Lesson 12. Sequences and Series

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Lesson 12. Sequences and Series"

Transcription

1 Retur to List of Lessos Lesso. Sequeces ad Series A ifiite sequece { a, a, a,... a,...} ca be thought of as a list of umbers writte i defiite order ad certai patter. It is usually deoted by { a } =, or simply { a }. Because the th term of a sequece is sufficiet to express the patter of a sequece, it is usually called the geeral term of the sequece For istace, if cosiderig a sequece,,,,,..., the patter of this sequece is determied by the th term of the sequece. I this case, you will aturally try to ivestigate the patter of the umerators, deomiators ad the alteratig sigs i order to fid the expressio of the th term. I this case for =,,,, 5,..., you ca fid The patter of the umerators is {,, 5, 6, 7, }, 5 The patter of the deomiators is { 5, 5, 5, 5, 5, }, 0 5 The patter of the sigs is {( ), ( ), ( ), ( ), ( ), ( ),...( )...}, So the th term of the sequece is ( ) + 5, ad this sequece is represeted by + ( ) 5. A ifiite series is the sum of a ifiite sequece ad writte as = th partial sum of a ifiite sequece is give by a a = a + a The a = a + a + +. For istace, for a ifiite i a sequece,,,,,..., the sum of the sequece is the well-kow geometric series i 8 6 with ratio of /. Whe we studyig calculus, our major cocer is whether a series is coverget or diverget. As you kow, if the limit of the th partial sum s = a + a + a + + a exists, the series is said to be coverget; Otherwise it is diverget.

2 I this lesso we will lear how to use Mathematica to costruct ifiite sequeces, calculate the limit of a sequece, fid the th partial sum of a sequece ad ivestigate the covergece of a ifiite series. The followig four examples are chose to help you practice ad uderstad the computer programmig techiques. Example List the first 7 terms of a geometric sequece with ratio of ½. Fid the sum of the first terms of a geometric sequece with ratio of ½. Determie whether the geometric series is coverget or ot. Solutio To list the first 7 terms of the geometric sequece, we use the commad Table[ ] to list the umbers i order ad the otatio {i,, 7} to idicate the idex i takig the value from to 7.,,,,,,,,, To fid the sum of the first terms of the geometric sequece, we use the commad Sum[ ] ad iclude the otatio { i,, } that idicates the idex i takig its value from to.,,, The outcome geerated by Mathematica is right but looks a little weird. If simplifyig a little bit, the outcome will be like ( + ) =, which is the same as what you leared i calculus class. To determie whether the geometric series sequece from i = to i =. i coverges, we ca fid the sum of all terms i the,,, Sice the limit of the th partial sum is equal to, we ca say that the geometric series is coverget.

3 Example List the first 7 terms of a geometric sequece with ratio of /. Fid the sum of the first terms of a geometric sequece with ratio of /. Determie whether the geometric series is coverget. Solutio This example is similar to the previous oe. You are asked to ivestigate the same iformatio of a geometric sequece with the ratio of /. So we follow the same steps as the previous example. The sum of the first terms is,,,,,,,,,,,, The sum of all the terms of the sequece is,,, Sum::div: Sum does ot coverge. á Sice the limit of the th partial sum is diverget, we ca say that the geometric series is diverget. The covergece or divergece of a geometric series with a ratio of r depeds o the value of the ratio r. We ca use the Mathematica fuctio,,, to fid out the th partial sum of a geometric series. The th partial sum is. Use what we leared from Calculus II, (a) Whe r <, the limit of (b) Whe r, the limit of (as (as r ) is equal to. The series is coverget. r ) is equal to or. The series diverges. Next we will preset the th partial sum of a very special type series Iteger Power Series. The followig four series are chose here for your ivestigatio.

