Using Markov Chains for Link Prediction in Adaptive Web Sites

Size: px
Start display at page:

Download "Using Markov Chains for Link Prediction in Adaptive Web Sites"

Transcription

1 Ug Marov Cha for L Predto Adaptve Web Ste Jaha Zhu, Ju Hog, ad Joh G. Hughe Shool of Iforato ad Software Egeerg, Uverty of Ulter at Jordatow Newtowabbey, Co. Atr, BT37 QB, UK {h.zhu,.hog, g.hughe}@ult.a.u Abtrat. The large uber of Web page o ay Web te ha raed avgatoal proble. Marov ha have reetly bee ued to odel uer avgatoal behavor o the World Wde Web (WWW). I th paper, we propoe a ethod for otrutg a Marov odel of a Web te baed o pat vtor behavor. We ue the Marov odel to ae l predto that at ew uer to avgate the Web te. A algorth for trato probablty atrx opreo ha bee ued to luter Web page wth lar trato behavor ad opre the trato atrx to a optal ze for effet probablty alulato l predto. A axal forward path ethod ued to further prove the effey of l predto. L predto ha bee pleeted a ole yte alled ONE (Ole Navgato Explorer) to at uer avgato the adaptve Web te. Itroduto I a Web te wth a large uber of Web page, uer ofte have avgatoal queto, uh a, Where a I? Where have I bee? ad Where a I go? []. Web brower, uh a Iteret Explorer, are qute helpful. The uer a he the URI addre feld to fd where they are. Web page o oe Web te alo have a herarhal avgato bar, whh how the urret Web loato. Soe Web te how the uer urret poto o a teap. I IE 5.5, the uer a he the htory lt by date, te, or ot vted to fd where he/he ha bee. The htory a alo be earhed by eyword. The uer a batra where he/he ha bee by lg the Ba butto or eletg fro the htory lt attahed to the Ba butto. Hyperl are how a dfferet olor f they pot to prevouly vted page. We a ee that the awer to the frt two queto are atfatory. To awer the thrd queto, what the uer a do to loo at the l the urret Web page. O the other had, ueful forato about Web uer, uh a ther teret dated by the page they have vted, ould be ued to ae predto o the page that ght teret the. Th type of forato ha ot bee fully utlzed to provde a atfatory awer to the thrd queto. A good Web te hould be able to help t uer to fd awer to all three queto. The aor goal of th paper to provde a adaptve Web te [] that hage t preetato ad orgazato o the ba of l predto to help uer fd the awer to the thrd queto. D. Butard, W. Lu, ad R. Sterrtt (Ed.): Soft-Ware, LNCS 3, pp. 6 73,. Sprger-Verlag Berl Hedelberg

2 Ug Marov Cha for L Predto Adaptve Web Ste 6 I th paper, by vewg the Web uer avgato a Web te a a Marov ha, we a buld a Marov odel for l predto baed o pat uer vt behavor reorded the Web log fle. We aue that the page to be vted by a uer the future are detered by h/her urret poto ad/or vtg htory the Web te. We otrut a l graph fro the Web log fle, whh ot of ode repreetg Web page, l repreetg hyperl, ad weght o the l repreetg the uber of traveral o the hyperl. By vewg the weght o the l a pat uer plt feedba of ther preferee the hyperl, we a ue the l graph to alulate a trato probablty atrx otag oe-tep trato probablte the Marov odel. The Marov odel further ued for l predto by alulatg the odtoal probablte of vtg other page the future gve the uer urret poto ad/or prevouly vted page. A algorth for trato probablty atrx opreo ued to luter Web page wth lar trato behavor together to get a opat trato atrx. The opreed trato atrx ae l predto ore effet. We further ue a ethod alled Maxal Forward Path to prove the effey of l predto by tag to aout oly a equee of axally oeted page a uer vt [3] the probablty alulato. Fally, l predto tegrated wth a prototype alled ONE (Ole Navgato Explorer) to at Web uer avgato the adaptve Web te. I Seto, we derbe a ethod for buldg a Marov odel for l predto fro the Web log fle. I Seto 3, we du a algorth for trato atrx opreo to luter Web page wth lar trato behavor for effet l predto. I Seto 4, l predto baed o the Marov odel preeted to at uer avgato a prototype alled ONE (Ole Navgato Explorer). Experetal reult are preeted Seto 5. Related wor dued Seto 6. I Seto 7, we olude the paper ad du future wor. Buldg Marov Model fro Web Log Fle We frt otrut a l truture that repreet page, hyperl, ad uer traveral o the hyperl of the Web te. The l truture the ued to buld a Marov odel of the Web te. A tradtoal ethod for otrutg the l truture Web rawlg, whh a Web dexg progra ued to buld a dex by followg hyperl otuouly fro Web page to Web page. Weght are the aged to the l baed o uer traveral [4]. Th ethod ha two drawba. Oe that oe rrelevat page ad l, uh a page outde the urret Web te ad l ever travered by uer, are evtably luded the l truture, ad eed to be fltered out. Aother that the Webater a et up the Web te to exlude the rawler fro rawlg to oe part of the Web te for varou reao. We propoe to ue the l forato otaed a ECLF (Exteded Coo Log Fle) [5] forat log fle to otrut a l truture, alled a l graph. Our approah ha two advatage over rawlg-baed ethod. Oly relevat page ad l are ued for l graph otruto, ad all the page relevat to uer vt are luded the l graph.

3 6 J. Zhu, J. Hog, ad J.G. Hughe. L Graph A Web log fle ota rh reord of uer requet for douet o a Web te. ECLF forat log fle are ued our approah, e the URI of both the requeted douet ad the referrer datg where the requet ae fro are avalable. A ECLF log fle repreeted a a et of reord orrepodg to the page requet, WL ={( e, e,..., e )}, where e, e,..., e are the feld eah reord. A reord a ECLF log fle ght loo le a how Fgure : [4/Apr/999::: +] "GET /tudaffar/apu.htl HTTP/." 537 " "Mozlla/4. (opatble; MSIE 4.; Wdow 95)" Fg.. ECLF Log Fle The reord of ebedded obet the Web page, ludg graphal, vdeo, ad audo fle, are treated a redudat requet ad reoved, e every requet of a Web page wll tate a ere of requet of all the ebedded obet t autoatally. The reord of uueful requet are alo darded a erroeou reord, e there ay be bad l, g or teporarly aeble douet, or uauthorzed requet et. I our approah, oly the URI of the requeted Web page ad the orrepodg referrer are ued for l graph otruto. We therefore have a plfed et WL ={( ru)},, where r ad u are the URI of the referrer ad r the requeted page repetvely. Se varou uer ay have followed the ae l ther vt, the traveral of thee l are aggregated to get a et WL ={( ruw)},,, where w the uber of traveral fro r to u. I ot ae a l the hyperl fro r to u. Whe - the referrer feld, we aue there a vrtual l fro - to the requeted page. We all eah eleet ( ruw),, the et a l par. Two l par l =( r, u, w ) ad l =( r, u, w ) are ad to be oeted f ad oly f r = r, r = u, u = r, or u = u. A l par et LS ={( r, u, w )} ad to oet to aother l par et LS ={( r, u, w )} f ad oly f for every l par l LS, there ext a l par l LS, o that l ad l are oeted. Defto. (Maxally oeted L par Set) Gve a l par et WL ={( r, u, w )}, ad a l par et LS ={( r, u, w )} WL, we ay LS ={( r, u, w )} o l l l WL f ad oly f WL the Maxally oeted L par Set (MLS) of LS oet to LS, ad for every l par LS l ( WL - LS ), { l } ad LS are ot oeted. For a Web te wth oly oe aor etrae, the hoepage, people a oe to t varou way. They ght oe fro a page o aother Web te potg to the hoepage, follow a earh reult retured by a earh ege potg to the

