Stochastic Programming Models for International Asset Allocation Problems
|
|
|
- Cordelia Wilkinson
- 10 years ago
- Views:
Transcription
1 Stohast Programmg Models or teratoal Asset Alloato Problems Herules Vladmrou Nolas Topaloglou, Stavros Zeos HERMES eter o omputatoal Fae & Eooms Shool o Eooms & Maagemet Uversty o yprus RsLab Meetg Madrd, De., 23 Pots o Dsusso: Problem ssues Problem ramewor & rs ators (Maret & urrey Exhage Rs Dversato & Hedgg poles Rs maagemet metrs Modelg Approahes Searo Geerato Optmzato Models (Stohast Programs (jotly determe portolo omposto ad hedgg levels eah maret seletve hedgg va orwards ad optos orporato o Optos Portolo Empral Assessmet o Models & vestmet Strateges Rs/Retur Proles o Portolos (stat tests Out-o-sample Perormae (osstey Batestg (Ex-post perormae
2 teratoal Portolo Maagemet: The Problem: Alloato o uds to teratoal assets Dyam maagemet o portolo The Objetves: Eetve Maagemet o Rs/Retur Tradeos (parametr programs Dversato & Rs Hedgg The Needs: Represetato o uertaty apturg maret & exhage rate radomess oststet prg o Optos Portolo Optmzato Models utlzg sutable rs measures to otrol total rs exposure teratoal Dversato t pays to dversy teratoally Postve empral evdee holds or portolos o equtes ad bods tl. dversato etals addtoal rss (urrey exhage lutuatos Eu & Res, J. o Fae, 988. Hgher orrelatos o teratoal vestmets bear marets 2
3 Eets o teratoal dversato? They deped o the volatlty ad orrelato strutures o the teratoal marets ad urrey exhage rates. teratoal dversato etals exposure to urrey rs. Eu, Res, Joural o Fae, 988. Observatos: Geeral rease loal retur orrelatos Volatlty s otagous aross marets Hgher orrelato bear marets Majorty o peso uds vested abroad, are maaged as overlays portolos (Peso ad vestmet Age, 993 urrey rs (partly hedged wth orward urrey exhages Dervatve seurtes - alteratve rs maagemet meas (to hedge ether maret rs, or exhage rs, or both Holst rs maagemet tools employed. Maret Syhrozato & terdepedees To Hedge or Not to Hedge urrey Rs? Perold ad Shulma, Faal Aalysts Joural, 988: Yes! Free luh urrey hedgg! Kaplas ad Shaeer, J. o Eooms ad Busess, 99: Some tmes Yes ad some tmes No, else we do t ow! P. Joro, J. o Portolo Maagemet, 989: Some tmes Yes, some tmes No, else we eed to determe a hedge rato! F. Bla, J. o Fae, 99: Uversal hedge rato or all vestors ad all oreg holdgs. Flatov ad Rappaport, Faal Aalysts Joural, 992: Some tmes Yes, some tmes No, else we have a hedge rato! Abe ad Shrhade, Federal Reserve Ba o Atlata Eoom Revew, 997: ourse o ato lueed by varous ators. Beltratt, Lauret ad Zeos, Searo Modelg o Seletve Hedgg Strateges, JED, 23: Seletve Hedgg s the Preerred Strategy! We also ormulate mplemetable hedgg poles. Sgle perod MAD model Hstoral observatos used as searos 3
4 Abe ad Shrhade, Federal Reserve Ba o Atlata Eoom Revew, 997. Abe ad Shrhade, Federal Reserve Ba o Atlata Eoom Revew,
5 Fators oud emprally to aet the perormae o alteratve hedgg poles The lterature presets deret vews as to the optmal ourse o (urrey hedgg ato or teratoal portolo maagemet depedg o ators suh as: vestmet opportuty set vestor s reeree urrey deomato Represetato o uertaty Tmerame o study (albrato data vestor s tme horzo ad rs tag rtera vestmet strategy (stat vs dyam Edogeze urrey hedgg desos portolo ostruto model Seletve Hedgg: tegratve ramewor Edogeze hedgg desos portolo seleto proedure Searos o dex domest returs ad exhage rates apturg orrelatos betwee them (dee searos o holdg perod returs urrey hedgg va orward exhages ad/or optos (alteratves or otrollg hedgg desos Portolo optmzato models determe portolo ompostos ad urrey hedgg levels Extesos/otrbutos: VaR rs measure (more approprate or sewed dstrbutos, oheret Searo geerato proedures (& Stablty vestgato Operatoalzato o hedgg desos (speato o orward otrats troduto o optos portolo optmzato models 5
6 Value-at-Rs (VaR ad odtoal Value-at-Rs (VaR Portolo Value Dstrbuto at horzo T VaR VaR The Problem: teratoal asset-alloato problem (sgle- ad two-stage SP models; mothly tme steps Assets: Sto des varous outres (USD, GBP, DEM, JPY Govermet Bod des varous outres Short-term bods -3 years termedate-term bods (3-7 years Log-term bods (7- years Optos: Sto dex Optos, Quatos, urrey Optos Data Soures: Morga-Staley MS Data (Sto des Datastream Salomo Brothers Govermet Bod des Spot & Forward Exhage Rates 6
