Motor Thrd-arty Lablty Isurace BOHA LIA, JAA KUBAOVÁ epartmet of Mathematcs ad Quattatve Methods Uversty of ardubce Studetská 95, 53
over an MC-MOmni network when has a capacity gain of 2π θ
O the Capaity of Multi-Chael ireless Networks Usig Diretioal Ateas Hog-Nig Dai Ka-ig Ng Rayod Chi-ig og ad Mi-You u The Chiese Uiversity of Hog Kog, Hog Kog {hdai,kwg,wwog}@se.uhk.edu.hk Shaghai Jiao Tog
The Time Value of Money
The Tme Value of Moey 1 Iversemet Optos Year: 1624 Property Traded: Mahatta Islad Prce : $24.00, FV of $24 @ 6%: FV = $24 (1+0.06) 388 = $158.08 bllo Opto 1 0 1 2 3 4 5 t ($519.37) 0 0 0 0 $1,000 Opto
MDM 4U PRACTICE EXAMINATION
MDM 4U RCTICE EXMINTION Ths s a ractce eam. It does ot cover all the materal ths course ad should ot be the oly revew that you do rearato for your fal eam. Your eam may cota questos that do ot aear o ths
FINANCIAL MATHEMATICS 12 MARCH 2014
FINNCIL MTHEMTICS 12 MRCH 2014 I ths lesso we: Lesso Descrpto Make use of logarthms to calculate the value of, the tme perod, the equato P1 or P1. Solve problems volvg preset value ad future value autes.
Load Balancing via Random Local Search in Closed and Open systems
Load Balacg va Rado Local Search Closed ad Ope systes A. Gaesh Dept. of Matheatcs Uversty of Brstol, UK [email protected] A. Proutere Mcrosoft Research Cabrdge, UK [email protected] S. Llethal Stats
On formula to compute primes and the n th prime
Joural's Ttle, Vol., 00, o., - O formula to compute prmes ad the th prme Issam Kaddoura Lebaese Iteratoal Uversty Faculty of Arts ad ceces, Lebao Emal: [email protected] amh Abdul-Nab Lebaese Iteratoal
Multi-Channel Pricing for Financial Services
0-7695-435-9/0 $7.00 (c) 00 IEEE Proceedgs of the 35th Aual Hawa Iteratoal Coferece o yste ceces (HIC-35 0) 0-7695-435-9/0 $7.00 00 IEEE Proceedgs of the 35th Hawa Iteratoal Coferece o yste ceces - 00
Relaxation Methods for Iterative Solution to Linear Systems of Equations
Relaxato Methods for Iteratve Soluto to Lear Systems of Equatos Gerald Recktewald Portlad State Uversty Mechacal Egeerg Departmet [email protected] Prmary Topcs Basc Cocepts Statoary Methods a.k.a. Relaxato
Efficient Compensation for Regulatory Takings. and Oregon s Measure 37
Effcet Compesato for Regulatory Takgs ad Orego s Measure 37 Jack Scheffer Ph.D. Studet Dept. of Agrcultural, Evrometal ad Developmet Ecoomcs The Oho State Uversty 2120 Fyffe Road Columbus, OH 43210-1067
SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN
SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN Wojcech Zelńsk Departmet of Ecoometrcs ad Statstcs Warsaw Uversty of Lfe Sceces Nowoursyowska 66, -787 Warszawa e-mal: wojtekzelsk@statystykafo Zofa Hausz,
Venture Capital Financing : A Theoretical Model
Joural of Appld Busss ad Eoos Vtur Captal Fag : A Thortal odl odhr Chrf Uvrsty of Rs O-LAE Saa Elouar SG Souss Ths papr vstgats vtur aptal fag a vrot whr a aagr fas a prft aptal arkt ad a vtur aptalst
Using Markov Chains for Link Prediction in Adaptive Web Sites
Ug Marov Cha for L Predto Adaptve Web Ste Jaha Zhu, Ju Hog, ad Joh G. Hughe Shool of Iforato ad Software Egeerg, Uverty of Ulter at Jordatow Newtowabbey, Co. Atr, BT37 QB, UK {h.zhu,.hog, g.hughe}@ult.a.u
Banking (Early Repayment of Housing Loans) Order, 5762 2002 1