4 Ug Marov Cha for L Predto Adaptve Web Ste 63 hoepage. - the referrer feld of a page requet reord date that the uer ha typed the URI of the hoepage dretly to the addre feld of the brower, eleted the hoepage fro h/her booar, or led o a hortut to th hoepage. I all thee ae the referrer forato ot avalable. We elet a et of l par LS ={( r, u, w )}, where r -, the URI of a page o aother Web te, or the URI of a earh reult retured by a earh ege, u the URI of the hoepage, ad w the weght o the l, a the etrae to the herarhy. We the loo for the Maxally oeted L par Set (MLS) LS of LS for the eod level of the herarhy. We loo for LS of LS WL - LS to WL - LS - LS. Th proe otue utl we get LS, o that WL - LS ={} or LS + ={}. = For a Web te wth a gle etrae, we wll ooly fh the l graph otruto wth ( WL - = LS )={}, whh ea that every l par ha bee put oto a erta level the herarhy. The level the herarhy are fro LS to LS. For a Web te wth everal etrae, ooly foud ult-futoal Web te, the otruto wll ed wth LS + ={} whle ( WL - elet a l par et forg aother etrae fro ( WL - eparate l graph. = LS = ) {}. We a the LS ) to otrut a Defto. (L Graph) The l graph of WL, a dreted weghted graph, a herarhy otg of ultple level, LS,, LS,, LS, where r u w )}, LS the MLS of LS WL - LS, ad WL - LS ={} LS ={(,, or LS + ={}. We add the Start ode to the l graph a the tartg pot for the uer vt to the Web te ad the Ext ode a the edg pot of the uer vt. I order to eure that there a dreted path betwee ay two ode the l graph, we add a l fro the Ext ode to the Start ode. Due to the fluee of ahg, the aout of weght o all og l of a page ght ot be the ae a the aout of weght o all outgog l. To olve th proble, we a ether ag extra og weght to the l to the tart/ext ode or dtrbute extra outgog weght to the og l. Fgure how a l graph we have otruted ug a Web log fle at the Uverty of Ulter Web te, whh the ttle of eah page how bede the ode repreetg the page. = =

5 64 J. Zhu, J. Hog, ad J.G. Hughe Uverty of Ulter CS 8 Departet See Iforato Studet 3 Iteratoal Lbrary Uder- Offe graduate 5 &Art Graduate Start 9 S E Job 8 Regter 8 Ext Fg.. A L Graph Cotruted fro a Web Log Fle o Uverty of Ulter Web Ste. Marov Model Eah ode the l graph a be vewed a a tate a fte drete Marov odel, whh a be defed by a tuple < S, Q, L >, where S the tate pae otag all the ode the l graph, Q the probablty trato atrx otag oe-tep trato probablte betwee the ode, ad L the tal probablty dtrbuto o the tate S. The uer avgato the Web te a be ee a a tohat proe { X }, whh ha S a the tate pae. If the ( ) odtoal probablty of vtg page the ext tep, P, depedet oly o the lat page vted by the uer, { X } alled a -order Marov ha [8]. ( ) Gve that the uer urretly at page ad ha vted page,...,, P oly, depedat o page,,...,. + ( ) P = P( X = X =, X =,..., X = ) =, + () PX ( = X = X, =,..., X = ) + + +,

6 Ug Marov Cha for L Predto Adaptve Web Ste 65 where the odtoal probablty of X + gve the tate of all the pat evet equal to the odtoal probablty of X + gve the tate of the pat evet. Whe =, X + depedet oly o the urret tate X. P = P (),, = PX ( = X = ) a oe-order Marov ha, where P the probablty +, that a trato ade fro tate to tate oe tep. We a alulate the oe-tep trato probablty fro page to page ug a l graph a follow, by oderg the larty betwee a l graph ad a rut ha dued [7]. The oe-tep trato probablty fro page to page, P, a be vewed a the frato of traveral fro to, over the total uber of traveral fro to other page ad the Ext ode. P = P( X = X =, X =,..., X = ) = PX ( = X = ) = + +, w, w, () where w the weght o the l fro to, ad w the weght o a l,, fro to. Now a probablty trato atrx, whh repreet the oe-tep trato probablty betwee ay two page, a be fored. I a probablty trato atrx, row ota oe-tep trato probablte for to all tate. Row u up to.. Colu ota oe-tep trato probablte fro all tate to. The trato atrx alulated fro the l graph Fgure how Fgure 3. \ Page Page Ext Start Ext.. Start. Fg. 3. Trato Probablty Matrx for the L Graph Fg.

7 66 J. Zhu, J. Hog, ad J.G. Hughe 3 Trato Matrx Copreo A algorth, that a be ued to opre a pare probablty trato atrx, preeted [5] whle the trato behavor of the Marov odel are preerved. State wth lar trato behavor are aggregated together to for ew tate. I l predto, we eed to rae the trato atrx Q to the th power. For a large Q th oputatoally expeve. Spear algorth a be ued to opre the orgal atrx Q to a uh aller atrx Q wthout gfat error e the auray experet o large atre have how that Q ad ( Q ) are very loe to eah other. Se the oputatoal oplexty of Q 3 ON ( ), by draatally redug N, the te tae by opreo a be opeated by all ubequet probablty oputato for l predto [5]. We have ued Spear algorth our approah. The larty etr of every par of tate fored to eure thoe par of tate that are ore lar hould yeld le error whe they are opreed [5]. Baed o the larty etr [5], the trato larty of two page ad a produt of ther -l ad out-l larte. Ther -l larty the weghted u of dtae betwee olu ad olu at eah row. Ther out-l larty the u of dtae betwee row ad row at eah olu. S = S ( out l) S ( l),,, S ( out l) = α ( y), y, S ( l) β ( x) =, x, α ( y) = P P,, y, y P P β ( x) =, + where x, x, = P, P l l, l l, ad = are the u of the probablte o the -l of page ad repetvely, S ( out l) the u of the out-l probablty dfferee, betwee ad, S ( l) the u of -l probablty dfferee, betwee ad. For the trato atrx Fgure 3, the alulated trato larty atrx how Fgure 4. If the larty loe to zero, the error reulted fro opreo loe to zero [5]. We a et a threhold ε, ad let S < ε to loo for addate page for, ergg. (3)

8 Ug Marov Cha for L Predto Adaptve Web Ste 67 \ Page Page Ext Start Ext Start Fg. 4. Trato Slarty Matrx for Trato Matrx Fg. 3 (Syetr) By rag ε we a opre ore tate wth a oeurate reae error. Page harg ore -l, out-l, ad havg equvalet weght o the wll eet the larty threhold. Suppoe tate ad are erged together, we eed to ag trato probablte betwee the ew tate ad the reag tate the trato atrx. We opute the weghted average of the th ad th row ad plae the reult the row of tate, ad u the th ad th olu ad plae the reult the olu of tate. P = P + P,,, P, P + P = +,, (4) For the larty atrx Fgure 4, we et the larty threhold ε =.. Experet dated a value of ε betwee.8 ad.5 yelded good opreo wth al error for our l graph. The opreo proe how Fgure 5. State ad 4, 5 ad 6 are opreed a a reult of S ( l) =, tate 8, 9,, ad are opreed a a reult of S ( out l) =., The opreed atrx how Fgure 6. The opreed atrx deer tha the orgal trato atrx. Whe ether S ( out l) = or S ( l) =, the opreo wll,, reult o error: Error = ad, Q = ( Q ) [5]. So there o opreo error for the trato atrx Fgure 4 ad t opreed atrx Fgure 6. There ay ot alway be the ae for a trato atrx alulated fro aother l graph. Whe S below a gve threhold, the effet of opreo o the trato,

