HEAT EXCHANGERS. Associate Professor. IIT Delhi Mech/IITD

Size: px
Start display at page:

Download "HEAT EXCHANGERS. Associate Professor. IIT Delhi E-mail: [email protected]. Mech/IITD"

Transcription

1 HEAT EXHANGES Prabal Talukdar Assoate Professor Departent of Meanal Engneerng IIT Del E-al:

2 Heat Exangers Heat exangers are deves tat faltate te exange of eat between two fluds tat are at dfferent teperatures wle keepng te fro xng wt ea oter Heat exangers are oonly used n prate n a wde range of applatons, fro eatng and ar ondtonng systes n a ouseold, to eal proessng and power produton n large plants

3 Types of Heat Exangers Double ppe Heat exanger

4 opat Heat Exanger Te rato of te eat transfer surfae area of a eat exanger to ts volue s alled te area densty β A eat exanger wt β / 3 (or 200 ft 2 /ft 3 ) s lassfed as beng opat Exaples of opat eat exangers are ar radators ( / 3 ), glass era gas turbne eat exangers ( / 3 ), te regenerator of a Strlng engne ( 5,000 2 / 3 ), and te uan lung ( 20, / 3 ) opat eat exangers are oonly used n gas-to-gas and gas-to-lqud d (or lqud-to-gas) d )eat exangers to ounterat te low eat transfer oeffent assoated wt gas flow wt nreased surfae area

5 ross Flow Heat Exanger In opat eat exangers, te two fluds usually ove perpendular to ea oter, and su flow onfguraton s alled ross-flow Tere are two types of ross flow eat exangers (a) Unxed and (b) Mxed flow

6 Sell-and-Tube Heat Ex Sell-and-tube eat exangers ontan a large nuber of tubes (soetes several undred) paked n a sell wt ter axes parallel to tat of te sell Baffles are oonly plaed n te sell to fore te sell-sde flud to flow aross te sell to enane eat transfer and to antan unfor spang between te tubes

7 Multpass flow arrangeent n sell-and-tube eat exangers

8 Overall Heat Transfer oeff Overall Heat Transfer oeff A πd ) D D ln( A o πd o kl 2 ) D ln(d o wall π o D D ) ln( o o o wall total A kl 2 A \ π T A U T A U T UA T Q o o s Δ Δ Δ Δ o o wall o o s A A A U A U UA Wen wall tkness s very sall and k s large wall beoes 0 and A A o o U o U U U

9 Iportant earks o Te overall eat transfer oeffent U s donated by te saller onveton oeffent, sne te nverse of a large nuber s sall Wen one of te onveton oeffents s u saller tan te oter (say, << o), we ave / >> /o, and tus U Terefore, te saller eat transfer oeffent reates a bottlenek on te pat of eat flow and serously pedes eat transfer Ts stuaton arses frequently wen one of te fluds s a gas and te oter s a lqud In su ases, fns are oonly used on te gas sde to enane te produt UA s and tus te eat transfer on tat sde U

10

11 Foulng Fator Te perforane of eat exangers usually deterorates wt te as a result of auulaton of deposts on eat transfer surfaes Te layer of deposts represents addtonal resstane to eat transfer and auses te rate of eat transfer n a eat exanger to derease Te net effet of tese auulatons on eat transfer s represented by a foulng fator f, w s a easure of te teral resstane ntrodued d by foulng Preptaton foulng of as partles on supereater tubes (fro Stea, Its Generaton, and Use, Babok and Wlox o, 978)

12 Foulng esstanes (Foulng Fators) Te deposton of sale on eat transfer surfae redues te eat ttransfer rate and nrease te pressure drop and pupng power Te overall eat transfer oeffent onsderng foulng resstane on te nsde and outsde U 0 A0 A A A A f, f, o w o o o

13

14 Analyss of eat exanger Log ean teperature dfferene (LMTD) Effetveness NTU Q p (T,out T, n ) Q p (T,n T, out )

15 Heat apaty Heat apaty rate p p Te flud wt a large eat apaty rate wll experene a sall teperature ange, and te flud wt a sall eat apaty rate wll experene a large teperature ange Wen te eat apaty rates of te two fluds are equal to ea oter, ten te teperature rse of a old flud s equal to te teperature drop of te ot flud s

16 ondenser/boler Q fg Te eat apaty rate of a flud durng a pase-ange proess ust approa nfnty sne te teperature ange s pratally zero Tat s, p wen T 0, so tat te eat transfer rate s a fnte quantty Terefore, n eat exanger analyss, a ondensng or bolng flud s onvenently odeled as a flud wose eat apaty rate s nfnty

17 Mean teperature Q UA s Δ T U average an be alulated A s an be alulated How to alulate ean teperature? One way s to alulate te Log ean teperature dfferene In order to develop a relaton for te equvalent average teperature dfferene between te two fluds, onsder a parallel-flow double-ppe eat exanger (next slde)

18 LMTD parallel-flow double-ppe eat exanger δ Q dt δq p p dt δqq dt δq Takng ter dfferene, we get dt dt d(t T ) δq p p dt Te rate of eat transfer n te dfferental seton of te eat exanger an also be expressed as δq U(T T ) das d(t T ) UdAs T T p p p p