7 Desrptve Statsts o Hstoral Data Mea St.Dev. Sewess Kurtoss USS.59% 3.9% UKS.64% 4.66% GRS.23% 5.773% JPS -.33% 6.336% US.537%.473% US7.688%.646% UK.723%.7% UK7.93%.932% GR.537%.458% GR7.67%.39% JP.327%.522% JP7.68%.73% UStoUK -.74%.8% UStoGR -.67%.88% UStoJP.33%.33% Perod: Ja. 99 Aug mothly observatos Geerally, asset returs are ot ormal; exhbt asymmetres ad at tals. Motvato or: - alteratve searo geerato proedures - rs metrs sutable or asymmetr dstrbutos (.e.,var - alteratve opto prg proedure ssues: Developmet o VaR models or teratoal asset alloato that jotly determe the level o urrey hedgg ad selet the approprate vestmets Prg o optos o assets/urrees osstetly wth postulated searos orporatg optos (urrey optos, sto optos teratoal portolos o stos ad bods Hedgg urrey ad maret rs jotly usg Quatos Assessmet o alteratve tradg strateges volvg ombatos o optos (strp, strap, straddle, stragle. 7
8 Searo Geerato:. Prpal ompoet Aalyss (PA albrated usg hstoral maret data Dreted seletve samplg rom empral dstrbutos o Ps Bayes-Ste estmato orretos Dult exteso to multstage searo trees Do ot math all statstal haratersts 2. Momet-Mathg Searo Geerato Methods (Hoylad, Wallae Maagemet See, 22 (Hoylad, Wallae, Kaut omp. Optm. & Appl., 23 Frst our margal momets & orrelatos math target values Targets estmated usg hstoral data Searo tree ostrutos Model albrato: 2 past years (rollg horzo Searo Trees Root ode P( 8
9 9 Asset vetory ostrats: { } L N y x w w y x h w p(, \,,, = = ash balae (base urrey: = = b s v P x v P y \ ς ζ ς ζ = = b p s L N v P x v v P y } \{,, \ ( ς ζ ς ζ Geer Multstage SP Formulato or teratoal Portolo Maagemet Problem root ode remag odes but ot leaves Geer Multstage SP Formulato or teratoal Portolo Maagemet Problem root ode remag odes but ot leaves ash balae (oreg urrees: = s b v e P x v e P y ς ζ ς ζ = p p s b L N v v P x v e P y } \{,, ( ( ς ζ ς ζ Asset Sale Lmts } \{, ( L N h y p
10 Geer Multstage SP Formulato or teratoal Portolo Maagemet Problem tal Portolo Value = e P h V = p p p p p L v P w e v P w V \, ( ( ( ( ( Fal Portolo Value Portolo Retur L V V R = Parametr boud o Expeted Portolo Retur L R µ π Geer Multstage SP Formulato or teratoal Portolo Maagemet Problem VaR deto L R z y L y Objetve Futo: L z π y β Maxmze z : the VaR o portolo retur (at -β peretle the objetve value s the respetve VaR Developmet o VaR models: S. Uryasev ad T. Roaellar (2-22, Joural o Rs, Faal Egeerg News, Joural o Bag ad Fae, et.
11 Potetal beets rom teratoal dversato Expeted Retur (mothly Eet Froters or VaR Optmzato Model (Sept. 2.3%.2%.%.%.9%.8%.7%.6%.5%.4% -8.% -7.% -6.% -5.% -4.% -3.% -2.% -.%.% VaR (β=95% US. Portolos tl. Portolos (Seletve Ηedgg tl. Portolos (No Hedgg mprovemet rs-retur proles regardless o rs metr (preerable strategy: seletve hedgg Beets more evdet or termedate rs-tolerae levels. Expeted Retur (mothly.3%.2%.%.%.9%.8%.7%.6%.5% Eet Froters or MAD Optmzato Model (Sept. 2.4%.%.5%.%.5% 2.% 2.5% 3.% 3.5% MAD US. Portolos tl. Portolos (Seletve Hedgg tl. Portolos (No Hedgg Ex-post beets rom teratoal dversato..25 Realzed Returs or US ad tl. Seletvely Hedged Portolos o Stos & Bods (VaR Model w th param eters µ=.%, β=95%.2 Wealth Level.5..5 teratoal Portolos US Portolos. Ja- 98 Apr- 98 Jul- 98 Ot- 98 Ja- 99 Apr- 99 Jul- 99 Ot- 99 Tme Perod Ja- Apr- Jul- Ot- Ja- Apr-
12 Ex-post Realzed Returs (Seletve Hedgg 95%-VaR Model wth varous values o target mothly retur (µ µ=.% µ=.8% µ=.% µ=.2% Wealth Level Ja- 98 Apr- 98 Jul- 98 Ot- 98 Ja- 99 Apr- 99 Jul- 99 Ot- 99 Ja- Tme Perod Apr- Jul- Ot- Ja- Apr- omparso o Hedgg Poles (VaR Model.3% Eet Froters or VaR Model (Stos oly Expeted Retur.3%.2%.2%.%.%.% -7.5% -7.4% -7.3% -7.2% -7.% -7.% -6.9% VaR (β =95% om plete Hedgg No Hedgg Seletv e Hedgg.% Eet Froters or VaR Model (Bods oly Expeted Retur.9%.8%.7%.6%.5%.4% -7.% -6.% -5.% -4.% -3.% -2.% -.%.% VaR (β =95% om plete Hedgg No Hedgg Seletv e Hedgg 2
13 omparso o Hedgg Strateges (VaR Model Expeted Retur.3%.2%.%.%.9%.8%.7%.6%.5%.4% Eet Froters or VaR Model (Stos ad Bods -7.5% -6.5% -5.5% -4.5% -3.5% -2.5% -.5% -.5% VaR (β=95% omplete Hedgg No Hedgg Seletve Hedgg Seletve Hedgg s the more eetve (lexble strategy. Sgle- or Two-Stage SP Model? (omparso stat tests (Ex-ate: Two-stage SP model s learly superor to sgle-stage (Domat eet roters batestg expermets (ex-post: The models exhbt smlar perormae/behavor No domatg model a be dsputably deted -stage model aords er represetato o short-term uertaty, whle 2-stage model aptures eets o subsequet perod(s 3
14 Ex-ate omparso o Sgle- & Two- Stage Models Ex-post omparso o Sgle- & Two-Stage SP Models (m rs ase 4
15 Ex-post omparso o Sgle- & Two-Stage SP Models (more aggressve ase Portolo ompostos o Sgle- & Two-Stage SP Models (Mmum Rs ase 5
16 Portolo ompostos o Sgle- & Two-Stage SP Models (More Aggressve ase orporatg Optos Portolos: troduto o optos portolo (Europea optos wth maturty mathg rebalag requey Optos o sto des Quatos o oreg sto des urrey optos Optos pred osstetly wth postulated searo sets ad satsyg arbtrage-ree odtos vestgato o alteratve rs maagemet (hedgg strateges 6