9 68 J. Zhu, J. Hog, ad J.G. Hughe behavor of the tate ( ( Q ) Q ) wll be otrolled, the trato property of the atrx preerved ad the yte opreed to a optal ze for probablty oputato. The opreed trato atrx ued for effet l predto. Copreed tate 4 to tate (larty.)(tate: 4) Copreed tate 6 to tate 5 (larty.)(tate: 5 6) Copreed tate 9 to tate 8 (larty.)(tate: 8 9) Copreed tate to tate (larty.)(tate: ) Copreed tate to tate 8 (larty.)(tate: 8 9 ) Fhed opreo. Have opreed 4 tate to 9. Fg. 5. Copreo Proe for Trato Matrx Fg. 3 \ Page Page (,4) 3 (5,6) 7 (8,9,,) Ext Start.7.3 (, 4) (5, 6) (8,9,,).. Ext. Start. Fg. 6. Copreed Trato Matrx for Trato Matrx Fgure 3 4 L Predto Ug Marov Cha Whe a uer vt the Web te, by tag the page already vted by h/her a a htory, we a ue the opreed probablty trato atrx to alulate the probablte of vtg other page or luter of page by h/her the future. We vew eah opreed tate a a luter of page. The alulated odtoal probablte a be ued to etate the level of teret of other page ad/or luter of page to h/her. 4. L Predto o M-Order N-Step Marov Cha Sarua [4] propoed to ue the l htory of a uer to ae l predto. Suppoe a uer urretly at page, ad h/her vtg htory a a equee of page {,,..., }. We ue vetor L + + ={ l }, where l = whe = ad l = otherwe, for the urret page, ad vetor L ={ l } ( =,..., + ),

10 Ug Marov Cha for L Predto Adaptve Web Ste 69 where l = whe = ad l = otherwe, for the prevou page. Thee htory vetor are ued together wth the trato atrx to alulate vetor Re for the probablty of eah page to be vted the ext tep a follow: Re = a L Q+ a L Q a L Q (5) + where a, a,... a are the weght aged to the htory vetor. The value of a, a,... a date the level of fluee the htory vetor have o the future. Norally, we let > a > a >... > a >, o that the loer the htory vetor to the preet, the ore fluee t ha o the future. Th ofor to the obervato of a uer avgato the Web te. Re ={ re } oralzed, ad the page wth probablte above a gve threhold are eleted a the reoedato. We propoe a ew ethod a a proveet to Sarua ethod by alulatg the poblte that the uer wll arrve at a tate the opreed trato atrx wth the ext tep. We alulate the weghted u of the poblte of arrvg at a partular tate the trato atrx wth the ext tep gve the uer htory a h/her overall poblty of arrvg at that tate the future. Copared wth Sarua ethod, our ethod a predt ore tep the future, ad thu provde ore ght to the future. We alulate a vetor Re repreetg the probablty of eah page to be vted wth the ext tep a follow: Re = a L Q+ a L Q a L Q +,,, a L Q + a L Q a L Q ,,, a L Q + a L Q a L Q +, +, +, + (6) a, a,..., a,..., a, a,..., a are the weght aged to the where,,,,,, htory vetor L,, L +,,,,,,, + tep to the future, repetvely. Norally, we let > a, > a, >... > a, > ( =,,, ), o that for eah htory vetor, the loer t trato to the ext tep, the ore portat t otrbuto. We alo let > a, > a, >... > a l l, > ( l =,,, ), l o that the loer the htory vetor to the preet, the ore fluee t ha o the future. Re ={ re } oralzed, ad the page wth probablte above a gve threhold are eleted a the reoedato. 4. Maxal Forward Path Baed L Predto A axal forward path [3] a equee of axally oeted page a uer vt. Oly page o the axal forward path are odered a a uer htory for

11 7 J. Zhu, J. Hog, ad J.G. Hughe l predto. The effet of oe baward referee, whh are aly ade for eae of travel, fltered out. I Fg. 3, for tae, a uer ay have vted the Web page a equee 5 6. Se the uer ha vted page 5 after page ad the goe ba to page order to go to page 6, the urret axal forward path of the uer : 6. Page 5 darded the l predto. 5 Experetal Reult Experet were perfored o a Web log fle reorded betwee t ad 4 th of Otober, 999 o the Uverty of Ulter Web te, whh 37 MB ze ad ota,93,998 ae reord. After dardg the rrelevat reord, we get 43,739 reord. I order to rule out the poblty that oe l are oly teretg to dvdual uer, we et a threhold a the u uber of traveral o eah hyperl a ad there ut be three or ore uer who have travered the hyperl. We aue eah orgatg ahe orrepod to a dfferet uer. Thee ay ot alway be true whe uh a proxy erver ext. But the abee of uer trag oftware, the ethod a tll provde rather relable reult. We the otrut a l graph otg of 75 ode, ad 387 l betwee the ode. The otruto proe tae 6 ute o a Petu 3 detop, wth a 6 MHz CPU, 8M RAM. The axu uber of traveral o a l the l graph,336, whh o the l fro the Start ode to the hoepage of the Web te. The axu ad average uber of l a page the l graph are 75 ad.47 repetvely. The axu uber of -l of a page the l graph 57. The trato atrx ad very pare. By ettg x dfferet threhold for opreo, we get the experetal reult gve Table : Table. Copreo Reult o a Trato Matrx fro a Web Log Fle ε Copreo Te Sze after opreo % of tate reoved (Mute) We a ee that whe ε reae, the atrx beoe harder to opre. For th atrx, we hooe ε =.5 for a good opreo rate wthout gfat error. Experet [5] alo how that a value of ε =.5 yelded good opreo wth u error. Now we alulate Q ad ue the te pet a the behar for Q. Se we a repeatedly ultply Q by Q to get Q,, Q, Q, the te pet for oputg Q,, Q, Q a be etated a the te of the te for. Table uare the experetal reult of oputato for Q

12 Ug Marov Cha for L Predto Adaptve Web Ste 7 Q. We a ee that the te eeded for opreo opeated by the te aved the oputato for Q. Whe alulatg Q, oputatoal te a be further redued. Q,, Q a be oputed off-le ad tored for l predto. So the repoe te ot a ue gve the fat developg oputatoal apablty of the Web erver. Table. Experetal Reult for Q ad Q Matrx Deo( ) Coputato Te for Q or Q (Mute) Peretage of te aved (%) N/A We the ue the opreed trato atrx for l predto. L predto tegrated wth a prototype alled ONE (Ole Navgato Explorer) to at uer avgato our uverty Web te. ONE provde the uer wth foratve ad foued reoedato ad the flexblty of beg able to ove aroud wth the htory ad reoeded page. The average te eeded for updatg the reoedato uder 3 eod, o t utable for ole avgato, gve the repoe a be peeded up wth the urret oputatoal apablty of ay oeral Web te. We eleted =5 ad =5 l predto to tae to aout fve htory vetor the pat ad fve tep the future. We oputed 9 Q,, Q for l predto. The tal feedba fro our group eber very potve. They have pet le te to fd tereted forato ug ONE tha ot ug ONE our uverty Web te. They have ore uefully foud the forato ueful to the ug ONE tha ot ug ONE. So uer avgato ha bee effetvely peeded up ug ONE. ONE preet a lt of Web page a the uer vtg htory alog wth the reoeded page updated whle the uer travere the Web te. Eah te whe a uer requet a ew page, probablte of vtg ay other Web page or page luter wth the ext tep are alulated. The the Web page ad luter wth the hghet probablte are hghlghted the ONE wdow. The uer a browe the luter ad page le the Wdow Explorer. Io are ued to repreet dfferet tate of page ad luter. Le the Wdow Explorer, ONE allow the uer to atvate page, expad luter. Eah page gve t ttle to derbe the otet the page. 6 Related Wor Raeh Sarua [4] ha dued the applato of Marov ha to l predto. Uer' avgato regarded a a Marov ha for l aaly. The trato probablte are alulated fro the auulated ae reord of pat uer. Copared wth h ethod, we have three aor otrbuto. We have