19 d(t T T T ) UdA s p p Integratng fro te nlet of te eat exanger to ts outlet, we obtan T ln T,out,n ΔT ln ΔT Q 2 ΔT T T,out,n UA l UA s Q p (T UAs T p p p T,n T,out T,out T,n Q p(t Q& T Δ s T l ΔT ΔT ln( ΔT / ΔT 2 2 ),out,n,out,out T Q T T T,n,out,n ),n Here T ( T,n T,n ) and T 2 ( T,out T,out ) represent te teperature dfferene between te two fluds at te two ends (nlet and outlet) of te eat exanger p Q )

20 LMTD Q UA Δ s T l ΔT l ΔT ΔT ln( ΔT / ΔT 2 2 ) Te log ean teperature dfferene etod s easy to use n eat exanger analyss wen te nlet and te outlet teperatures of te ot and old fluds are known or an be deterned fro an energy balane One T l, te ass flow rates, and te overall eat transfer oeffent are avalable, te eat transfer surfae area of te eat exanger an be deterned fro Q UA Δ s T l

21 For spefed nlet and outlet teperatures, te log ean teperature dfferene for a ounter-flow eat exanger s always greater tan tat for a parallel-flow eat exanger ΔT T ΔTT T Δ 2 l ln( ΔT / ΔT ) 2

22 In a ounter-flow eat exanger, te teperature dfferene between te ot and te old fluds wll rean onstant along te eat exanger wen te eat apaty rates of te two fluds are equal ΔT onstant wen ΔT l Δ T ΔT 2

Chapter 22 Heat Engines, Entropy, and the Second Law of Thermodynamics

Chapter 22 Heat Engines, Entropy, and the Second Law of Thermodynamics apter 22 Heat Engnes, Entropy, and te Seond Law o erodynas 1. e Zerot Law o erodynas: equlbru -> te sae 2. e Frst Law o erodynas: de d + d > adabat, sobar, sovoluetr, soteral 22.1 Heat Engnes and te Seond

More information

Chapter 4. 4.3 Applications of Energy Balance

Chapter 4. 4.3 Applications of Energy Balance Capter 4 4. Appliation of Energy Balane We will diu exaple illutrating te analyi of erveral devie of interet in engineering, inluding nozzle and diffuer, turbine, opreor and pup, eat exanger, and trottling

More information

HEAT EXCHANGERS (1) Overall Heat Transfer Coefficient

HEAT EXCHANGERS (1) Overall Heat Transfer Coefficient HEAT EXCHANGERS Heat exangers transfer eat fr ne wrkng flud t anter. Fr nstane, stea generatrs, feedwater eaters, reeaters and ndensers are all exaples f eat exangers fund n nulear pwer systes. Te eat

More information

HEAT EXCHANGERS-2. Associate Professor. IIT Delhi E-mail: [email protected]. P.Talukdar/ Mech-IITD

HEAT EXCHANGERS-2. Associate Professor. IIT Delhi E-mail: prabal@mech.iitd.ac.in. P.Talukdar/ Mech-IITD HEA EXHANGERS-2 Prabal alukdar Assoiate Professor Department of Mehanial Engineering II Delhi E-mail: [email protected] Multipass and rossflow he subsripts 1 and 2 represent the inlet and outlet, respetively..

More information

Heat Exchangers. Heat Exchanger Types. Heat Exchanger Types. Applied Heat Transfer Part Two. Topics of This chapter

Heat Exchangers. Heat Exchanger Types. Heat Exchanger Types. Applied Heat Transfer Part Two. Topics of This chapter Applied Heat Transfer Part Two Heat Excangers Dr. Amad RAMAZANI S.A. Associate Professor Sarif University of Tecnology انتقال حرارت کاربردی احمد رمضانی سعادت ا بادی Autumn, 1385 (2006) Ramazani, Heat Excangers

More information

Chapter 7. (a) The compressor work is give by. = m (h 2 h 1 ) = (0.08 kg/s)(416.2 398.6) kj/kg = 1.408 kw. (b) The refrigeration capacity, in tons, is

Chapter 7. (a) The compressor work is give by. = m (h 2 h 1 ) = (0.08 kg/s)(416.2 398.6) kj/kg = 1.408 kw. (b) The refrigeration capacity, in tons, is apter 7 Exaple 7.- 6 ---------------------------------------------------------------------------------- Refrigerant 4a i te working fluid in an ideal vapor-opreion refrigeration yle tat ouniate terally

More information

Lecture 24: Spinodal Decomposition: Part 3: kinetics of the

Lecture 24: Spinodal Decomposition: Part 3: kinetics of the Leture 4: Spinodal Deoposition: Part 3: kinetis of the oposition flutuation Today s topis Diffusion kinetis of spinodal deoposition in ters of the onentration (oposition) flutuation as a funtion of tie:

More information

Shell and Tube Heat Exchanger

Shell and Tube Heat Exchanger Sell and Tube Heat Excanger MECH595 Introduction to Heat Transfer Professor M. Zenouzi Prepared by: Andrew Demedeiros, Ryan Ferguson, Bradford Powers November 19, 2009 1 Abstract 2 Contents Discussion