17 Methodologes or prg Optos Expaso methods: Start wth a bas dstrbuto ad add orreto terms (orrado ad Su (J. Faal Researh, 996, Jarrow ad Radd (JFE, 982 (urrey Optos Dervato o the rs-eutral measure usg utlty utos: Rs-Neutral Prob = Atual Prob Prg Kerel (Roseberg ad Egle, WP-23, Bash et al, RFS 23, Jawerth, J. Dervatves, 999, JF 2 (Sto Optos orporatg Optos teratoal Portolos vestmets deret lasses o optos: A. Quatos: Fxed exhage rate oreg equty optos. Relevat or jotly maagg oreg maret rs ad exhage rate rs. Payo o a all Quato reeree urrey: = Max (S X K, B. Smple Optos: Relevat or maagg oreg maret rs, but uoered about exhage rate rs. Payo o a all opto oreg urrey: = Max (S K,. urrey Optos: Rghts or urrey exhages at prespeed rates at opto s exprato. 7
18 orporatg Optos teratoal Portolos Prg o Optos (osstetly wth postulated searo sets Determe a ew (rs eutral probablty measure o postulated searo set based o Rado-Nodym prple; satsy martgale property. The pre o a opto s the expeted value (uder the rs eutral probablty measure o dsouted (wth rsless rate payos at maturty. urrey optos pred usg proedure o orrado & Su. No-arbtrage odtos vered. Prg urrey Optos = e x rt t log log = Ete Ε = Et Et Et The or the opto o E we have Q ( E x s ot ormal the we use Gram-harler expaso. t geerates a approxmate desty uto or a s.r.v. wth ozero sewess ad exess urtoss: x t rt x = t K e ( E ( te K x log( K / E ω x = t µ t σ t The Gram-harler expaso osders approxmato desty: 3 ( ω = ( ω γ D ( ω γ 3! D 4! ( 4 2 ω dx 8
19 Prg urrey Optos = E e r T log( E d = N( d Ke / K ( r r T r T γ Ee ( d σt[ (2σ T 3! where 3 γ = ( 2 3/2 κ4..., γ 2 = ( κ σ 2 r T σ 2 T T Aouts or sewess ad urtoss, devatos rom ormalty o exhage rates d d N( d σ T γ 2 d d 4! 2..., ( d = (2π /2 2 3dσ e T 2 /2 d /2 3σ 2 T ] Prg Quatos ad Smple optos Rado-Nodym theorem: Statemet about two equvalet probablty measures: The atual measure P The Rs-Neutral measure Q o some measurable spae Ω. Rado-Nodym theorem asserto: Q(dω=ξ(ωP(dω Where ξ(ω s a measurable uto wth respet to the uderlyg sgma eld. 9
20 Prg Quatos ad Smple Optos Hypothess o power utlty uto By ormalzg ad hagg varables (Bash et al, Revew o Faal Studes, 23 The rs-eutral probabltes or eah searo are q ( R = γr γr e Where γ s the relatve rs averso e p p ( R ( R Prg Quatos ad Smple Optos Rs-eutral dex desty obtaed by expoetally tltg the physal desty. To avod arbtrage, the dex must be a martgale Mea o rs-eutral desty must satsy martgale odto: S e ( rδ Τ = q S 2
21 orporatg Dervatves teratoal Portolos Rs Neutral Valuato: The pre o the opto o asset S s the expeted payo o the opto uder all searos, Rs- Neutral Measure, dsouted at the rs-ree rate. Thus, or a Quato all: = e rdt N p = max( XS K, urrey optos or hedgg purposes Ex Post Realzed Returs. urrey Hedgg through urrey optos or Forward otrats, Sgle vs Mult-stage models, put at-the-moey optos (TG=%, 2% Realzed Retur May-98 Aug-98 Nov-98 Feb-99 May-99 Aug-99 Nov-99 Feb- May- Aug- Nov- Feb- May- Aug- Nov- Tme perod Forw ard otrats Tw o-stage Sgle Tw o-stage Forw ard otrats Sgle 2
22 urrey optos or hedgg purposes Ex Post Realzed Returs. urrey Hedgg through urrey optos or Forward otrats, Sgle vs Mult-stage models, BearSpread (TG=%, 2% Realzed Retur May-98 Aug-98 Nov-98 Feb-99 May-99 Aug-99 Nov-99 Feb- May- Aug- Nov- Feb- May- Aug- Nov- Tme perod Forw ard otrats Tw o-stage Sgle Tw o-stage Forw ard otrats Sgle orporatg Dervatves teratoal Portolos Payo Tradg Strateges volvg Optos Straddle Payo Stragle X X X 2 S T S T Log all ad Log Put Log all (exerse pre X 2 wth the same exerse pre X Log Put (exerse pre X ad the same maturty wth the same maturty 22
23 orporatg Dervatves teratoal Portolos Payo Strp Payo Strap X S T X S T Log all ad 2 Log Puts 2 Log all ad Log put Wth the same exerse pre X ad the same maturty wth the same exerse pre X ad the same maturty Shapg portolo rs usg optos.35 Probablty Wthout Stragle Straddle Strp Retur 23
24 Rs/Retur Eet Froters O Portolos wth varous tradg strateges o Quato Optos vs Portolos Wthout Optos 2.5% 2.% Expeted Retur.5%.%.5% Wthout Optos Straddle Stragle Strp Strap.% -% % 3% 5% 7% 9% % 3% 5% 7% 95%-VaR Ex post Realzed Returs o Portolos wth deret strateges o Optos ( µ=%.35.3 Realzed Retur Stragle Straddle Strp Strap NoOptos.95 May-98 Aug-98 Nov-98 Feb-99 May-99 Aug-99 Nov-99 Feb- May- Aug- Nov- Feb- May- Aug- Nov- Tme perod 24
25 Rs/Retur Eet Froters O Portolos wth ad wthout Optos (Stragle 2.5% 2.% Expeted Retur.5%.% QuatoForw ards.5% SmpleForw ards Wthout Optos w th H Wthout Optos No H.% -% % % 2% 3% 4% 5% 6% 7% 8% 95%-VaR Ex post Realzed Returs o Portolos wth ad wthout Optos (Straddle Strategy, µ=% Realzed Retur..5 Quatosorw ards SmpleForw ards WthoutOptos.95 May-98 Aug-98 Nov-98 Feb-99 May-99 Aug-99 Nov-99 Feb- May- Aug- Nov- Feb- May- Aug- Nov- Tme perod 25