4 Example Fid the sum of the first term of the iteger power sequece. a) i = b) i c) i d) i Solutio = + = + = We simply use the commad Sum[ ] to fid the th partial sum of ay power series i secods. As you kow, these are importat formulas we have leared i calculus. You ca take advatage of Mathematica programmig to fid them wheever you eed them. a) b) c),,,,,,,,, d),,,

5 I the last part of this lesso, a more complicated sequece is chose for you to practice Mathematica programmig oe more time o the commads: Table[ ], Sum[ ], ad Limit[ ]. Example Cosider the sequece + ( ) 5 =. a) List the first 7 terms of the sequece. b) Determie whether the sequece is coverget. c) Fid the sum of the first 7 terms of the sequece. d) Fid the sum of the first terms of the sequece. e) Fid the sum of the etire sequece (from to ). Solutio. a) We list the first 7 terms of the sequece usig the commad Table[ ].,,,,,,,,, Note {,, 7} idicates the idex startig from ad edig at 7. You ca always modify the startig ad edig values of if you eed to. If you wat to sum up all terms from = 0 to = 8, you ca just chage the idex rage to, 0, 8 so that you get,,,,,,,,,,, The it gives the first 9 terms of the sequece with the idex startig from 0 ad edig at 8. 5

6 b) To determie whether the sequece is coverget or diverget, we calculate the limit of the th term by lettig., c) The sum of the first 7 terms of the sequece is calculated by,,, As we discussed before, if you eed the umerical value istead of the fractioal value, we ca always use N[ ] to get d) The sum of the first terms of the sequece is 0.7,,, The Mathematica outcome may ot be the same as what you calculated by had, but it is correct with o doubt. It just seems a little weird compared to what you ormally did i calculus. e) The sum of the etire sequece is calculated by ruig the terms from = to =,,, 6

7 I this case we ca say this series is coverget because the ifiite sum is fiite. Retur to List of Lessos 7

Infinite Sequences and Series

Infinite Sequences and Series CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

4.3. The Integral and Comparison Tests

4.3. The Integral and Comparison Tests 4.3. THE INTEGRAL AND COMPARISON TESTS 9 4.3. The Itegral ad Compariso Tests 4.3.. The Itegral Test. Suppose f is a cotiuous, positive, decreasig fuctio o [, ), ad let a = f(). The the covergece or divergece

More information

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem Lecture 4: Cauchy sequeces, Bolzao-Weierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits

More information

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

Sequences and Series

Sequences and Series CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

More information

Section 11.3: The Integral Test

Section 11.3: The Integral Test Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

More information

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here). BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

More information

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

Theorems About Power Series

Theorems About Power Series Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real o-egative umber R, called the radius

More information

Basic Elements of Arithmetic Sequences and Series

Basic Elements of Arithmetic Sequences and Series MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic

More information

INFINITE SERIES KEITH CONRAD

INFINITE SERIES KEITH CONRAD INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal

More information

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

More information

Properties of MLE: consistency, asymptotic normality. Fisher information.

Properties of MLE: consistency, asymptotic normality. Fisher information. Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

More information

SEQUENCES AND SERIES

SEQUENCES AND SERIES Chapter 9 SEQUENCES AND SERIES Natural umbers are the product of huma spirit. DEDEKIND 9.1 Itroductio I mathematics, the word, sequece is used i much the same way as it is i ordiary Eglish. Whe we say

More information

hp calculators HP 12C Statistics - average and standard deviation Average and standard deviation concepts HP12C average and standard deviation

hp calculators HP 12C Statistics - average and standard deviation Average and standard deviation concepts HP12C average and standard deviation HP 1C Statistics - average ad stadard deviatio Average ad stadard deviatio cocepts HP1C average ad stadard deviatio Practice calculatig averages ad stadard deviatios with oe or two variables HP 1C Statistics

More information

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern. 5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers

More information

BINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients

BINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients 652 (12-26) Chapter 12 Sequeces ad Series 12.5 BINOMIAL EXPANSIONS I this sectio Some Examples Otaiig the Coefficiets The Biomial Theorem I Chapter 5 you leared how to square a iomial. I this sectio you

More information

Engineering 323 Beautiful Homework Set 3 1 of 7 Kuszmar Problem 2.51

Engineering 323 Beautiful Homework Set 3 1 of 7 Kuszmar Problem 2.51 Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log