13 7 J. Zhu, J. Hog, ad J.G. Hughe opreed the trato atrx to a optal ze to ave the oputato te of Q +, whh a ave a lot of te ad reoure gve the large uber of Web page o a oder Web te. We have proved the l predto alulato by tag to aout ore tep the future to provde ore ght to the future. We have propoed to ue Maxal Forward Path ethod to prove the auray of l predto reult by elatg the effet of baward referee by uer. The Adaptve Web Ste approah ha bee propoed by Perowtz ad Etzo []. Adaptve Web te are Web te whh a autoatally hage ther preetato ad orgazato to at uer avgato by learg fro Web uage data. Perowtz ad Etzo propoed the PageGather algorth to geerate dex page opoed of Web page ot ofte aoated wth eah other uer vt fro Web uage data to evaluate a Web te orgazato ad at uer avgato []. Our wor the otext of adaptve Web te. Copared wth ther wor, our approah ha two advatage. () The dex page baed o o-ourree of page uer pat vt ad doe ot tae to aout uer vtg htory. The dex page a tat reoedato. Our ethod ha tae to aout uer htory to ae l predto. The l predto dya to reflet the hagg teret of the uer. () I PageGather, t aued that eah orgatg ahe orrepod to a gle uer. The aupto a be udered by proxy erver, dya IP alloato, whh are both oo o the WWW. Our ethod treat a uer group a a whole wthout the detfato of dvdual uer ad thu ore robut to thee fluee. However, oputato eeded l predto ad the reoedato a ot repod a quly a the dex page, whh a be dretly retreved fro a Web erver. Spear [5] propoed a trato atrx opreo algorth baed o trato behavor of the tate the atrx. Trato atre alulated fro yte, whh are beg odeled too ay detal, a be opreed for aller tate pae whle the trato behavor of the tate are preerved. The algorth ha bee ued to eaure the trato larte betwee page our wor ad opre the probablty trato atrx to a optal ze for effet l predto. Proll ad Ptow [3] tuded the web urfer' traverg path through the WWW ad propoed to ue a Marov odel for predtg uer' l eleto baed o pat uer' urfg path. Albreht et al. [] propoed to buld three type of Marov odel fro Web log fle for pre-edg douet. Myra Splopoulou [6] dued ug avgato patter ad equee aaly ed fro the Web log fle to peroalze a web te. Mobaher, Cooley, ad Srvatava [4, 9] dued the proe of g Web log fle ug three d of luterg algorth for te adaptato. Brulovy [] gave a opreheve revew of the tate of the art adaptve hypereda reearh. Adaptve hypereda lude adaptve preetato ad adaptve avgato upport []. Adaptve Web te a be ee a a d of adaptve preetato of Web te to at uer avgato. 7 Coluo Marov ha have bee prove very utable for odelg Web uer avgato o the WWW. Th paper preet a ethod for otrutg l graph fro Web log

14 Ug Marov Cha for L Predto Adaptve Web Ste 73 fle. A trato atrx opreo algorth ued to luter page wth lar trato behavor together for effet l predto. The tal experet how that the l predto reult preeted a prototype ONE a help uer to fd forato ore effetly ad aurately tha ply followg hyperl to fd forato the Uverty of Ulter Web te. Our urret wor ha opeed everal frutful dreto a follow: () Maxal forward path ha bee utlzed to approxately fer a uer purpoe h/her avgato path, whh ght ot be aurate. The l predto a be further proved by detfyg uer goal eah vt [6]. () L predto ONE eed to be evaluated by a larger uer group. We pla to elet a group of uer ludg tudet, taff our uverty, ad people fro outde our uverty to ue ONE. Ther terato wth ONE wll be logged for aaly. (3) We pla to ue Web log fle fro oe oeral Web te to buld a Marov odel for l predto ad evaluate the reult o dfferet uer group. Referee. Albreht, D., Zuera, I., ad Nholo, A.: Pre-edg Douet o the WWW: A Coparatve Study. IJCAI99 (999). Brulovy, P.: Adaptve hypereda. Uer Modelg ad Uer Adapted Iterato (/). () Che, M. S., Par, J. S., Yu, P. S.: Data g for path traveral a web evroet. I Pro. of the 6th Itl. Coferee o Dtrbuted Coputg Syte, Hog Kog. (996) 4. Cooley, R., Mobaher, B., ad Srvatava, J. Data Preparato for Mg World Wde Web Browg Patter. Joural of Kowledge ad Iforato Syte, Vol., No.. (999) 5. Halla-Baer, P. M. ad Behledorf, B.: Exteded Log Fle Forat. W3C Worg Draft WD-logfle (996) 6. Hog, J.: Graph Cotruto ad Aaly a a Paradg for Pla Reogto. Pro. of AAAI-: Seveteeth Natoal Coferee o Artfal Itellgee, () Kalpazdou, S.L. Cyle Repreetato of Marov Proee, Sprger-Verlag, NY. (995) 8. Ka, M.: Marov Proee for Stohat Modelg. Chapa&Hall, Lodo. (997) 9. Mobaher, B., Cooley, R., Srvatava, J.: Autoat Peroalzato Through Web Uage Mg. TR99-, Dept. of Coputer See, Depaul Uverty. (999). Nele, J.: Degg Web Uablty, New Rder Publhg, USA. (). Perowtz, M., Etzo, O.: Adaptve web te: a AI hallege. IJCAI97 (997). Perowtz, M., Etzo, O.: Toward adaptve Web te: oeptual fraewor ad ae tudy. WWW8. (999) 3. Proll, P., Ptow, J. E.: Dtrbuto of Surfer Path Through the World Wde Web: Epral Charaterzato. World Wde Web : -7. (999) 4. Sarua, R.R.: L predto ad path aaly ug Marov ha. WWW9, () 5. Spear, W. M.: A opreo algorth for probablty trato atre. I SIAM Matrx Aaly ad Applato, Volue, #. (998) Splopoulou, M.: Web uage g for te evaluato: Mag a te better ft t uer. Co. ACM Peroalzato Tehologe wth Data Mg, 43(8). () 7-34

THE EQUILIBRIUM MODELS IN OLIGOPOLY ELECTRICITY MARKET

THE EQUILIBRIUM MODELS IN OLIGOPOLY ELECTRICITY MARKET Iteratoal Coferee The Euroea Eletrty Market EEM-4 etember -, 4, Lodz, Polad Proeedg Volume,. 35-4 THE EQUILIBRIUM MODEL IN OLIGOPOLY ELECTRICITY MARKET Agezka Wyłomańka Wrolaw Uverty of Tehology Wrolaw

More information

Conversion of Non-Linear Strength Envelopes into Generalized Hoek-Brown Envelopes

Conversion of Non-Linear Strength Envelopes into Generalized Hoek-Brown Envelopes Covero of No-Lear Stregth Evelope to Geeralzed Hoek-Brow Evelope Itroducto The power curve crtero commoly ued lmt-equlbrum lope tablty aaly to defe a o-lear tregth evelope (relatohp betwee hear tre, τ,

More information

A Study of Unrelated Parallel-Machine Scheduling with Deteriorating Maintenance Activities to Minimize the Total Completion Time

A Study of Unrelated Parallel-Machine Scheduling with Deteriorating Maintenance Activities to Minimize the Total Completion Time Joural of Na Ka, Vol. 0, No., pp.5-9 (20) 5 A Study of Urelated Parallel-Mache Schedulg wth Deteroratg Mateace Actvtes to Mze the Total Copleto Te Suh-Jeq Yag, Ja-Yuar Guo, Hs-Tao Lee Departet of Idustral

More information

Simpson s Paradox, Confounding Variables and Insurance Ratemaking. John Stenmark, FCAS, MAAA. Cheng-sheng Peter Wu, FCAS, ASA, MAAA ABSTRACT

Simpson s Paradox, Confounding Variables and Insurance Ratemaking. John Stenmark, FCAS, MAAA. Cheng-sheng Peter Wu, FCAS, ASA, MAAA ABSTRACT Spo Paradox Cooudg Varale ad Iurae Rateakg Joh Steark FCAS MAAA Cheg-heg Peter Wu FCAS ASA MAAA ASTRACT The urae proe oplex th uerou ator og to produe oth preu ad loe. Whle oplg rate atuare ote aggregate

More information

Developing a Fuzzy Search Engine Based on Fuzzy Ontology and Semantic Search

Developing a Fuzzy Search Engine Based on Fuzzy Ontology and Semantic Search 0 IEEE Iteratoal Coferece o Fuzzy Systes Jue 7-30, 0, Tape, Tawa Developg a Fuzzy Search Ege Based o Fuzzy Otology ad Seatc Search Le-Fu La Chao-Ch Wu Pe-Yg L Dept. of Coputer Scece ad Iforato Egeerg Natoal

More information

ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data

ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data ANOVA Notes Page Aalss of Varace for a Oe-Wa Classfcato of Data Cosder a sgle factor or treatmet doe at levels (e, there are,, 3, dfferet varatos o the prescrbed treatmet) Wth a gve treatmet level there

More information

A Hierarchical Fuzzy Linear Regression Model for Forecasting Agriculture Energy Demand: A Case Study of Iran

A Hierarchical Fuzzy Linear Regression Model for Forecasting Agriculture Energy Demand: A Case Study of Iran 3rd Iteratoal Coferee o Iformato ad Faal Egeerg IPEDR vol. ( ( IACSIT Press, Sgapore A Herarhal Fuzz Lear Regresso Model for Foreastg Agrulture Eerg Demad: A Case Stud of Ira A. Kazem, H. Shakour.G, M.B.