26 Ex post Realzed Returs o Portolos wth Quatos ad Smple optos (Stragle Strategy, µ=% Realzed Retur Quatosorw ards SmpleForw ards WthoutOptos.95 May-98 Aug-98 Nov-98 Feb-99 May-99 Aug-99 Nov-99 Feb- May- Aug- Nov- Feb- Tme perod oludg Remars: SPs potetally eetve tools or teratoal portolo maagemet Searo geerato methods provde eetve meas or represetg uertaty VaR models osttute eetve rs maagemet tool teralzg urrey hedgg desos (va orward otrats the models mproves ex-ate ad ex-post results Postve value o tegratve ramewor troduto o dervatves leads to urther perormae mprovemets Partularly the tegrated hadlg o maret ad urrey rss (use o quatos 26
27 HERMES eter o Exellee o omputatoal Fae & Eooms Worg Paper Seres: (WP -23 Joural o Bag ad Fae, 26(7, 22 27
Geometric Mean Maximization: Expected, Observed, and Simulated Performance
GM Mamzato Geometrc Mea Mamzato: Epected, Observed, ad Smulated Performace Rafael De Satago & Javer Estrada IESE Busess School 0/16 GM Mamzato Geometrc Mea Mamzato 1. Itroducto 2. Methodology 3. Evdece
Average Price Ratios
Average Prce Ratos Morgstar Methodology Paper August 3, 2005 2005 Morgstar, Ic. All rghts reserved. The formato ths documet s the property of Morgstar, Ic. Reproducto or trascrpto by ay meas, whole or
Report 52 Fixed Maturity EUR Industrial Bond Funds
Rep52, Computed & Prted: 17/06/2015 11:53 Report 52 Fxed Maturty EUR Idustral Bod Fuds From Dec 2008 to Dec 2014 31/12/2008 31 December 1999 31/12/2014 Bechmark Noe Defto of the frm ad geeral formato:
A Hierarchical Fuzzy Linear Regression Model for Forecasting Agriculture Energy Demand: A Case Study of Iran
3rd Iteratoal Coferee o Iformato ad Faal Egeerg IPEDR vol. ( ( IACSIT Press, Sgapore A Herarhal Fuzz Lear Regresso Model for Foreastg Agrulture Eerg Demad: A Case Stud of Ira A. Kazem, H. Shakour.G, M.B.
SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN
SHAPIRO-WILK TEST FOR NORMALITY WITH KNOWN MEAN Wojcech Zelńsk Departmet of Ecoometrcs ad Statstcs Warsaw Uversty of Lfe Sceces Nowoursyowska 66, -787 Warszawa e-mal: wojtekzelsk@statystykafo Zofa Hausz,
IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki
IDENIFICAION OF HE DYNAMICS OF HE GOOGLE S RANKING ALGORIHM A. Khak Sedgh, Mehd Roudak Cotrol Dvso, Departmet of Electrcal Egeerg, K.N.oos Uversty of echology P. O. Box: 16315-1355, ehra, Ira [email protected],
T = 1/freq, T = 2/freq, T = i/freq, T = n (number of cash flows = freq n) are :
Bullets bods Let s descrbe frst a fxed rate bod wthout amortzg a more geeral way : Let s ote : C the aual fxed rate t s a percetage N the otoal freq ( 2 4 ) the umber of coupo per year R the redempto of
STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1
STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ
6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis
6.7 Network aalyss Le data that explctly store topologcal formato are called etwork data. Besdes spatal operatos, several methods of spatal aalyss are applcable to etwork data. Fgure: Network data Refereces
Loss Distribution Generation in Credit Portfolio Modeling
Loss Dstrbuto Geerato Credt Portfolo Modelg Igor Jouravlev, MMF, Walde Uversty, USA Ruth A. Maurer, Ph.D., Professor Emertus of Mathematcal ad Computer Sceces, Colorado School of Mes, USA Key words: Loss
ANNEX 77 FINANCE MANAGEMENT. (Working material) Chief Actuary Prof. Gaida Pettere BTA INSURANCE COMPANY SE
ANNEX 77 FINANCE MANAGEMENT (Workg materal) Chef Actuary Prof. Gada Pettere BTA INSURANCE COMPANY SE 1 FUNDAMENTALS of INVESTMENT I THEORY OF INTEREST RATES 1.1 ACCUMULATION Iterest may be regarded as
Report 05 Global Fixed Income
Report 05 Global Fxed Icome From Dec 1999 to Dec 2014 31/12/1999 31 December 1999 31/12/2014 Rep05, Computed & Prted: 17/06/2015 11:24 New Performace Idcator (01/01/12) 100% Barclays Aggregate Global Credt
Integrating Production Scheduling and Maintenance: Practical Implications
Proceedgs of the 2012 Iteratoal Coferece o Idustral Egeerg ad Operatos Maagemet Istabul, Turkey, uly 3 6, 2012 Itegratg Producto Schedulg ad Mateace: Practcal Implcatos Lath A. Hadd ad Umar M. Al-Turk
ECONOMIC CHOICE OF OPTIMUM FEEDER CABLE CONSIDERING RISK ANALYSIS. University of Brasilia (UnB) and The Brazilian Regulatory Agency (ANEEL), Brazil
ECONOMIC CHOICE OF OPTIMUM FEEDER CABE CONSIDERING RISK ANAYSIS I Camargo, F Fgueredo, M De Olvera Uversty of Brasla (UB) ad The Brazla Regulatory Agecy (ANEE), Brazl The choce of the approprate cable
CHAPTER 2. Time Value of Money 6-1