More information

Building Blocks Problem Related to Harmonic Series

Building Blocks Problem Related to Harmonic Series TMME, vol3, o, p.76 Buildig Blocks Problem Related to Harmoic Series Yutaka Nishiyama Osaka Uiversity of Ecoomics, Japa Abstract: I this discussio I give a eplaatio of the divergece ad covergece of ifiite

More information

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is 0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

More information

Elementary Theory of Russian Roulette

Elementary Theory of Russian Roulette Elemetary Theory of Russia Roulette -iterestig patters of fractios- Satoshi Hashiba Daisuke Miematsu Ryohei Miyadera Itroductio. Today we are goig to study mathematical theory of Russia roulette. If some

More information

a 4 = 4 2 4 = 12. 2. Which of the following sequences converge to zero? n 2 (a) n 2 (b) 2 n x 2 x 2 + 1 = lim x n 2 + 1 = lim x

a 4 = 4 2 4 = 12. 2. Which of the following sequences converge to zero? n 2 (a) n 2 (b) 2 n x 2 x 2 + 1 = lim x n 2 + 1 = lim x 0 INFINITE SERIES 0. Sequeces Preiary Questios. What is a 4 for the sequece a? solutio Substitutig 4 i the expressio for a gives a 4 4 4.. Which of the followig sequeces coverge to zero? a b + solutio

More information

Asymptotic Growth of Functions

Asymptotic Growth of Functions CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll

More information

3 Basic Definitions of Probability Theory

3 Basic Definitions of Probability Theory 3 Basic Defiitios of Probability Theory 3defprob.tex: Feb 10, 2003 Classical probability Frequecy probability axiomatic probability Historical developemet: Classical Frequecy Axiomatic The Axiomatic defiitio

More information

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction THE ARITHMETIC OF INTEGERS - multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,

More information

Multiple Representations for Pattern Exploration with the Graphing Calculator and Manipulatives

Multiple Representations for Pattern Exploration with the Graphing Calculator and Manipulatives Douglas A. Lapp Multiple Represetatios for Patter Exploratio with the Graphig Calculator ad Maipulatives To teach mathematics as a coected system of cocepts, we must have a shift i emphasis from a curriculum

More information

I. Chi-squared Distributions

I. Chi-squared Distributions 1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

More information

1 Computing the Standard Deviation of Sample Means

1 Computing the Standard Deviation of Sample Means Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.

More information

Remarques sur un beau rapport entre les series des puissances tant directes que reciproques

Remarques sur un beau rapport entre les series des puissances tant directes que reciproques Aug 006 Traslatio with otes of Euler s paper Remarques sur u beau rapport etre les series des puissaces tat directes que reciproques Origially published i Memoires de l'academie des scieces de Berli 7

More information

Chapter 7 Methods of Finding Estimators

Chapter 7 Methods of Finding Estimators Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

More information

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio

More information

Listing terms of a finite sequence List all of the terms of each finite sequence. a) a n n 2 for 1 n 5 1 b) a n for 1 n 4 n 2

Listing terms of a finite sequence List all of the terms of each finite sequence. a) a n n 2 for 1 n 5 1 b) a n for 1 n 4 n 2 74 (4 ) Chapter 4 Sequeces ad Series 4. SEQUENCES I this sectio Defiitio Fidig a Formula for the th Term The word sequece is a familiar word. We may speak of a sequece of evets or say that somethig is

More information

5 Boolean Decision Trees (February 11)

5 Boolean Decision Trees (February 11) 5 Boolea Decisio Trees (February 11) 5.1 Graph Coectivity Suppose we are give a udirected graph G, represeted as a boolea adjacecy matrix = (a ij ), where a ij = 1 if ad oly if vertices i ad j are coected

More information

MARTINGALES AND A BASIC APPLICATION

MARTINGALES AND A BASIC APPLICATION MARTINGALES AND A BASIC APPLICATION TURNER SMITH Abstract. This paper will develop the measure-theoretic approach to probability i order to preset the defiitio of martigales. From there we will apply this

More information

3. Greatest Common Divisor - Least Common Multiple

3. Greatest Common Divisor - Least Common Multiple 3 Greatest Commo Divisor - Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd

More information

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series 8 Fourier Series Our aim is to show that uder reasoable assumptios a give -periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series

More information

Confidence Intervals for One Mean

Confidence Intervals for One Mean Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a

More information

CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

More information

Escola Federal de Engenharia de Itajubá

Escola Federal de Engenharia de Itajubá Escola Federal de Egeharia de Itajubá Departameto de Egeharia Mecâica Pós-Graduação em Egeharia Mecâica MPF04 ANÁLISE DE SINAIS E AQUISÇÃO DE DADOS SINAIS E SISTEMAS Trabalho 02 (MATLAB) Prof. Dr. José

More information

A probabilistic proof of a binomial identity

A probabilistic proof of a binomial identity A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two

More information

Incremental calculation of weighted mean and variance

Incremental calculation of weighted mean and variance Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically

More information

Domain 1: Designing a SQL Server Instance and a Database Solution

Domain 1: Designing a SQL Server Instance and a Database Solution Maual SQL Server 2008 Desig, Optimize ad Maitai (70-450) 1-800-418-6789 Domai 1: Desigig a SQL Server Istace ad a Database Solutio Desigig for CPU, Memory ad Storage Capacity Requiremets Whe desigig a

More information

Modified Line Search Method for Global Optimization

Modified Line Search Method for Global Optimization Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o

More information

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value

More information

Class Meeting # 16: The Fourier Transform on R n

Class Meeting # 16: The Fourier Transform on R n MATH 18.152 COUSE NOTES - CLASS MEETING # 16 18.152 Itroductio to PDEs, Fall 2011 Professor: Jared Speck Class Meetig # 16: The Fourier Trasform o 1. Itroductio to the Fourier Trasform Earlier i the course,

More information

Lesson 17 Pearson s Correlation Coefficient

Lesson 17 Pearson s Correlation Coefficient Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) -types of data -scatter plots -measure of directio -measure of stregth Computatio -covariatio of X ad Y -uique variatio i X ad Y -measurig

More information

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chi-square (χ ) distributio.

More information

Math C067 Sampling Distributions

Math C067 Sampling Distributions Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters

More information

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Cosider a legth- sequece x[ with a -poit DFT X[ where Represet the idices ad as +, +, Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Usig these

More information

Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling

Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed Multi-Evet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria

More information

Your organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows:

Your organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows: Subettig Subettig is used to subdivide a sigle class of etwork i to multiple smaller etworks. Example: Your orgaizatio has a Class B IP address of 166.144.0.0 Before you implemet subettig, the Network

More information

5.3. Generalized Permutations and Combinations

5.3. Generalized Permutations and Combinations 53 GENERALIZED PERMUTATIONS AND COMBINATIONS 73 53 Geeralized Permutatios ad Combiatios 53 Permutatios with Repeated Elemets Assume that we have a alphabet with letters ad we wat to write all possible

More information

Overview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals

Overview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals Overview Estimatig the Value of a Parameter Usig Cofidece Itervals We apply the results about the sample mea the problem of estimatio Estimatio is the process of usig sample data estimate the value of

More information

CHAPTER 3 DIGITAL CODING OF SIGNALS

CHAPTER 3 DIGITAL CODING OF SIGNALS CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity

More information

Present Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value

Present Value Factor To bring one dollar in the future back to present, one uses the Present Value Factor (PVF): Concept 9: Present Value Cocept 9: Preset Value Is the value of a dollar received today the same as received a year from today? A dollar today is worth more tha a dollar tomorrow because of iflatio, opportuity cost, ad risk Brigig

More information

CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homework 4 Solutions CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

More information

Determining the sample size

Determining the sample size Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors

More information

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas: Chapter 7 - Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries

More information

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions

Chapter 5 Unit 1. IET 350 Engineering Economics. Learning Objectives Chapter 5. Learning Objectives Unit 1. Annual Amount and Gradient Functions Chapter 5 Uit Aual Amout ad Gradiet Fuctios IET 350 Egieerig Ecoomics Learig Objectives Chapter 5 Upo completio of this chapter you should uderstad: Calculatig future values from aual amouts. Calculatig