More information

Fuzzy Risk Evaluation Method for Information Technology Service

Fuzzy Risk Evaluation Method for Information Technology Service Fuzzy Rsk Evaluato Method for Iformato Tehology Serve Outsourg Qasheg Zhag Yrog Huag Fuzzy Rsk Evaluato Method for Iformato Tehology Serve Outsourg 1 Qasheg Zhag 2 Yrog Huag 1 Shool of Iformats Guagdog

More information

Measuring the Quality of Credit Scoring Models

Measuring the Quality of Credit Scoring Models Measur the Qualty of Credt cor Models Mart Řezáč Dept. of Matheatcs ad tatstcs, Faculty of cece, Masaryk Uversty CCC XI, Edurh Auust 009 Cotet. Itroducto 3. Good/ad clet defto 4 3. Measur the qualty 6

More information

Polyphase Filters. Section 12.4 Porat 1/39

Polyphase Filters. Section 12.4 Porat 1/39 Polyphase Flters Secto.4 Porat /39 .4 Polyphase Flters Polyphase s a way of dog saplg-rate coverso that leads to very effcet pleetatos. But ore tha that, t leads to very geeral vewpots that are useful

More information

Confidence Intervals for Linear Regression Slope

Confidence Intervals for Linear Regression Slope Chapter 856 Cofidece Iterval for Liear Regreio Slope Itroductio Thi routie calculate the ample ize eceary to achieve a pecified ditace from the lope to the cofidece limit at a tated cofidece level for

More information

A Fast Clustering Algorithm to Cluster Very Large Categorical Data Sets in Data Mining

A Fast Clustering Algorithm to Cluster Very Large Categorical Data Sets in Data Mining A Fast Clusterg Algorth to Cluster Very Large Categorcal Data Sets Data Mg Zhexue Huag * Cooperatve Research Cetre for Advaced Coputatoal Systes CSIRO Matheatcal ad Iforato Sceces GPO Box 664, Caberra

More information

Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time.

Preprocess a planar map S. Given a query point p, report the face of S containing p. Goal: O(n)-size data structure that enables O(log n) query time. Computatoal Geometry Chapter 6 Pot Locato 1 Problem Defto Preprocess a plaar map S. Gve a query pot p, report the face of S cotag p. S Goal: O()-sze data structure that eables O(log ) query tme. C p E

More information

GRADUATION PROJECT REPORT

GRADUATION PROJECT REPORT SPAM Flter School of Publc Admtrato Computer Stude Program GRADUATION PROJECT REPORT 2007-I-A02 SPAM Flter Project group leader: Project group member: Supervor: Aeor: Academc year (emeter): MCCS390 Graduato

More information

Copyright. William Joseph Brennan

Copyright. William Joseph Brennan Coyrght by Wlla Joeh Brea 005 The Dertato Cottee for Wlla Joeh Brea ertfe that th the aroved vero of the followg dertato: Arle Prg ad Caaty Behavor Cottee: Maxwell Sthobe, Co-Suervor. Preto MAfee, Co-Suervor

More information

Opinion Extraction, Summarization and Tracking in News and Blog Corpora

Opinion Extraction, Summarization and Tracking in News and Blog Corpora Opo Extrato, Suarzato ad Trakg ews ad Blog Corpora Lu-We Ku, Yu-Tg Lag ad Hs-Hs Che Departet of Coputer See ad Iforato Egeerg atoal Tawa Uversty Tape, Tawa {lwku, eaga}@lg.se.tu.edu.tw; [email protected]

More information

Average Price Ratios

Average Price Ratios Average Prce Ratos Morgstar Methodology Paper August 3, 2005 2005 Morgstar, Ic. All rghts reserved. The formato ths documet s the property of Morgstar, Ic. Reproducto or trascrpto by ay meas, whole or

More information

Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology

Statistical Pattern Recognition (CE-725) Department of Computer Engineering Sharif University of Technology I The Name of God, The Compassoate, The ercful Name: Problems' eys Studet ID#:. Statstcal Patter Recogto (CE-725) Departmet of Computer Egeerg Sharf Uversty of Techology Fal Exam Soluto - Sprg 202 (50

More information

6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis

6.7 Network analysis. 6.7.1 Introduction. References - Network analysis. Topological analysis 6.7 Network aalyss Le data that explctly store topologcal formato are called etwork data. Besdes spatal operatos, several methods of spatal aalyss are applcable to etwork data. Fgure: Network data Refereces

More information

Coordinate System for 3-D Model Used in Robotic End-Effector

Coordinate System for 3-D Model Used in Robotic End-Effector AU JT 8(: 8 (Apr Codnate Sytem f D Model Ued n Robot EndEffer ulfqar Al Soomro Shool of Advaned Stude, Aan Inttute of Tehnology Pathum Than, Thaland Abtrat Th paper reve the onept of odnate ytem on new

More information

Credit Risk Evaluation of Online Supply Chain Finance Based on Third-party B2B E-commerce Platform: an Exploratory Research Based on China s Practice

Credit Risk Evaluation of Online Supply Chain Finance Based on Third-party B2B E-commerce Platform: an Exploratory Research Based on China s Practice Iteratoal Joural of u- ad e- Servce, Scece ad Techology Vol.8, No.5 (2015, pp.93-104 http://dx.do.org/10.14257/juet.2015.8.5.09 Credt Rk Evaluato of Ole Supply Cha Face Baed o Thrd-party B2B E-commerce

More information

Chapter 7. (a) The compressor work is give by. = m (h 2 h 1 ) = (0.08 kg/s)(416.2 398.6) kj/kg = 1.408 kw. (b) The refrigeration capacity, in tons, is

Chapter 7. (a) The compressor work is give by. = m (h 2 h 1 ) = (0.08 kg/s)(416.2 398.6) kj/kg = 1.408 kw. (b) The refrigeration capacity, in tons, is apter 7 Exaple 7.- 6 ---------------------------------------------------------------------------------- Refrigerant 4a i te working fluid in an ideal vapor-opreion refrigeration yle tat ouniate terally

More information

Fuzzy Task Assignment Model of Web Services Supplier in Collaborative Development Environment

Fuzzy Task Assignment Model of Web Services Supplier in Collaborative Development Environment , pp.199-210 http://dx.do.org/10.14257/uesst.2015.8.6.19 Fuzzy Task Assget Model of Web Servces Suppler Collaboratve Developet Evroet Su Ja 1,2, Peg Xu-ya 1, *, Xu Yg 1,3, Wag Pe-e 2 ad Ma Na- 4,2 1. College

More information

Swarm Based Truck-Shovel Dispatching System in Open Pit Mine Operations

Swarm Based Truck-Shovel Dispatching System in Open Pit Mine Operations Swarm Baed Truck-Shovel Dpatchg Sytem Ope Pt Me Operato Yaah Br, W. Scott Dubar ad Alla Hall Departmet of Mg ad Meral Proce Egeerg Uverty of Brth Columba, Vacouver, B.C., Caada Emal: [email protected] Abtract

More information

RUSSIAN ROULETTE AND PARTICLE SPLITTING

RUSSIAN ROULETTE AND PARTICLE SPLITTING RUSSAN ROULETTE AND PARTCLE SPLTTNG M. Ragheb 3/7/203 NTRODUCTON To stuatos are ecoutered partcle trasport smulatos:. a multplyg medum, a partcle such as a eutro a cosmc ray partcle or a photo may geerate