More information

The Mathematics of Pumping Water

The Mathematics of Pumping Water The Matheatics of Puping Water AECOM Design Build Civil, Mechanical Engineering INTRODUCTION Please observe the conversion of units in calculations throughout this exeplar. In any puping syste, the role

More information

Dynamic Modeling and Control of a Hybrid Hydronic Heating System

Dynamic Modeling and Control of a Hybrid Hydronic Heating System Dyna Modelng and Control of a Hybrd Hydron Heatng Syste Yeng Ma A thess n Departent of Buldng Cvl and Envronental Engneerng Presented n Partal Fulfllent of the Requreents For the Degree of Master of Appled

More information

M(0) = 1 M(1) = 2 M(h) = M(h 1) + M(h 2) + 1 (h > 1)

M(0) = 1 M(1) = 2 M(h) = M(h 1) + M(h 2) + 1 (h > 1) Insertion and Deletion in VL Trees Submitted in Partial Fulfillment of te Requirements for Dr. Eric Kaltofen s 66621: nalysis of lgoritms by Robert McCloskey December 14, 1984 1 ackground ccording to Knut

More information

The Velocities of Gas Molecules

The Velocities of Gas Molecules he Velocities of Gas Molecules by Flick Colean Departent of Cheistry Wellesley College Wellesley MA 8 Copyright Flick Colean 996 All rights reserved You are welcoe to use this docuent in your own classes

More information

Jet Engine. Figure 1 Jet engine

Jet Engine. Figure 1 Jet engine Jet Engne Prof. Dr. Mustafa Cavcar Anadolu Unversty, School of Cvl Avaton Esksehr, urkey GROSS HRUS INAKE MOMENUM DRAG NE HRUS Fgure 1 Jet engne he thrust for a turboet engne can be derved from Newton

More information

A Gas Law And Absolute Zero

A Gas Law And Absolute Zero A Gas Law And Absolute Zero Equipent safety goggles, DataStudio, gas bulb with pressure gauge, 10 C to +110 C theroeter, 100 C to +50 C theroeter. Caution This experient deals with aterials that are very

More information

Derivatives Math 120 Calculus I D Joyce, Fall 2013

Derivatives Math 120 Calculus I D Joyce, Fall 2013 Derivatives Mat 20 Calculus I D Joyce, Fall 203 Since we ave a good understanding of its, we can develop derivatives very quickly. Recall tat we defined te derivative f x of a function f at x to be te

More information

Lecture L9 - Linear Impulse and Momentum. Collisions

Lecture L9 - Linear Impulse and Momentum. Collisions J. Peraire, S. Widnall 16.07 Dynaics Fall 009 Version.0 Lecture L9 - Linear Ipulse and Moentu. Collisions In this lecture, we will consider the equations that result fro integrating Newton s second law,

More information

A Gas Law And Absolute Zero Lab 11

A Gas Law And Absolute Zero Lab 11 HB 04-06-05 A Gas Law And Absolute Zero Lab 11 1 A Gas Law And Absolute Zero Lab 11 Equipent safety goggles, SWS, gas bulb with pressure gauge, 10 C to +110 C theroeter, 100 C to +50 C theroeter. Caution

More information

Lecture 10: What is a Function, definition, piecewise defined functions, difference quotient, domain of a function

Lecture 10: What is a Function, definition, piecewise defined functions, difference quotient, domain of a function Lecture 10: Wat is a Function, definition, piecewise defined functions, difference quotient, domain of a function A function arises wen one quantity depends on anoter. Many everyday relationsips between

More information

Exergy Calculation. 3.1 Definition of exergy. 3.2 Exergy calculations. 3.2.1. Exergy of environment air

Exergy Calculation. 3.1 Definition of exergy. 3.2 Exergy calculations. 3.2.1. Exergy of environment air Exergy Calculation This chapter is intended to give the user a better knoledge of exergy calculations in Cycle-Tepo. Exergy is not an absolute quantity but a relative one. Therefore, to say soething about

More information

Chapter 6. Demand Relationships Among Goods

Chapter 6. Demand Relationships Among Goods Chapter 6 Demand Relatonshps Among Goods Up to ths pont, we have held the pre of other goods onstant. Now we onsder how hanges n p affet n a two-good world. I p I p I p I p p p ( ) ( ) then I p then (

More information

f(x + h) f(x) h as representing the slope of a secant line. As h goes to 0, the slope of the secant line approaches the slope of the tangent line.

f(x + h) f(x) h as representing the slope of a secant line. As h goes to 0, the slope of the secant line approaches the slope of the tangent line. Derivative of f(z) Dr. E. Jacobs Te erivative of a function is efine as a limit: f (x) 0 f(x + ) f(x) We can visualize te expression f(x+) f(x) as representing te slope of a secant line. As goes to 0,

More information

( C) CLASS 10. TEMPERATURE AND ATOMS

( C) CLASS 10. TEMPERATURE AND ATOMS CLASS 10. EMPERAURE AND AOMS 10.1. INRODUCION Boyle s understanding of the pressure-volue relationship for gases occurred in the late 1600 s. he relationships between volue and teperature, and between