More information

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5

More information

INVESTMENT PERFORMANCE COUNCIL (IPC)

INVESTMENT PERFORMANCE COUNCIL (IPC) INVESTMENT PEFOMANCE COUNCIL (IPC) INVITATION TO COMMENT: Global Ivestmet Performace Stadards (GIPS ) Guidace Statemet o Calculatio Methodology The Associatio for Ivestmet Maagemet ad esearch (AIM) seeks

More information

Lesson 15 ANOVA (analysis of variance)

Lesson 15 ANOVA (analysis of variance) Outlie Variability -betwee group variability -withi group variability -total variability -F-ratio Computatio -sums of squares (betwee/withi/total -degrees of freedom (betwee/withi/total -mea square (betwee/withi

More information

Solving Logarithms and Exponential Equations

Solving Logarithms and Exponential Equations Solvig Logarithms ad Epoetial Equatios Logarithmic Equatios There are two major ideas required whe solvig Logarithmic Equatios. The first is the Defiitio of a Logarithm. You may recall from a earlier topic:

More information

Multiplexers and Demultiplexers

Multiplexers and Demultiplexers I this lesso, you will lear about: Multiplexers ad Demultiplexers 1. Multiplexers 2. Combiatioal circuit implemetatio with multiplexers 3. Demultiplexers 4. Some examples Multiplexer A Multiplexer (see

More information

Learning objectives. Duc K. Nguyen - Corporate Finance 21/10/2014

Learning objectives. Duc K. Nguyen - Corporate Finance 21/10/2014 1 Lecture 3 Time Value of Moey ad Project Valuatio The timelie Three rules of time travels NPV of a stream of cash flows Perpetuities, auities ad other special cases Learig objectives 2 Uderstad the time-value

More information

S. Tanny MAT 344 Spring 1999. be the minimum number of moves required.

S. Tanny MAT 344 Spring 1999. be the minimum number of moves required. S. Tay MAT 344 Sprig 999 Recurrece Relatios Tower of Haoi Let T be the miimum umber of moves required. T 0 = 0, T = 7 Iitial Coditios * T = T + $ T is a sequece (f. o itegers). Solve for T? * is a recurrece,

More information

EGYPTIAN FRACTION EXPANSIONS FOR RATIONAL NUMBERS BETWEEN 0 AND 1 OBTAINED WITH ENGEL SERIES

EGYPTIAN FRACTION EXPANSIONS FOR RATIONAL NUMBERS BETWEEN 0 AND 1 OBTAINED WITH ENGEL SERIES EGYPTIAN FRACTION EXPANSIONS FOR RATIONAL NUMBERS BETWEEN 0 AND OBTAINED WITH ENGEL SERIES ELVIA NIDIA GONZÁLEZ AND JULIA BERGNER, PHD DEPARTMENT OF MATHEMATICS Abstract. The aciet Egyptias epressed ratioal

More information

Hypergeometric Distributions

Hypergeometric Distributions 7.4 Hypergeometric Distributios Whe choosig the startig lie-up for a game, a coach obviously has to choose a differet player for each positio. Similarly, whe a uio elects delegates for a covetio or you

More information

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find 1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.

More information

Department of Computer Science, University of Otago

Department of Computer Science, University of Otago Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly

More information

SEQUENCES AND SERIES CHAPTER

SEQUENCES AND SERIES CHAPTER CHAPTER SEQUENCES AND SERIES Whe the Grat family purchased a computer for $,200 o a istallmet pla, they agreed to pay $00 each moth util the cost of the computer plus iterest had bee paid The iterest each

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

More information

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The

More information

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if

More information

Sequences and Series Using the TI-89 Calculator

Sequences and Series Using the TI-89 Calculator RIT Calculator Site Sequeces ad Series Usig the TI-89 Calculator Norecursively Defied Sequeces A orecursively defied sequece is oe i which the formula for the terms of the sequece is give explicitly. For

More information

Baan Service Master Data Management

Baan Service Master Data Management Baa Service Master Data Maagemet Module Procedure UP069A US Documetiformatio Documet Documet code : UP069A US Documet group : User Documetatio Documet title : Master Data Maagemet Applicatio/Package :

More information

Overview of some probability distributions.