More information

Numerical Methods with MS Excel

Numerical Methods with MS Excel TMME, vol4, o.1, p.84 Numercal Methods wth MS Excel M. El-Gebely & B. Yushau 1 Departmet of Mathematcal Sceces Kg Fahd Uversty of Petroleum & Merals. Dhahra, Saud Araba. Abstract: I ths ote we show how

More information

ENGINEERING COMPUTATION BY ARTIFICIAL NEURAL NETWORKS. Explaining Neural Networks

ENGINEERING COMPUTATION BY ARTIFICIAL NEURAL NETWORKS. Explaining Neural Networks SRK oaz Poltcha Pozaa Ittut Mcha Stooa ul. Potroo 3, 6-965 Poza EGIEERIG COMPUAIO BY ARIFICIA EURA EWORKS Eplag ural tor ural tor ar copod o pl lt opratg paralll. h lt ar prd b bologcal rvou t. A atur,

More information

Checking Out the Doght Stadard Odors in Polygamy

Checking Out the Doght Stadard Odors in Polygamy Cosstey Test o Mass Calbrato of Set of Weghts Class ad Lowers Lus Oar Beerra, Igao Herádez, Jorge Nava, Fél Pezet Natoal Ceter of Metrology (CNAM) Querétaro, Meo Abstrat: O weghts albrato oe by oe there

More information

Analysis of Two-Echelon Perishable Inventory System with Direct and Retrial demands

Analysis of Two-Echelon Perishable Inventory System with Direct and Retrial demands O Joural of Mathematc (O-JM) e-: 78-578 p-: 9-765X. Volume 0 ue 5 Ver. (ep-oct. 04) 5-57 www.oroural.org aly of Two-chelo erhable vetory ytem wth rect ad etral demad M. amehpad C.eryaamy K. Krha epartmet

More information

POSTRACK: A Low Cost Real-Time Motion Tracking System for VR Application

POSTRACK: A Low Cost Real-Time Motion Tracking System for VR Application POSTRACK: A Low Cost Real-Te Moto Trackg Syste for VR Applcato Jaeyog Chug, Nagyu K, Gerard Joughyu K, ad Cha-Mo Park VR Laboratory, Departet of Coputer Scece ad Egeerg, Pohag Uversty of Scece ad Techology

More information

3.6. Metal-Semiconductor Field Effect Transistor (MESFETs)

3.6. Metal-Semiconductor Field Effect Transistor (MESFETs) .6. Metal-Semcouctor Fel Effect rator (MESFE he Metal-Semcouctor-Fel-Effect-rator (MESFE cot of a couctg chael potoe betwee a ource a ra cotact rego a how the Fgure.6.1. he carrer flow from ource to ra

More information

Simple Linear Regression

Simple Linear Regression Smple Lear Regresso Regresso equato a equato that descrbes the average relatoshp betwee a respose (depedet) ad a eplaator (depedet) varable. 6 8 Slope-tercept equato for a le m b (,6) slope. (,) 6 6 8

More information

IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki

IDENTIFICATION OF THE DYNAMICS OF THE GOOGLE S RANKING ALGORITHM. A. Khaki Sedigh, Mehdi Roudaki IDENIFICAION OF HE DYNAMICS OF HE GOOGLE S RANKING ALGORIHM A. Khak Sedgh, Mehd Roudak Cotrol Dvso, Departmet of Electrcal Egeerg, K.N.oos Uversty of echology P. O. Box: 16315-1355, ehra, Ira [email protected],

More information

Numerical Comparisons of Quality Control Charts for Variables

Numerical Comparisons of Quality Control Charts for Variables Global Vrtual Coferece Aprl, 8. - 2. 203 Nuercal Coparsos of Qualty Cotrol Charts for Varables J.F. Muñoz-Rosas, M.N. Pérez-Aróstegu Uversty of Graada Facultad de Cecas Ecoócas y Epresarales Graada, pa

More information

Banking (Early Repayment of Housing Loans) Order, 5762 2002 1

Banking (Early Repayment of Housing Loans) Order, 5762 2002 1 akg (Early Repaymet of Housg Loas) Order, 5762 2002 y vrtue of the power vested me uder Secto 3 of the akg Ordace 94 (hereafter, the Ordace ), followg cosultato wth the Commttee, ad wth the approval of

More information

10.5 Future Value and Present Value of a General Annuity Due

10.5 Future Value and Present Value of a General Annuity Due Chapter 10 Autes 371 5. Thomas leases a car worth $4,000 at.99% compouded mothly. He agrees to make 36 lease paymets of $330 each at the begg of every moth. What s the buyout prce (resdual value of the

More information

Security Analysis of RAPP: An RFID Authentication Protocol based on Permutation

Security Analysis of RAPP: An RFID Authentication Protocol based on Permutation Securty Aalyss of RAPP: A RFID Authetcato Protocol based o Permutato Wag Shao-hu,,, Ha Zhje,, Lu Sujua,, Che Da-we, {College of Computer, Najg Uversty of Posts ad Telecommucatos, Najg 004, Cha Jagsu Hgh

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ " 1

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. x, where. = y - ˆ  1 STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Recall Assumpto E(Y x) η 0 + η x (lear codtoal mea fucto) Data (x, y ), (x 2, y 2 ),, (x, y ) Least squares estmator ˆ E (Y x) ˆ " 0 + ˆ " x, where ˆ

More information

Hi-Tech Authentication for Palette Images Using Digital Signature and Data Hiding

Hi-Tech Authentication for Palette Images Using Digital Signature and Data Hiding The Iteratoal Arab Joural of Iformato Tehology, Vol. 8, No., Aprl 0 7 H-Teh Authetato for Palette Images Usg Dgtal Sgature ad Data Hdg Aroka Jasra, Regasvaguruatha Rajesh, Ramasamy Balasubramaa, ad Perumal

More information

Trading Forward in the Brazilian Electricity Market

Trading Forward in the Brazilian Electricity Market Trad Forward te Brazla Eletrty Maret Paulo Couto Adre Ross de Olvera Te paper odels te terato betwee a otrat ad pot aret wose features are borrowed fro te Brazla eletrty aret. Te spot aret s odeled as

More information

Chapter 7 Dynamics. 7.1 Newton-Euler Formulation of Equations of Motion

Chapter 7 Dynamics. 7.1 Newton-Euler Formulation of Equations of Motion Itroduto to Robots,. arry Asada Chapter 7 Dyams I ths hapter, we aalyze the dyam behavor of robot mehasms. he dyam behavor s desrbed terms of the tme rate of hage of the robot ofgurato relato to the ot

More information

On formula to compute primes and the n th prime

On formula to compute primes and the n th prime Joural's Ttle, Vol., 00, o., - O formula to compute prmes ad the th prme Issam Kaddoura Lebaese Iteratoal Uversty Faculty of Arts ad ceces, Lebao Emal: [email protected] amh Abdul-Nab Lebaese Iteratoal

More information

KJTAO-ZM5E5VAF EXERCICES DIRIGS DE SPECTROMTRIE DE MASSE. KJTAO-ZM5E5VAF PDF 101 Pages 833.6KB 19 Oct, 2014

KJTAO-ZM5E5VAF EXERCICES DIRIGS DE SPECTROMTRIE DE MASSE. KJTAO-ZM5E5VAF PDF 101 Pages 833.6KB 19 Oct, 2014 EXERCICES DIRIGS DE SPECTROMTRIE DE MASSE KJTAO-ZM5E5VAF KJTAO-ZM5E5VAF PDF 101 Page 833.6KB 19 Ot, 2014 PDF file: exerie dirig de petrotrie de ae Page: 1 EXERCICES DIRIGS DE SPECTROMTRIE DE MASSE The

More information

Report 52 Fixed Maturity EUR Industrial Bond Funds

Report 52 Fixed Maturity EUR Industrial Bond Funds Rep52, Computed & Prted: 17/06/2015 11:53 Report 52 Fxed Maturty EUR Idustral Bod Fuds From Dec 2008 to Dec 2014 31/12/2008 31 December 1999 31/12/2014 Bechmark Noe Defto of the frm ad geeral formato:

More information

A New Bayesian Network Method for Computing Bottom Event's Structural Importance Degree using Jointree

A New Bayesian Network Method for Computing Bottom Event's Structural Importance Degree using Jointree , pp.277-288 http://dx.do.org/10.14257/juesst.2015.8.1.25 A New Bayesa Network Method for Computg Bottom Evet's Structural Importace Degree usg Jotree Wag Yao ad Su Q School of Aeroautcs, Northwester Polytechcal

More information

Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract

Abraham Zaks. Technion I.I.T. Haifa ISRAEL. and. University of Haifa, Haifa ISRAEL. Abstract Preset Value of Autes Uder Radom Rates of Iterest By Abraham Zas Techo I.I.T. Hafa ISRAEL ad Uversty of Hafa, Hafa ISRAEL Abstract Some attempts were made to evaluate the future value (FV) of the expected

More information

Data Analysis Toolkit #10: Simple linear regression Page 1

Data Analysis Toolkit #10: Simple linear regression Page 1 Data Aaly Toolkt #0: mple lear regreo Page mple lear regreo the mot commoly ued techque f determg how oe varable of teret the repoe varable affected by chage aother varable the explaaty varable. The term

More information

A 360 Degree Feedback Model for Performance Appraisal Based on Fuzzy AHP and TOPSIS

A 360 Degree Feedback Model for Performance Appraisal Based on Fuzzy AHP and TOPSIS Iteratoal Joural of Ecooy, aaeet ad Socal Sceces, () Noveber 03, Paes: 969-976 TI Jourals Iteratoal Joural of Ecooy, aaeet ad Socal Sceces www.tourals.co ISSN 306-776 A 360 Deree Feedback odel for Perforace

More information

The Time Value of Money

The Time Value of Money The Tme Value of Moey 1 Iversemet Optos Year: 1624 Property Traded: Mahatta Islad Prce : $24.00, FV of $24 @ 6%: FV = $24 (1+0.06) 388 = $158.08 bllo Opto 1 0 1 2 3 4 5 t ($519.37) 0 0 0 0 $1,000 Opto

More information

Aalborg Universitet. Towards Trust Engineering for Opportunistic Cloud Services Kuada, Eric. Publication date: 2014

Aalborg Universitet. Towards Trust Engineering for Opportunistic Cloud Services Kuada, Eric. Publication date: 2014 Aalborg Unvertet Toward Trut Engneerng for Opportunt Cloud Serve Kuada, Er Publaton date: 2014 Doument Veron Author fnal veron (often known a potprnt) Lnk to publaton from Aalborg Unverty Ctaton for publhed

More information

TI-89, TI-92 Plus or Voyage 200 for Non-Business Statistics

TI-89, TI-92 Plus or Voyage 200 for Non-Business Statistics Chapter 3 TI-89, TI-9 Plu or Voyage 00 for No-Buie Statitic Eterig Data Pre [APPS], elect FlahApp the pre [ENTER]. Highlight Stat/Lit Editor the pre [ENTER]. Pre [ENTER] agai to elect the mai folder. (Note:

More information

Sequences and Series

Sequences and Series Secto 9. Sequeces d Seres You c thk of sequece s fucto whose dom s the set of postve tegers. f ( ), f (), f (),... f ( ),... Defto of Sequece A fte sequece s fucto whose dom s the set of postve tegers.

More information

Relaxation Methods for Iterative Solution to Linear Systems of Equations

Relaxation Methods for Iterative Solution to Linear Systems of Equations Relaxato Methods for Iteratve Soluto to Lear Systems of Equatos Gerald Recktewald Portlad State Uversty Mechacal Egeerg Departmet [email protected] Prmary Topcs Basc Cocepts Statoary Methods a.k.a. Relaxato

More information

Load Balancing via Random Local Search in Closed and Open systems

Load Balancing via Random Local Search in Closed and Open systems Load Balacg va Rado Local Search Closed ad Ope systes A. Gaesh Dept. of Matheatcs Uversty of Brstol, UK [email protected] A. Proutere Mcrosoft Research Cabrdge, UK [email protected] S. Llethal Stats

More information

CSSE463: Image Recognition Day 27

CSSE463: Image Recognition Day 27 CSSE463: Image Recogto Da 27 Ths week Toda: Alcatos of PCA Suda ght: roject las ad relm work due Questos? Prcal Comoets Aalss weght grth c ( )( ) ( )( ( )( ) ) heght sze Gve a set of samles, fd the drecto(s)

More information

A Methodology to Improve Cash Demand Forecasting for ATM Network

A Methodology to Improve Cash Demand Forecasting for ATM Network Iteratoal Joural of Coputer ad Electrcal Egeerg, Vol. 5, o., August 03 A Methodolog to Iprove Cash Dead Forecastg for ATM etwork Saad M. Darwsh Abstract Developg cash dead forecastg odel for ATM etwork

More information

A Primer on Dimensions and Units

A Primer on Dimensions and Units 1 Dienion v Unit A Prier on Dienion and Unit Glen Thornrot Mehanial Enineerin Departent Cal Poly State Univerity, San Lui Obipo Nearly every enineerin proble you will enounter will involve dienion: the

More information

1. The Time Value of Money

1. The Time Value of Money Corporate Face [00-0345]. The Tme Value of Moey. Compoudg ad Dscoutg Captalzato (compoudg, fdg future values) s a process of movg a value forward tme. It yelds the future value gve the relevat compoudg

More information

Three Dimensional Interpolation of Video Signals

Three Dimensional Interpolation of Video Signals Three Dmesoal Iterpolato of Vdeo Sgals Elham Shahfard March 0 th 006 Outle A Bref reve of prevous tals Dgtal Iterpolato Bascs Upsamplg D Flter Desg Issues Ifte Impulse Respose Fte Impulse Respose Desged

More information

Spatial Keyframing for Performance-driven Animation

Spatial Keyframing for Performance-driven Animation Eurographs/ACSIGGRAPH Symposum o Computer Amato (25) K. Ajyo, P. Faloutsos (Edtors) Spatal Keyframg for Performae-drve Amato T. Igarash,3, T. osovh 2, ad J. F. Hughes 2 The Uversty of Tokyo 2 Brow Uversty

More information

Chapter Eight. f : R R

Chapter Eight. f : R R Chapter Eght f : R R 8. Itroducto We shall ow tur our atteto to the very mportat specal case of fuctos that are real, or scalar, valued. These are sometmes called scalar felds. I the very, but mportat,

More information

Classic Problems at a Glance using the TVM Solver

Classic Problems at a Glance using the TVM Solver C H A P T E R 2 Classc Problems at a Glace usg the TVM Solver The table below llustrates the most commo types of classc face problems. The formulas are gve for each calculato. A bref troducto to usg the

More information

Bayesian Network Representation

Bayesian Network Representation Readgs: K&F 3., 3.2, 3.3, 3.4. Bayesa Network Represetato Lecture 2 Mar 30, 20 CSE 55, Statstcal Methods, Sprg 20 Istructor: Su-I Lee Uversty of Washgto, Seattle Last tme & today Last tme Probablty theory

More information

Supply Chain Management Chapter 5: Application of ILP. Unified optimization methodology. Beun de Haas

Supply Chain Management Chapter 5: Application of ILP. Unified optimization methodology. Beun de Haas Supply Cha Maagemet Chapter 5: Ufed Optmzato Methodology for Operatoal Plag Problem What to do whe ILP take too much computato tme? Applcato of ILP Tmetable Dutch Ralway (NS) Bu ad drver chedulg at Coeo,

More information

CHAPTER 4: NET PRESENT VALUE

CHAPTER 4: NET PRESENT VALUE EMBA 807 Corporate Fiace Dr. Rodey Boehe CHAPTER 4: NET PRESENT VALUE (Assiged probles are, 2, 7, 8,, 6, 23, 25, 28, 29, 3, 33, 36, 4, 42, 46, 50, ad 52) The title of this chapter ay be Net Preset Value,

More information

Entropy-Based Link Analysis for Mining Web Informative Structures

Entropy-Based Link Analysis for Mining Web Informative Structures Etropy-Based Lk Aalyss for Mg Web Iformatve Structures Hug-Yu Kao, Sha-Hua L *, Ja-Mg Ho *, Mg-Sya Che Electrcal Egeerg Departmet Natoal Tawa Uversty Tape, Tawa, ROC E-Mal: {[email protected], [email protected]}

More information

T = 1/freq, T = 2/freq, T = i/freq, T = n (number of cash flows = freq n) are :

T = 1/freq, T = 2/freq, T = i/freq, T = n (number of cash flows = freq n) are : Bullets bods Let s descrbe frst a fxed rate bod wthout amortzg a more geeral way : Let s ote : C the aual fxed rate t s a percetage N the otoal freq ( 2 4 ) the umber of coupo per year R the redempto of

More information

Supply chains with or without upstream competition?