More information

The Derivative as a Function

The Derivative as a Function Section 2.2 Te Derivative as a Function 200 Kiryl Tsiscanka Te Derivative as a Function DEFINITION: Te derivative of a function f at a number a, denoted by f (a), is if tis limit exists. f (a) f(a+) f(a)

More information

Computer Administering of the Psychological Investigations: Set-Relational Representation

Computer Administering of the Psychological Investigations: Set-Relational Representation Open Journal of Appled Senes 2012 2 110-114 do:10.4236/ojapps.2012.22015 Publshed Onlne June 2012 (http://www.srp.org/journal/ojapps) Coputer Adnsterng of the Psyhologal Investgatons: Set-Relatonal Representaton

More information

Chapter 10: Refrigeration Cycles

Chapter 10: Refrigeration Cycles Capter 10: efrigeration Cycles Te vapor compression refrigeration cycle is a common metod for transferring eat from a low temperature to a ig temperature. Te above figure sows te objectives of refrigerators

More information

Figure 1. Inventory Level vs. Time - EOQ Problem

Figure 1. Inventory Level vs. Time - EOQ Problem IEOR 54 Sprng, 009 rof Leahman otes on Eonom Lot Shedulng and Eonom Rotaton Cyles he Eonom Order Quantty (EOQ) Consder an nventory tem n solaton wth demand rate, holdng ost h per unt per unt tme, and replenshment

More information

Series Solutions of ODEs 2 the Frobenius method. The basic idea of the Frobenius method is to look for solutions of the form 3

Series Solutions of ODEs 2 the Frobenius method. The basic idea of the Frobenius method is to look for solutions of the form 3 Royal Holloway Unversty of London Department of Physs Seres Solutons of ODEs the Frobenus method Introduton to the Methodology The smple seres expanson method works for dfferental equatons whose solutons

More information

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t Indeternate Analyss Force Method The force (flexblty) ethod expresses the relatonshps between dsplaceents and forces that exst n a structure. Prary objectve of the force ethod s to deterne the chosen set

More information

Ch. 9 Center of Mass Momentum. Question 6 Problems: 3, 19, 21, 27, 31, 35, 39, 49, 51, 55, 63, 69, 71, 77

Ch. 9 Center of Mass Momentum. Question 6 Problems: 3, 19, 21, 27, 31, 35, 39, 49, 51, 55, 63, 69, 71, 77 Ch. 9 Center of Mass Moentu Queston 6 Probles: 3, 9,, 7, 3, 35, 39, 49, 5, 55, 63, 69, 7, 77 Center of Mass Use center of ass when no longer dealng wth a pont partcle. The center of ass of a syste of partcles

More information

Instantaneous Rate of Change:

Instantaneous Rate of Change: Instantaneous Rate of Cange: Last section we discovered tat te average rate of cange in F(x) can also be interpreted as te slope of a scant line. Te average rate of cange involves te cange in F(x) over

More information

2141-375 Measurement and Instrumentation. Analog Electrical Devices and Measurements

2141-375 Measurement and Instrumentation. Analog Electrical Devices and Measurements 2141-375 Measureent and Instruentation nalog Electrical Devices and Measureents nalog Devices: Current Measureents Force on a conductor I conductor is placed in a unifor agnetic field B T, at an angle

More information

Small-Signal Analysis of BJT Differential Pairs

Small-Signal Analysis of BJT Differential Pairs 5/11/011 Dfferental Moe Sall Sgnal Analyss of BJT Dff Par 1/1 SallSgnal Analyss of BJT Dfferental Pars Now lets conser the case where each nput of the fferental par conssts of an entcal D bas ter B, an

More information

The Cox-Ross-Rubinstein Option Pricing Model

The Cox-Ross-Rubinstein Option Pricing Model Fnance 400 A. Penat - G. Pennacc Te Cox-Ross-Rubnsten Opton Prcng Model Te prevous notes sowed tat te absence o arbtrage restrcts te prce o an opton n terms o ts underlyng asset. However, te no-arbtrage

More information

PHASE BREW USE & CARE MANUAL 8 CUP COFFEE BREWER. For use with HG

PHASE BREW USE & CARE MANUAL 8 CUP COFFEE BREWER. For use with HG PHASE BREW 8 CUP COFFEE BREWER USE & CARE MANUAL For use wit HG Welcoe to Pase Brew! You re about to brewing better coffee in a wole new way! Te BUNN Pase Brew wit Heat & Release Tecnology is different

More information

Math 113 HW #5 Solutions

Math 113 HW #5 Solutions Mat 3 HW #5 Solutions. Exercise.5.6. Suppose f is continuous on [, 5] and te only solutions of te equation f(x) = 6 are x = and x =. If f() = 8, explain wy f(3) > 6. Answer: Suppose we ad tat f(3) 6. Ten

More information

Modern Problem Solving Techniques in Engineering with POLYMATH, Excel and MATLAB. Introduction

Modern Problem Solving Techniques in Engineering with POLYMATH, Excel and MATLAB. Introduction Modern Problem Solvng Tehnques n Engneerng wth POLYMATH, Exel and MATLAB. Introduton Engneers are fundamentally problem solvers, seekng to aheve some objetve or desgn among tehnal, soal eonom, regulatory