CHAPTER 2 Tme Value of Moey 6- Tme Value of Moey (TVM) Tme Les Future value & Preset value Rates of retur Autes & Perpetutes Ueve cash Flow Streams Amortzato 6-2 Tme les 0 2 3 % CF 0 CF CF 2 CF 3 Show
The Time Value of Money
The Tme Value of Moey 1 Iversemet Optos Year: 1624 Property Traded: Mahatta Islad Prce : $24.00, FV of $24 @ 6%: FV = $24 (1+0.06) 388 = $158.08 bllo Opto 1 0 1 2 3 4 5 t ($519.37) 0 0 0 0 $1,000 Opto
Optimal replacement and overhaul decisions with imperfect maintenance and warranty contracts
Optmal replacemet ad overhaul decsos wth mperfect mateace ad warraty cotracts R. Pascual Departmet of Mechacal Egeerg, Uversdad de Chle, Caslla 2777, Satago, Chle Phoe: +56-2-6784591 Fax:+56-2-689657 [email protected]
Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time.
Computatoal Geometry Chapter 6 Pot Locato 1 Problem Defto Preprocess a plaar map S. Gve a query pot p, report the face of S cotag p. S Goal: O()-sze data structure that eables O(log ) query tme. C p E
Proceedings of the 2010 Winter Simulation Conference B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yücesan, eds.
Proceedgs of the 21 Wter Smulato Coferece B. Johasso, S. Ja, J. Motoya-Torres, J. Huga, ad E. Yücesa, eds. EMPIRICAL METHODS OR TWO-ECHELON INVENTORY MANAGEMENT WITH SERVICE LEVEL CONSTRAINTS BASED ON
ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data
ANOVA Notes Page Aalss of Varace for a Oe-Wa Classfcato of Data Cosder a sgle factor or treatmet doe at levels (e, there are,, 3, dfferet varatos o the prescrbed treatmet) Wth a gve treatmet level there
1. The Time Value of Money
Corporate Face [00-0345]. The Tme Value of Moey. Compoudg ad Dscoutg Captalzato (compoudg, fdg future values) s a process of movg a value forward tme. It yelds the future value gve the relevat compoudg
Fuzzy Risk Evaluation Method for Information Technology Service
Fuzzy Rsk Evaluato Method for Iformato Tehology Serve Outsourg Qasheg Zhag Yrog Huag Fuzzy Rsk Evaluato Method for Iformato Tehology Serve Outsourg 1 Qasheg Zhag 2 Yrog Huag 1 Shool of Iformats Guagdog
M. Salahi, F. Mehrdoust, F. Piri. CVaR Robust Mean-CVaR Portfolio Optimization
M. Salah, F. Mehrdoust, F. Pr Uversty of Gula, Rasht, Ira CVaR Robust Mea-CVaR Portfolo Optmzato Abstract: Oe of the most mportat problems faced by every vestor s asset allocato. A vestor durg makg vestmet
A two-stage stochastic mixed-integer program modelling and hybrid solution approach to portfolio selection problems
A two-stage stochastc mxed-teger program modellg ad hybrd soluto approach to portfolo selecto problems Fag He, Rog Qu The Automated Schedulg, Optmsato ad Plag (ASAP) Group, School of Computer Scece The
The simple linear Regression Model
The smple lear Regresso Model Correlato coeffcet s o-parametrc ad just dcates that two varables are assocated wth oe aother, but t does ot gve a deas of the kd of relatoshp. Regresso models help vestgatg
10.5 Future Value and Present Value of a General Annuity Due
Chapter 10 Autes 371 5. Thomas leases a car worth $4,000 at.99% compouded mothly. He agrees to make 36 lease paymets of $330 each at the begg of every moth. What s the buyout prce (resdual value of the
Maintenance Scheduling of Distribution System with Optimal Economy and Reliability
Egeerg, 203, 5, 4-8 http://dx.do.org/0.4236/eg.203.59b003 Publshed Ole September 203 (http://www.scrp.org/joural/eg) Mateace Schedulg of Dstrbuto System wth Optmal Ecoomy ad Relablty Syua Hog, Hafeg L,
Single machine stochastic appointment sequencing and scheduling
Sgle mahe stohast aotmet sequeg ad shedulg We develo algorthms for a sgle mahe stohast aotmet sequeg ad shedulg roblem th atg tme, dle tme, ad overtme osts. Ths s a bas stohast shedulg roblem that has
Beta. A Statistical Analysis of a Stock s Volatility. Courtney Wahlstrom. Iowa State University, Master of School Mathematics. Creative Component
Beta A Statstcal Aalyss of a Stock s Volatlty Courtey Wahlstrom Iowa State Uversty, Master of School Mathematcs Creatve Compoet Fall 008 Amy Froelch, Major Professor Heather Bolles, Commttee Member Travs
Settlement Prediction by Spatial-temporal Random Process
Safety, Relablty ad Rs of Structures, Ifrastructures ad Egeerg Systems Furuta, Fragopol & Shozua (eds Taylor & Fracs Group, Lodo, ISBN 978---77- Settlemet Predcto by Spatal-temporal Radom Process P. Rugbaapha
Performance Attribution. Methodology Overview
erformace Attrbuto Methodology Overvew Faba SUAREZ March 2004 erformace Attrbuto Methodology 1.1 Itroducto erformace Attrbuto s a set of techques that performace aalysts use to expla why a portfolo's performace
Capacitated Production Planning and Inventory Control when Demand is Unpredictable for Most Items: The No B/C Strategy