Supply chains with or without upstream competition? Supply han wth or wthout uptream ompetton? Chryovalantou Mllou * Unverdad Carlo III de Madrd, Department of onom, Getafe Madrd 890, Span Feruary 00 Atrat We nvetgate a fnal good produer' nentve to engage

More information

CHAPTER 2. Time Value of Money 6-1

CHAPTER 2. Time Value of Money 6-1 CHAPTER 2 Tme Value of Moey 6- Tme Value of Moey (TVM) Tme Les Future value & Preset value Rates of retur Autes & Perpetutes Ueve cash Flow Streams Amortzato 6-2 Tme les 0 2 3 % CF 0 CF CF 2 CF 3 Show

More information

Netherlands Published online: 27 Jun 2013.

Netherlands Published online: 27 Jun 2013. Th artcle wa downloaded by: [Bblotheek TU Delft] On: 04 Noveber 2013, At: 08:09 Publher: Routledge Infora Ltd Regtered n England and Wale Regtered Nuber: 1072954 Regtered offce: Morter Houe, 37-41 Morter

More information

A Fair Non-repudiation Protocol without TTP on Conic Curve over Ring

A Fair Non-repudiation Protocol without TTP on Conic Curve over Ring Far No-reudato Protocol wthout TTP o Coc Curve over Rg Z L Zhahu, Fa Ka, 3L Hu, Zheg Ya Far No-reudato Protocol wthout TTP o Coc Curve over Rg Z 1 L Zhahu, Fa Ka, 3 L Hu, 4 Zheg Ya 1State Key Laboratory

More information

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t Indeternate Analyss Force Method The force (flexblty) ethod expresses the relatonshps between dsplaceents and forces that exst n a structure. Prary objectve of the force ethod s to deterne the chosen set

More information

ISyE 512 Chapter 7. Control Charts for Attributes. Instructor: Prof. Kaibo Liu. Department of Industrial and Systems Engineering UW-Madison

ISyE 512 Chapter 7. Control Charts for Attributes. Instructor: Prof. Kaibo Liu. Department of Industrial and Systems Engineering UW-Madison ISyE 512 Chapter 7 Cotrol Charts for Attrbutes Istructor: Prof. Kabo Lu Departmet of Idustral ad Systems Egeerg UW-Madso Emal: [email protected] Offce: Room 3017 (Mechacal Egeerg Buldg) 1 Lst of Topcs Chapter

More information

A DISTRIBUTED REPUTATION BROKER FRAMEWORK FOR WEB SERVICE APPLICATIONS

A DISTRIBUTED REPUTATION BROKER FRAMEWORK FOR WEB SERVICE APPLICATIONS L et al.: A Dstrbuted Reputato Broker Framework for Web Servce Applcatos A DISTRIBUTED REPUTATION BROKER FRAMEWORK FOR WEB SERVICE APPLICATIONS Kwe-Jay L Departmet of Electrcal Egeerg ad Computer Scece

More information

Speeding up k-means Clustering by Bootstrap Averaging

Speeding up k-means Clustering by Bootstrap Averaging Speedg up -meas Clusterg by Bootstrap Averagg Ia Davdso ad Ashw Satyaarayaa Computer Scece Dept, SUNY Albay, NY, USA,. {davdso, ashw}@cs.albay.edu Abstract K-meas clusterg s oe of the most popular clusterg

More information

Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT), January Edition, 2011

Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT), January Edition, 2011 Cyber Jourals: Multdscplary Jourals cece ad Techology, Joural of elected Areas Telecommucatos (JAT), Jauary dto, 2011 A ovel rtual etwork Mappg Algorthm for Cost Mmzg ZHAG hu-l, QIU Xue-sog tate Key Laboratory

More information

Description: Conceptual questions about projectile motion and some easy calculations. (uses applets)

Description: Conceptual questions about projectile motion and some easy calculations. (uses applets) Week 3: Chapter 3 [ Edit ] Overview Suary View Diagnotic View Print View with Anwer Week 3: Chapter 3 Due: 11:59p on Sunday, February 8, 2015 To undertand how point are awarded, read the Grading Policy

More information

The analysis of annuities relies on the formula for geometric sums: r k = rn+1 1 r 1. (2.1) k=0

The analysis of annuities relies on the formula for geometric sums: r k = rn+1 1 r 1. (2.1) k=0 Chapter 2 Autes ad loas A auty s a sequece of paymets wth fxed frequecy. The term auty orgally referred to aual paymets (hece the ame), but t s ow also used for paymets wth ay frequecy. Autes appear may

More information

of the relationship between time and the value of money.

of the relationship between time and the value of money. TIME AND THE VALUE OF MONEY Most agrbusess maagers are famlar wth the terms compoudg, dscoutg, auty, ad captalzato. That s, most agrbusess maagers have a tutve uderstadg that each term mples some relatoshp

More information

Applications of Support Vector Machine Based on Boolean Kernel to Spam Filtering

Applications of Support Vector Machine Based on Boolean Kernel to Spam Filtering Moder Appled Scece October, 2009 Applcatos of Support Vector Mache Based o Boolea Kerel to Spam Flterg Shugag Lu & Keb Cu School of Computer scece ad techology, North Cha Electrc Power Uversty Hebe 071003,

More information

How To Make A Supply Chain System Work

How To Make A Supply Chain System Work Iteratoal Joural of Iformato Techology ad Kowledge Maagemet July-December 200, Volume 2, No. 2, pp. 3-35 LATERAL TRANSHIPMENT-A TECHNIQUE FOR INVENTORY CONTROL IN MULTI RETAILER SUPPLY CHAIN SYSTEM Dharamvr

More information

How do bookmakers (or FdJ 1 ) ALWAYS manage to win?

How do bookmakers (or FdJ 1 ) ALWAYS manage to win? How do bookakers (or FdJ ALWAYS aage to w? Itroducto otatos & varables Bookaker's beeft eected value 4 4 Bookaker's strateges5 4 The hoest bookaker 6 4 "real lfe" bookaker 6 4 La FdJ 8 5 How ca we estate

More information

Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity

Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity Computer Aded Geometrc Desg 19 (2002 365 377 wwwelsevercom/locate/comad Optmal mult-degree reducto of Bézer curves wth costrats of edpots cotuty Guo-Dog Che, Guo-J Wag State Key Laboratory of CAD&CG, Isttute

More information

The impact of service-oriented architecture on the scheduling algorithm in cloud computing

The impact of service-oriented architecture on the scheduling algorithm in cloud computing Iteratoal Research Joural of Appled ad Basc Sceces 2015 Avalable ole at www.rjabs.com ISSN 2251-838X / Vol, 9 (3): 387-392 Scece Explorer Publcatos The mpact of servce-oreted archtecture o the schedulg

More information

APPENDIX III THE ENVELOPE PROPERTY

APPENDIX III THE ENVELOPE PROPERTY Apped III APPENDIX III THE ENVELOPE PROPERTY Optmzato mposes a very strog structure o the problem cosdered Ths s the reaso why eoclasscal ecoomcs whch assumes optmzg behavour has bee the most successful

More information