More information

HEAT TRANSFER HEAT EXCHANGERS

HEAT TRANSFER HEAT EXCHANGERS HET EXCHNGER Types f Heat Exchangers Heat exchangers are classfed accrdng t flw arrangement and type f cnstructn.. Duble-ppe heat exchanger ne flud flws thrugh the smaller ppe whle the ther flud flws thrugh

More information

Heat exchangers are devices that facilitate the exchange of heat between

Heat exchangers are devices that facilitate the exchange of heat between cen5426_ch23.qxd /26/04 9:42 AM Page 03 HEAT EXCHANGERS CHAPTER 23 Heat exchangers are devices that facilitate the exchange of heat between two fluids that are at different temperatures while keeping them

More information

Bending Stresses for Simple Shapes

Bending Stresses for Simple Shapes -6 Bendng Stesses fo Smple Sapes In bendng, te maxmum stess and amount of deflecton can be calculated n eac of te followng stuatons. Addtonal examples ae avalable n an engneeng andbook. Secton Modulus

More information

Physics 211: Lab Oscillations. Simple Harmonic Motion.

Physics 211: Lab Oscillations. Simple Harmonic Motion. Physics 11: Lab Oscillations. Siple Haronic Motion. Reading Assignent: Chapter 15 Introduction: As we learned in class, physical systes will undergo an oscillatory otion, when displaced fro a stable equilibriu.

More information

Design of heat exchangers

Design of heat exchangers Design of heat exchangers Exchanger Design Methodology The problem of heat exchanger design is complex and multidisciplinary. The major design considerations for a new heat exchanger include: process/design

More information

HW 2. Q v. kt Step 1: Calculate N using one of two equivalent methods. Problem 4.2. a. To Find:

HW 2. Q v. kt Step 1: Calculate N using one of two equivalent methods. Problem 4.2. a. To Find: HW 2 Proble 4.2 a. To Find: Nuber of vacancies per cubic eter at a given teperature. b. Given: T 850 degrees C 1123 K Q v 1.08 ev/ato Density of Fe ( ρ ) 7.65 g/cc Fe toic weight of iron ( c. ssuptions:

More information

Theoretical calculation of the heat capacity

Theoretical calculation of the heat capacity eoretical calculation of te eat capacity Principle of equipartition of energy Heat capacity of ideal and real gases Heat capacity of solids: Dulong-Petit, Einstein, Debye models Heat capacity of metals

More information

Quantum-like Models in Economics and Finances

Quantum-like Models in Economics and Finances Quantu-like Models in Econoics and Finances Olga Coustova International Center for Mateatical Modeling in Pysics and Cognitive Sciences University of Växjö, S-35195, Sweden Abstract We apply etods of quantu

More information

ACT Math Facts & Formulas

ACT Math Facts & Formulas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Rationals: fractions, tat is, anyting expressable as a ratio of integers Reals: integers plus rationals plus special numbers suc as

More information

Least Squares Fitting of Data

Least Squares Fitting of Data Least Squares Fttng of Data Davd Eberly Geoetrc Tools, LLC http://www.geoetrctools.co/ Copyrght c 1998-2016. All Rghts Reserved. Created: July 15, 1999 Last Modfed: January 5, 2015 Contents 1 Lnear Fttng

More information

Homework: 49, 56, 67, 60, 64, 74 (p. 234-237)

Homework: 49, 56, 67, 60, 64, 74 (p. 234-237) Hoework: 49, 56, 67, 60, 64, 74 (p. 34-37) 49. bullet o ass 0g strkes a ballstc pendulu o ass kg. The center o ass o the pendulu rses a ertcal dstance o c. ssung that the bullet reans ebedded n the pendulu,

More information

Compute the derivative by definition: The four step procedure

Compute the derivative by definition: The four step procedure Compute te derivative by definition: Te four step procedure Given a function f(x), te definition of f (x), te derivative of f(x), is lim 0 f(x + ) f(x), provided te limit exists Te derivative function

More information

Basic Queueing Theory M/M/* Queues. Introduction

Basic Queueing Theory M/M/* Queues. Introduction Basc Queueng Theory M/M/* Queues These sldes are created by Dr. Yh Huang of George Mason Unversty. Students regstered n Dr. Huang's courses at GMU can ake a sngle achne-readable copy and prnt a sngle copy

More information

Chapter 5. Principles of Unsteady - State Heat Transfer

Chapter 5. Principles of Unsteady - State Heat Transfer Suppleental Material for ransport Process and Separation Process Principles hapter 5 Principles of Unsteady - State Heat ransfer In this chapter, we will study cheical processes where heat transfer is

More information

Math 229 Lecture Notes: Product and Quotient Rules Professor Richard Blecksmith [email protected]

Math 229 Lecture Notes: Product and Quotient Rules Professor Richard Blecksmith richard@math.niu.edu Mat 229 Lecture Notes: Prouct an Quotient Rules Professor Ricar Blecksmit [email protected] 1. Time Out for Notation Upate It is awkwar to say te erivative of x n is nx n 1 Using te prime notation for erivatives,