SCHOOL OF OPERATIONS RESEARCH AND INDUSTRIAL ENGINEERING COLLEGE OF ENGINEERING CORNELL UNIVERSITY ITHACA, NY 4853-380 TECHNICAL REPORT Jue 200 Capactated Producto Plag ad Ivetory Cotrol whe Demad s Upredctable
How To Value An Annuity
Future Value of a Auty After payg all your blls, you have $200 left each payday (at the ed of each moth) that you wll put to savgs order to save up a dow paymet for a house. If you vest ths moey at 5%
Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract
Preset Value of Autes Uder Radom Rates of Iterest By Abraham Zas Techo I.I.T. Hafa ISRAEL ad Uversty of Hafa, Hafa ISRAEL Abstract Some attempts were made to evaluate the future value (FV) of the expected
of the relationship between time and the value of money.
TIME AND THE VALUE OF MONEY Most agrbusess maagers are famlar wth the terms compoudg, dscoutg, auty, ad captalzato. That s, most agrbusess maagers have a tutve uderstadg that each term mples some relatoshp
APPENDIX III THE ENVELOPE PROPERTY
Apped III APPENDIX III THE ENVELOPE PROPERTY Optmzato mposes a very strog structure o the problem cosdered Ths s the reaso why eoclasscal ecoomcs whch assumes optmzg behavour has bee the most successful
Improving website performance for search engine optimization by using a new hybrid MCDM model
Improvg webste performae for searh ege optmzato by usg a ew hybrd MDM model Ye-hag he Isttute of ha ad Asa-Paf Studes, Natoal Su Yat-se Uversty, awa, R.O.. [email protected] Yu-Sheg Lu Departmet of
Dynamic Two-phase Truncated Rayleigh Model for Release Date Prediction of Software
J. Software Egeerg & Applcatos 3 63-69 do:.436/jsea..367 Publshed Ole Jue (http://www.scrp.org/joural/jsea) Dyamc Two-phase Trucated Raylegh Model for Release Date Predcto of Software Lafe Qa Qgchua Yao
STATISTICAL ANALYSIS OF WIND SPEED DATA
Esşehr Osmagaz Üerstes Müh.Mm.Fa.Dergs C. XVIII, S.2, 2005 Eg.&Arh.Fa. Esşehr Osmagaz Uersty, Vol. XVIII, No: 2, 2005 STATISTICAL ANALYSIS OF WIND SPEED DATA Veysel YILMAZ, Haydar ARAS 2, H.Eray ÇELİK
ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN
Colloquum Bometrcum 4 ADAPTATION OF SHAPIRO-WILK TEST TO THE CASE OF KNOWN MEAN Zofa Hausz, Joaa Tarasńska Departmet of Appled Mathematcs ad Computer Scece Uversty of Lfe Sceces Lubl Akademcka 3, -95 Lubl
Reinsurance and the distribution of term insurance claims
Resurace ad the dstrbuto of term surace clams By Rchard Bruyel FIAA, FNZSA Preseted to the NZ Socety of Actuares Coferece Queestow - November 006 1 1 Itroducto Ths paper vestgates the effect of resurace
Classic Problems at a Glance using the TVM Solver
C H A P T E R 2 Classc Problems at a Glace usg the TVM Solver The table below llustrates the most commo types of classc face problems. The formulas are gve for each calculato. A bref troducto to usg the
Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology
I The Name of God, The Compassoate, The ercful Name: Problems' eys Studet ID#:. Statstcal Patter Recogto (CE-725) Departmet of Computer Egeerg Sharf Uversty of Techology Fal Exam Soluto - Sprg 202 (50
How To Make A Supply Chain System Work
Iteratoal Joural of Iformato Techology ad Kowledge Maagemet July-December 200, Volume 2, No. 2, pp. 3-35 LATERAL TRANSHIPMENT-A TECHNIQUE FOR INVENTORY CONTROL IN MULTI RETAILER SUPPLY CHAIN SYSTEM Dharamvr
An IG-RS-SVM classifier for analyzing reviews of E-commerce product
Iteratoal Coferece o Iformato Techology ad Maagemet Iovato (ICITMI 205) A IG-RS-SVM classfer for aalyzg revews of E-commerce product Jaju Ye a, Hua Re b ad Hagxa Zhou c * College of Iformato Egeerg, Cha
A PRACTICAL SOFTWARE TOOL FOR GENERATOR MAINTENANCE SCHEDULING AND DISPATCHING
West Ida Joural of Egeerg Vol. 30, No. 2, (Jauary 2008) Techcal aper (Sharma & Bahadoorsgh) 57-63 A RACTICAL SOFTWARE TOOL FOR GENERATOR MAINTENANCE SCHEDULING AND DISATCHING C. Sharma & S. Bahadoorsgh
Mathematics of Finance
CATE Mathematcs of ace.. TODUCTO ths chapter we wll dscuss mathematcal methods ad formulae whch are helpful busess ad persoal face. Oe of the fudametal cocepts the mathematcs of face s the tme value of
Forecasting Trend and Stock Price with Adaptive Extended Kalman Filter Data Fusion
2011 Iteratoal Coferece o Ecoomcs ad Face Research IPEDR vol.4 (2011 (2011 IACSIT Press, Sgapore Forecastg Tred ad Stoc Prce wth Adaptve Exteded alma Flter Data Fuso Betollah Abar Moghaddam Faculty of
Optimization Model in Human Resource Management for Job Allocation in ICT Project
Optmzato Model Huma Resource Maagemet for Job Allocato ICT Project Optmzato Model Huma Resource Maagemet for Job Allocato ICT Project Saghamtra Mohaty Malaya Kumar Nayak 2 2 Professor ad Head Research