Overview of some probability distributions. Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability

More information

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL. Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio - Israel Istitute of Techology, 3000, Haifa, Israel I memory

More information

1 Correlation and Regression Analysis

1 Correlation and Regression Analysis 1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

More information

Irreducible polynomials with consecutive zero coefficients

Irreducible polynomials with consecutive zero coefficients Irreducible polyomials with cosecutive zero coefficiets Theodoulos Garefalakis Departmet of Mathematics, Uiversity of Crete, 71409 Heraklio, Greece Abstract Let q be a prime power. We cosider the problem

More information

Hypothesis testing. Null and alternative hypotheses

Hypothesis testing. Null and alternative hypotheses Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate

More information

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad

More information

Maximum Likelihood Estimators.

Maximum Likelihood Estimators. Lecture 2 Maximum Likelihood Estimators. Matlab example. As a motivatio, let us look at oe Matlab example. Let us geerate a radom sample of size 00 from beta distributio Beta(5, 2). We will lear the defiitio

More information

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5 Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.

More information

NATIONAL SENIOR CERTIFICATE GRADE 12

NATIONAL SENIOR CERTIFICATE GRADE 12 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 04 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages ad iformatio sheet. Please tur over Mathematics/P DBE/04 NSC Grade Eemplar INSTRUCTIONS

More information

The Stable Marriage Problem

The Stable Marriage Problem The Stable Marriage Problem William Hut Lae Departmet of Computer Sciece ad Electrical Egieerig, West Virgiia Uiversity, Morgatow, WV William.Hut@mail.wvu.edu 1 Itroductio Imagie you are a matchmaker,

More information

PERMUTATIONS AND COMBINATIONS

PERMUTATIONS AND COMBINATIONS Chapter 7 PERMUTATIONS AND COMBINATIONS Every body of discovery is mathematical i form because there is o other guidace we ca have DARWIN 7.1 Itroductio Suppose you have a suitcase with a umber lock. The

More information

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample

More information

Simple Annuities Present Value.

Simple Annuities Present Value. Simple Auities Preset Value. OBJECTIVES (i) To uderstad the uderlyig priciple of a preset value auity. (ii) To use a CASIO CFX-9850GB PLUS to efficietly compute values associated with preset value auities.

More information

Measures of Spread and Boxplots Discrete Math, Section 9.4

Measures of Spread and Boxplots Discrete Math, Section 9.4 Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,

More information

Center, Spread, and Shape in Inference: Claims, Caveats, and Insights

Center, Spread, and Shape in Inference: Claims, Caveats, and Insights Ceter, Spread, ad Shape i Iferece: Claims, Caveats, ad Isights Dr. Nacy Pfeig (Uiversity of Pittsburgh) AMATYC November 2008 Prelimiary Activities 1. I would like to produce a iterval estimate for the

More information

*The most important feature of MRP as compared with ordinary inventory control analysis is its time phasing feature.

*The most important feature of MRP as compared with ordinary inventory control analysis is its time phasing feature. Itegrated Productio ad Ivetory Cotrol System MRP ad MRP II Framework of Maufacturig System Ivetory cotrol, productio schedulig, capacity plaig ad fiacial ad busiess decisios i a productio system are iterrelated.

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level A1 of challege: C A1 Mathematical goals Startig poits Materials required Time eeded Iterpretig algebraic expressios To help learers to: traslate betwee words, symbols, tables, ad area represetatios

More information

Chapter 5: Inner Product Spaces

Chapter 5: Inner Product Spaces Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13 EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may

More information

Normal Distribution.

Normal Distribution. Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued

More information

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I tought Topological Groups at the Göttige Georg August Uiversity. This

More information

Research Article Sign Data Derivative Recovery

Research Article Sign Data Derivative Recovery Iteratioal Scholarly Research Network ISRN Applied Mathematics Volume 0, Article ID 63070, 7 pages doi:0.540/0/63070 Research Article Sig Data Derivative Recovery L. M. Housto, G. A. Glass, ad A. D. Dymikov

More information