More information

2.2. Basic Equations for Heat Exchanger Design

2.2. Basic Equations for Heat Exchanger Design .. Basic Equations for Heat Exchanger Design... The Basic Design Equation and Overall Heat Transfer Coefficient The basic heat exchanger equations applicable to shell and tube exchangers were developed

More information

Model Predictive Control Approach to Improve the Control Performance in Pasteurized Milk Process

Model Predictive Control Approach to Improve the Control Performance in Pasteurized Milk Process Paper code: pc IChE International Conference Noveber, at Hatyai, Songkhla HAIAND odel Predictive Control Approach to Iprove the Control Perforance in Pasteurized ilk Process Sathit Niasuwan, Paisan Kittisupakorn

More information

An Electricity Trade Model for Microgrid Communities in Smart Grid

An Electricity Trade Model for Microgrid Communities in Smart Grid An Electrcty Trade Model for Mcrogrd Countes n Sart Grd Tansong Cu, Yanzh Wang, Shahn Nazaran and Massoud Pedra Unversty of Southern Calforna Departent of Electrcal Engneerng Los Angeles, CA, USA {tcu,

More information

The EOQ Inventory Formula

The EOQ Inventory Formula Te EOQ Inventory Formula James M. Cargal Matematics Department Troy University Montgomery Campus A basic problem for businesses and manufacturers is, wen ordering supplies, to determine wat quantity of

More information

Verifying Numerical Convergence Rates

Verifying Numerical Convergence Rates 1 Order of accuracy Verifying Numerical Convergence Rates We consider a numerical approximation of an exact value u. Te approximation depends on a small parameter, suc as te grid size or time step, and

More information

1 The Collocation Method

1 The Collocation Method CS410 Assignment 7 Due: 1/5/14 (Fri) at 6pm You must wor eiter on your own or wit one partner. You may discuss bacground issues and general solution strategies wit oters, but te solutions you submit must

More information

6. Differentiating the exponential and logarithm functions

6. Differentiating the exponential and logarithm functions 1 6. Differentiating te exponential and logaritm functions We wis to find and use derivatives for functions of te form f(x) = a x, were a is a constant. By far te most convenient suc function for tis purpose

More information

Experiment 2 Index of refraction of an unknown liquid --- Abbe Refractometer

Experiment 2 Index of refraction of an unknown liquid --- Abbe Refractometer Experient Index of refraction of an unknown liquid --- Abbe Refractoeter Principle: The value n ay be written in the for sin ( δ +θ ) n =. θ sin This relation provides us with one or the standard ethods

More information

VALMET AUTOMOTIVE INC

VALMET AUTOMOTIVE INC VALET AUTOOTIVE IN VALET AUTOOTIVE IN OTE ESSAGES AVIEXP VERSION 3 Version 0.4.0 18.02.2010 Author: 10 / 8 1999 arkku Holopainen, EDIASTER OY Inspector: / 1999 Acceptor: / 1999 VALET AUTOOTIVE IN arkku

More information

Factor Model. Arbitrage Pricing Theory. Systematic Versus Non-Systematic Risk. Intuitive Argument

Factor Model. Arbitrage Pricing Theory. Systematic Versus Non-Systematic Risk. Intuitive Argument Ross [1],[]) presents the aritrage pricing theory. The idea is that the structure of asset returns leads naturally to a odel of risk preia, for otherwise there would exist an opportunity for aritrage profit.

More information

Membrane Distillation Process for Pure Water and Removal of Arsenic

Membrane Distillation Process for Pure Water and Removal of Arsenic Membrane Distillation Proess for Pure Water and Removal of Arseni M. S. tesis for te International Master s Program in Applied Environmental Measurement Teniques Asiq Moinul Islam Supervisor: Asso. Prof.

More information

EC201 Intermediate Macroeconomics. EC201 Intermediate Macroeconomics Problem set 8 Solution

EC201 Intermediate Macroeconomics. EC201 Intermediate Macroeconomics Problem set 8 Solution EC201 Intermediate Macroeconomics EC201 Intermediate Macroeconomics Prolem set 8 Solution 1) Suppose tat te stock of mone in a given econom is given te sum of currenc and demand for current accounts tat

More information

Lesson 44: Acceleration, Velocity, and Period in SHM

Lesson 44: Acceleration, Velocity, and Period in SHM Lesson 44: Acceleration, Velocity, and Period in SHM Since there is a restoring force acting on objects in SHM it akes sense that the object will accelerate. In Physics 20 you are only required to explain

More information

Sections 3.1/3.2: Introducing the Derivative/Rules of Differentiation

Sections 3.1/3.2: Introducing the Derivative/Rules of Differentiation Sections 3.1/3.2: Introucing te Derivative/Rules of Differentiation 1 Tangent Line Before looking at te erivative, refer back to Section 2.1, looking at average velocity an instantaneous velocity. Here

More information

Calculation Method for evaluating Solar Assisted Heat Pump Systems in SAP 2009. 15 July 2013

Calculation Method for evaluating Solar Assisted Heat Pump Systems in SAP 2009. 15 July 2013 Calculation Method for evaluating Solar Assisted Heat Pup Systes in SAP 2009 15 July 2013 Page 1 of 17 1 Introduction This docuent describes how Solar Assisted Heat Pup Systes are recognised in the National