MDM 4U PRACTICE EXAMINATION
MDM 4U RCTICE EXMINTION Ths s a ractce eam. It does ot cover all the materal ths course ad should ot be the oly revew that you do rearato for your fal eam. Your eam may cota questos that do ot aear o ths
Dynamic Provisioning Modeling for Virtualized Multi-tier Applications in Cloud Data Center
200 IEEE 3rd Iteratoal Coferece o Cloud Computg Dyamc Provsog Modelg for Vrtualzed Mult-ter Applcatos Cloud Data Ceter Jg B 3 Zhlag Zhu 2 Ruxog Ta 3 Qgbo Wag 3 School of Iformato Scece ad Egeerg College
Checking Out the Doght Stadard Odors in Polygamy
Cosstey Test o Mass Calbrato of Set of Weghts Class ad Lowers Lus Oar Beerra, Igao Herádez, Jorge Nava, Fél Pezet Natoal Ceter of Metrology (CNAM) Querétaro, Meo Abstrat: O weghts albrato oe by oe there
Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS R =
Chapter 3. AMORTIZATION OF LOAN. SINKING FUNDS Objectves of the Topc: Beg able to formalse ad solve practcal ad mathematcal problems, whch the subjects of loa amortsato ad maagemet of cumulatve fuds are
APPLYING THE BRINSON-HOOD- BEEBOWER METHOD TO THE RISK SIDE - DECISION-ORIENTED DECOMPOSITION OF EX-ANTE RISK
ALYING TH RINSON-HOOD- OWR MTHOD TO TH RISK SID - DCISION-ORINTD DCOMOSITION OF X-ANT RISK Dr. Stefa Illmer, Clet Reportg & rojects erformace Attrbuto Roudtable Zurch, 28. September 2005 CRDIT SUISS; Clet
Software Reliability Index Reasonable Allocation Based on UML
Sotware Relablty Idex Reasoable Allocato Based o UML esheg Hu, M.Zhao, Jaeg Yag, Guorog Ja Sotware Relablty Idex Reasoable Allocato Based o UML 1 esheg Hu, 2 M.Zhao, 3 Jaeg Yag, 4 Guorog Ja 1, Frst Author
DECISION MAKING WITH THE OWA OPERATOR IN SPORT MANAGEMENT
ESTYLF08, Cuecas Meras (Meres - Lagreo), 7-9 de Septembre de 2008 DECISION MAKING WITH THE OWA OPERATOR IN SPORT MANAGEMENT José M. Mergó Aa M. Gl-Lafuete Departmet of Busess Admstrato, Uversty of Barceloa
A New Bayesian Network Method for Computing Bottom Event's Structural Importance Degree using Jointree
, pp.277-288 http://dx.do.org/10.14257/juesst.2015.8.1.25 A New Bayesa Network Method for Computg Bottom Evet's Structural Importace Degree usg Jotree Wag Yao ad Su Q School of Aeroautcs, Northwester Polytechcal
Trading Forward in the Brazilian Electricity Market
Trad Forward te Brazla Eletrty Maret Paulo Couto Adre Ross de Olvera Te paper odels te terato betwee a otrat ad pot aret wose features are borrowed fro te Brazla eletrty aret. Te spot aret s odeled as
The Gompertz-Makeham distribution. Fredrik Norström. Supervisor: Yuri Belyaev
The Gompertz-Makeham dstrbuto by Fredrk Norström Master s thess Mathematcal Statstcs, Umeå Uversty, 997 Supervsor: Yur Belyaev Abstract Ths work s about the Gompertz-Makeham dstrbuto. The dstrbuto has
The analysis of annuities relies on the formula for geometric sums: r k = rn+1 1 r 1. (2.1) k=0
Chapter 2 Autes ad loas A auty s a sequece of paymets wth fxed frequecy. The term auty orgally referred to aual paymets (hece the ame), but t s ow also used for paymets wth ay frequecy. Autes appear may
Optimizing Software Effort Estimation Models Using Firefly Algorithm
Joural of Software Egeerg ad Applcatos, 205, 8, 33-42 Publshed Ole March 205 ScRes. http://www.scrp.org/joural/jsea http://dx.do.org/0.4236/jsea.205.8304 Optmzg Software Effort Estmato Models Usg Frefly
Chapter 7 Dynamics. 7.1 Newton-Euler Formulation of Equations of Motion
Itroduto to Robots,. arry Asada Chapter 7 Dyams I ths hapter, we aalyze the dyam behavor of robot mehasms. he dyam behavor s desrbed terms of the tme rate of hage of the robot ofgurato relato to the ot
Constrained Cubic Spline Interpolation for Chemical Engineering Applications
Costraed Cubc Sple Iterpolato or Chemcal Egeerg Applcatos b CJC Kruger Summar Cubc sple terpolato s a useul techque to terpolate betwee kow data pots due to ts stable ad smooth characterstcs. Uortuatel
EMERGING MARKETS: STOCK MARKET INVESTING WITH POLITICAL RISK. Ephraim Clark and Radu Tunaru
EMERGING MARKETS: STOCK MARKET INVESTING WITH POLITICAL RISK By Ephram Clark ad Radu Tuaru Correspodace to: Ephram Clark Mddlesex Uversty Busess School The Burroughs Lodo NW4 4BT UK Tel: 44-(0)08-36-530
Real-Time Scheduling Models: an Experimental Approach
Real-Tme Schedulg Models: a Expermetal Approach (Techcal Report - Nov. 2000) Atóo J. Pessoa de Magalhães [email protected] Fax: 22 207 4247 SAI DEMEGI Faculdade de Egehara da Uversdade do Porto -
FINANCIAL MATHEMATICS 12 MARCH 2014
FINNCIL MTHEMTICS 12 MRCH 2014 I ths lesso we: Lesso Descrpto Make use of logarthms to calculate the value of, the tme perod, the equato P1 or P1. Solve problems volvg preset value ad future value autes.