akg (Early Repaymet of Housg Loas) Order, 5762 2002 y vrtue of the power vested me uder Secto 3 of the akg Ordace 94 (hereafter, the Ordace ), followg cosultato wth the Commttee, ad wth the approval of
Basic Queueing Theory M/M/* Queues. Introduction
Basc Queueng Theory M/M/* Queues These sldes are created by Dr. Yh Huang of George Mason Unversty. Students regstered n Dr. Huang's courses at GMU can ake a sngle achne-readable copy and prnt a sngle copy
M(0) = 1 M(1) = 2 M(h) = M(h 1) + M(h 2) + 1 (h > 1)
Insertion and Deletion in VL Trees Submitted in Partial Fulfillment of te Requirements for Dr. Eric Kaltofen s 66621: nalysis of lgoritms by Robert McCloskey December 14, 1984 1 ackground ccording to Knut
Simple Linear Regression
Smple Lear Regresso Regresso equato a equato that descrbes the average relatoshp betwee a respose (depedet) ad a eplaator (depedet) varable. 6 8 Slope-tercept equato for a le m b (,6) slope. (,) 6 6 8
College Planning Using Cash Value Life Insurance
College Planning Using Cas Value Life Insurance CAUTION: Te advisor is urged to be extremely cautious of anoter college funding veicle wic provides a guaranteed return of premium immediately if funded
ON SLANT HELICES AND GENERAL HELICES IN EUCLIDEAN n -SPACE. Yusuf YAYLI 1, Evren ZIPLAR 2. [email protected]. evrenziplar@yahoo.
ON SLANT HELICES AND ENERAL HELICES IN EUCLIDEAN -SPACE Yusuf YAYLI Evre ZIPLAR Departmet of Mathematcs Faculty of Scece Uversty of Akara Tadoğa Akara Turkey yayl@sceceakaraedutr Departmet of Mathematcs
Performance Attribution. Methodology Overview
erformace Attrbuto Methodology Overvew Faba SUAREZ March 2004 erformace Attrbuto Methodology 1.1 Itroducto erformace Attrbuto s a set of techques that performace aalysts use to expla why a portfolo's performace
How To Ensure That An Eac Edge Program Is Successful
Introduction Te Economic Diversification and Growt Enterprises Act became effective on 1 January 1995. Te creation of tis Act was to encourage new businesses to start or expand in Newfoundland and Labrador.
Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology
I The Name of God, The Compassoate, The ercful Name: Problems' eys Studet ID#:. Statstcal Patter Recogto (CE-725) Departmet of Computer Egeerg Sharf Uversty of Techology Fal Exam Soluto - Sprg 202 (50
Security Analysis of RAPP: An RFID Authentication Protocol based on Permutation
Securty Aalyss of RAPP: A RFID Authetcato Protocol based o Permutato Wag Shao-hu,,, Ha Zhje,, Lu Sujua,, Che Da-we, {College of Computer, Najg Uversty of Posts ad Telecommucatos, Najg 004, Cha Jagsu Hgh
Mathematics of Finance
CATE Mathematcs of ace.. TODUCTO ths chapter we wll dscuss mathematcal methods ad formulae whch are helpful busess ad persoal face. Oe of the fudametal cocepts the mathematcs of face s the tme value of
Multi-settlement Systems for Electricity Markets: Zonal Aggregation under Network Uncertainty and Market Power 1
Proeedngs of the 35th Hawa Internatonal Conferene on System Senes - 2002 Mult-settlement Systems for Eletrty Markets: Zonal Aggregaton under Network Unertanty and Market Power 1 Ransh Kamat and Shmuel
II. THE QUALITY AND REGULATION OF THE DISTRIBUTION COMPANIES I. INTRODUCTION
Fronter Methodology to fx Qualty goals n Electrcal Energy Dstrbuton Copanes R. Rarez 1, A. Sudrà 2, A. Super 3, J.Bergas 4, R.Vllafáfla 5 1-2 -3-4-5 - CITCEA - UPC UPC., Unversdad Poltécnca de Cataluña,