More information

24. Impact of Piracy on Innovation at Software Firms and Implications for Piracy Policy

24. Impact of Piracy on Innovation at Software Firms and Implications for Piracy Policy 4. mpat of Pray on nnovaton at Software Frms and mplatons for Pray Poly Jeevan Jasngh Department of nformaton & Systems Management, HKUST Clear Water Bay, Kowloon Hong Kong [email protected] Abstrat A Busness

More information

Use of extrapolation to forecast the working capital in the mechanical engineering companies

Use of extrapolation to forecast the working capital in the mechanical engineering companies ECONTECHMOD. AN INTERNATIONAL QUARTERLY JOURNAL 2014. Vol. 1. No. 1. 23 28 Use of extrapolation to forecast the working capital in the echanical engineering copanies A. Cherep, Y. Shvets Departent of finance

More information

SAT Subject Math Level 1 Facts & Formulas

SAT Subject Math Level 1 Facts & Formulas Numbers, Sequences, Factors Integers:..., -3, -2, -1, 0, 1, 2, 3,... Reals: integers plus fractions, decimals, and irrationals ( 2, 3, π, etc.) Order Of Operations: Aritmetic Sequences: PEMDAS (Parenteses

More information

Two-Phase Traceback of DDoS Attacks with Overlay Network

Two-Phase Traceback of DDoS Attacks with Overlay Network 4th Internatonal Conference on Sensors, Measureent and Intellgent Materals (ICSMIM 205) Two-Phase Traceback of DDoS Attacks wth Overlay Network Zahong Zhou, a, Jang Wang2, b and X Chen3, c -2 School of

More information

Modeling and Assessment Performance of OpenFlow-Based Network Control Plane

Modeling and Assessment Performance of OpenFlow-Based Network Control Plane ISSN (Onlne): 2319-7064 Index Coperncus Value (2013): 6.14 Ipact Factor (2013): 4.438 Modelng and Assessent Perforance of OpenFlo-Based Netork Control Plane Saer Salah Al_Yassn Assstant Teacher, Al_Maon

More information

Scaling of Seepage Flow Velocity in Centrifuge Models CUED/D-SOILS/TR326 (March 2003) N.I.Thusyanthan 1 & S.P.G.Madabhushi 2

Scaling of Seepage Flow Velocity in Centrifuge Models CUED/D-SOILS/TR326 (March 2003) N.I.Thusyanthan 1 & S.P.G.Madabhushi 2 Scaling of Seepage Flow Velocity in Centrifuge Models CUED/D-SOILS/TR326 (March 2003) N.I.Thusyanthan 1 & S.P.G.Madabhushi 2 Research Student 1, Senior Lecturer 2, Cabridge University Engineering Departent

More information

Section 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations

Section 3.3. Differentiation of Polynomials and Rational Functions. Difference Equations to Differential Equations Difference Equations to Differential Equations Section 3.3 Differentiation of Polynomials an Rational Functions In tis section we begin te task of iscovering rules for ifferentiating various classes of

More information

Answer, Key Homework 7 David McIntyre 45123 Mar 25, 2004 1

Answer, Key Homework 7 David McIntyre 45123 Mar 25, 2004 1 Answer, Key Hoework 7 David McIntyre 453 Mar 5, 004 This print-out should have 4 questions. Multiple-choice questions ay continue on the next colun or page find all choices before aking your selection.

More information

Note nine: Linear programming CSE 101. 1 Linear constraints and objective functions. 1.1 Introductory example. Copyright c Sanjoy Dasgupta 1

Note nine: Linear programming CSE 101. 1 Linear constraints and objective functions. 1.1 Introductory example. Copyright c Sanjoy Dasgupta 1 Copyrigt c Sanjoy Dasgupta Figure. (a) Te feasible region for a linear program wit two variables (see tet for details). (b) Contour lines of te objective function: for different values of (profit). Te

More information

E-learning Vendor Management Checklist

E-learning Vendor Management Checklist E-learning Vendor Management Checklist June 2008 Permission is granted to print freely, unmodified, this document from www.doingelearning.com or to copy it in electronic form. If linked to from the net

More information

II. THE QUALITY AND REGULATION OF THE DISTRIBUTION COMPANIES I. INTRODUCTION

II. THE QUALITY AND REGULATION OF THE DISTRIBUTION COMPANIES I. INTRODUCTION Fronter Methodology to fx Qualty goals n Electrcal Energy Dstrbuton Copanes R. Rarez 1, A. Sudrà 2, A. Super 3, J.Bergas 4, R.Vllafáfla 5 1-2 -3-4-5 - CITCEA - UPC UPC., Unversdad Poltécnca de Cataluña,

More information

Accounting for exogenous influences in a benevolent performance evaluation of teachers

Accounting for exogenous influences in a benevolent performance evaluation of teachers Aountng for exogenous nfluenes n a benevolent perforane evaluaton of teahers by Krstof DE WITTE Nky ROGGE Publ Eonos Center for Eono Studes Dsussons Paper Seres (DPS) 09.13 http://www.eon.kuleuven.be/es/dsussonpapers/default.ht