A COMPARATIVE STUDY BETWEEN POLYCLASS AND MULTICLASS LANGUAGE MODELS
A COMPARATIVE STUDY BETWEEN POLYCLASS AND MULTICLASS LANGUAGE MODELS I Ztou, K Smaïl, S Delge, F Bmbot To cte ths verso: I Ztou, K Smaïl, S Delge, F Bmbot. A COMPARATIVE STUDY BETWEEN POLY- CLASS AND MULTICLASS
Efficient Compensation for Regulatory Takings. and Oregon s Measure 37
Effcet Compesato for Regulatory Takgs ad Orego s Measure 37 Jack Scheffer Ph.D. Studet Dept. of Agrcultural, Evrometal ad Developmet Ecoomcs The Oho State Uversty 2120 Fyffe Road Columbus, OH 43210-1067
Load Balancing Control for Parallel Systems
Proc IEEE Med Symposum o New drectos Cotrol ad Automato, Chaa (Grèce),994, pp66-73 Load Balacg Cotrol for Parallel Systems Jea-Claude Heet LAAS-CNRS, 7 aveue du Coloel Roche, 3077 Toulouse, Frace E-mal
Compiler back end design for translating multiradio descriptions to operating system-less asynchronous processor datapaths
JOURNAL OF COMPUTERS, VOL. 3, NO. 1, JANUARY 2008 7 Comler ak ed desg for traslatg multrado desrtos to oeratg system-less asyhroous roessor dataaths Daraya Guha Cetre for Hgh Performae Emedded Systems,
Automated Event Registration System in Corporation
teratoal Joural of Advaces Computer Scece ad Techology JACST), Vol., No., Pages : 0-0 0) Specal ssue of CACST 0 - Held durg 09-0 May, 0 Malaysa Automated Evet Regstrato System Corporato Zafer Al-Makhadmee
Banking (Early Repayment of Housing Loans) Order, 5762 2002 1
akg (Early Repaymet of Housg Loas) Order, 5762 2002 y vrtue of the power vested me uder Secto 3 of the akg Ordace 94 (hereafter, the Ordace ), followg cosultato wth the Commttee, ad wth the approval of
Managing Interdependent Information Security Risks: Cyberinsurance, Managed Security Services, and Risk Pooling Arrangements
Maagg Iterdepedet Iformato Securty Rsks: Cybersurace, Maaged Securty Servces, ad Rsk Poolg Arragemets Xa Zhao Assstat Professor Departmet of Iformato Systems ad Supply Cha Maagemet Brya School of Busess
Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT), January Edition, 2011
Cyber Jourals: Multdscplary Jourals cece ad Techology, Joural of elected Areas Telecommucatos (JAT), Jauary dto, 2011 A ovel rtual etwork Mappg Algorthm for Cost Mmzg ZHAG hu-l, QIU Xue-sog tate Key Laboratory
Numerical Methods with MS Excel
TMME, vol4, o.1, p.84 Numercal Methods wth MS Excel M. El-Gebely & B. Yushau 1 Departmet of Mathematcal Sceces Kg Fahd Uversty of Petroleum & Merals. Dhahra, Saud Araba. Abstract: I ths ote we show how
MODELLING OF STOCK PRICES BY THE MARKOV CHAIN MONTE CARLO METHOD
ISSN 8-80 (prt) ISSN 8-8038 (ole) INTELEKTINĖ EKONOMIKA INTELLECTUAL ECONOMICS 0, Vol. 5, No. (0), p. 44 56 MODELLING OF STOCK PRICES BY THE MARKOV CHAIN MONTE CARLO METHOD Matas LANDAUSKAS Kauas Uversty
CIS603 - Artificial Intelligence. Logistic regression. (some material adopted from notes by M. Hauskrecht) CIS603 - AI. Supervised learning
CIS63 - Artfcal Itellgece Logstc regresso Vasleos Megalookoomou some materal adopted from otes b M. Hauskrecht Supervsed learg Data: D { d d.. d} a set of eamples d < > s put vector ad s desred output
Near Neighbor Distribution in Sets of Fractal Nature
Iteratoal Joural of Computer Iformato Systems ad Idustral Maagemet Applcatos. ISS 250-7988 Volume 5 (202) 3 pp. 59-66 MIR Labs, www.mrlabs.et/jcsm/dex.html ear eghbor Dstrbuto Sets of Fractal ature Marcel
FINANCIAL FORMULAE. Amount of One or Future Value of One ($1, 1, 1, etc.)... 2. Present Value (or Present Worth) of One ($1, 1, 1, etc.)...
Amout of Oe or Future Value of Oe ($,,, etc.)... 2 Preset Value (or Preset Worth) of Oe ($,,, etc.)... 2 Amout of Oe per Perod... 3 or Future Value of Oe per Perod Preset Value (or Preset Worth) of Oe