More information

A Novel Dynamic Role-Based Access Control Scheme in User Hierarchy

A Novel Dynamic Role-Based Access Control Scheme in User Hierarchy Journal of Coputatonal Inforaton Systes 6:7(200) 2423-2430 Avalable at http://www.jofcs.co A Novel Dynac Role-Based Access Control Schee n User Herarchy Xuxa TIAN, Zhongqn BI, Janpng XU, Dang LIU School

More information

Modelling Fine Particle Formation and Alkali Metal Deposition in BFB Combustion

Modelling Fine Particle Formation and Alkali Metal Deposition in BFB Combustion Modelling Fine Particle Foration and Alkali Metal Deposition in BFB Cobustion Jora Jokiniei and Olli Sippula University of Kuopio and VTT, Finland e-ail: [email protected] Flae Days, Naantali 8.-9.01.009

More information

EUROMAP 46.1. Extrusion Blow Moulding Machines Determination of Machine Related Energy Efficiency Class. Version 1.0, January 2014 13 pages

EUROMAP 46.1. Extrusion Blow Moulding Machines Determination of Machine Related Energy Efficiency Class. Version 1.0, January 2014 13 pages EUROMAP 46.1 Extrusion Blow Moulding Machines Deterination of Machine Related Energy Efficiency Class Version 1.0, January 2014 13 pages This recoendation was prepared by the Technical Coission of EUROMAP.

More information

Models RSR-M, RSR-N and RSR-TN

Models RSR-M, RSR-N and RSR-TN odels RSR-, RSR- and RSR-T 1.6 troug 2-l 1 2 1 odel RSR3 2-l 1.6 troug 2 1 1 odel RSR3 Outer dimensions dimensions odel o. Heigt idt engt Greasing ole Grease nipple RSR 3 RSR 3 RSR 5 RSR 5 RSR 5T odel

More information

Maximizing profit using recommender systems

Maximizing profit using recommender systems Maxzng proft usng recoender systes Aparna Das Brown Unversty rovdence, RI [email protected] Clare Matheu Brown Unversty rovdence, RI [email protected] Danel Rcketts Brown Unversty rovdence, RI [email protected]

More information

PHYSICS 151 Notes for Online Lecture 2.2

PHYSICS 151 Notes for Online Lecture 2.2 PHYSICS 151 otes for Online Lecture. A free-bod diagra is a wa to represent all of the forces that act on a bod. A free-bod diagra akes solving ewton s second law for a given situation easier, because

More information

CHAPTER-II WATER-FLOODING. Calculating Oil Recovery Resulting from Displ. by an Immiscible Fluid:

CHAPTER-II WATER-FLOODING. Calculating Oil Recovery Resulting from Displ. by an Immiscible Fluid: CHAPTER-II WATER-FLOODING Interfacal Tenson: Energy requred ncreasng te area of te nterface by one unt. Te metods of measurng IFT s nclude a rng tensometer, pendant drop and spnnng drop tecnques. IFT s

More information

Pressure. Pressure. Atmospheric pressure. Conceptual example 1: Blood pressure. Pressure is force per unit area:

Pressure. Pressure. Atmospheric pressure. Conceptual example 1: Blood pressure. Pressure is force per unit area: Pressure Pressure is force per unit area: F P = A Pressure Te direction of te force exerted on an object by a fluid is toward te object and perpendicular to its surface. At a microscopic level, te force

More information

RESEARCH ON DUAL-SHAKER SINE VIBRATION CONTROL. Yaoqi FENG 1, Hanping QIU 1. China Academy of Space Technology (CAST) yaoqi.feng@yahoo.

RESEARCH ON DUAL-SHAKER SINE VIBRATION CONTROL. Yaoqi FENG 1, Hanping QIU 1. China Academy of Space Technology (CAST) yaoqi.feng@yahoo. ICSV4 Carns Australa 9- July, 007 RESEARCH ON DUAL-SHAKER SINE VIBRATION CONTROL Yaoq FENG, Hanpng QIU Dynamc Test Laboratory, BISEE Chna Academy of Space Technology (CAST) [email protected] Abstract

More information

Kinetic Molecular Theory of Ideal Gases

Kinetic Molecular Theory of Ideal Gases ecture /. Kinetic olecular Theory of Ideal Gases ast ecture. IG is a purely epirical law - solely the consequence of eperiental obserations Eplains the behaior of gases oer a liited range of conditions.

More information

substances (among other variables as well). ( ) Thus the change in volume of a mixture can be written as

substances (among other variables as well). ( ) Thus the change in volume of a mixture can be written as Mxtures and Solutons Partal Molar Quanttes Partal molar volume he total volume of a mxture of substances s a functon of the amounts of both V V n,n substances (among other varables as well). hus the change

More information

Memory and Computation Efficient PCA via Very Sparse Random Projections

Memory and Computation Efficient PCA via Very Sparse Random Projections Meory and Coputation Efficient PCA via Very Sparse Rando Projections Farad Pourkaali-Anaraki [email protected] Sannon M. Huges [email protected] Departent of Electrical, Coputer,

More information