Tamás Budavári / The Johns Hopkins University
|
|
|
- Jesse Anderson
- 9 years ago
- Views:
Transcription
1 PRACTICAL SCIENTIFIC ANALYSIS OF BIG DATA RUNNING IN PARALLEL / The Johns Hopkins University
2 2 Parallelism Data parallel Same processing on different pieces of data Task parallel Simultaneous processing on the same data
3 On all levels of the hierarchy 3 Clouds Clusters Machines Cores Threads
4 4 Scalability Scale up Scale out Vertically Add resources to a node Bigger memory, Faster processor, Horizontally Use more of the Threads, cores, machines, clusters, clouds,
5 5 Cluster
6 6 High-Performance Computing Traditional HPC clusters Launching jobs on a cluster of machines Use MPI to communicate among nodes Message Passing Interface (not this class)
7 7 Queuing Systems Used for batch jobs on computer clusters Fair scheduling of user jobs Group policies Several systems Portable Batch System (PBS) Condor, etc
8 8 Portable Batch System Basic PBS commands qsub qdel qstat, showq
9 9 Job Requirements Which queue? How much memory? How many CPUs? Think MPI For how long? Send , where and when?
10 10 Example Job Submit this Using qsub
11 11 Computer
12 Classification of Parallel Computers 12 Flynn s Taxonomy
13 13 SISD Single Instruction Single Data Classical Von Neumann machines Single threaded codes arstechnica.com
14 14 SIMD Single Instruction Multiple Data On x86 MMX: Math Matrix extension SSE: Streaming SIMD Extension and more GPU programming!! arstechnica.com
15 Amdahl s Laws 15 Bell, Gray & Szalay (2005) Petascale Computational Systems: Balanced CyberInfrastructure in a Data-Centric World
16 Amdahl s Law of Parallelism 16 Speed ratio with T(1) S P T( N) P S N P p S P T(1) T( N) (1 1 p) p N Before looking into parallelism, speed up the serial code, to figure out the max speedup, i.e., N
17 17 Chip
18 Moore s Law 18
19 New Limitation is Energy! 19 Power to compute the same thing? CPU is 10 less efficient than a digital signal processor DSP is 10 less efficient than a custom chip New design: multicores with slower clocks But the interconnect is expensive Need simpler components Swinburne University of Technology 9/1/2011
20 Emerging Architectures 20 Andrew Chien: to replace the 90/10 rule Custom modules on chip, cf. SoC in cellphones Statistics on a video codec module? Swinburne University of Technology 9/1/2011
21 Emerging Architectures 21 Andrew Chien: to replace the 90/10 rule Custom modules on chip, cf. SoC in cellphones Scientific analysis on such specialized units? Swinburne University of Technology 9/1/2011
22 GPUs Evolved to be General Purpose 22 Virtual world: simulation of real physics C for CUDA and OpenCL 512 cores 25k threads, running 1 billion/sec Old algorithms built on wrong assumption Today processing is free but memory is slow Swinburne University of Technology New programming paradigm! 9/1/2011
23 New Moore s Law 23 In the number of cores Faster than ever
24 24 Data Parallel Techniques Embarrassingly Parallel Decoupled problems, independent processing MapReduce Map Reduce
25 25 Programming
26 26 Programming Languages No one language to rule them all And many to choose from
27 27 Assembly Low-level (almost) machine code Different for each computer
28 28 The C Language Higher level but still close to hardware Pointers! Many things written in C Operating systems Other languages,
29 29 Java Pros Memory management with garbage collection Just-In-Time compilation from bytecode Cons Not so great performance Hard to include legacy codes New language features were an afterthought
30 30 Python Scripting to glue things together Easy to wrap legacy codes Lots of scientific modules and plotting Good for prototyping
31 31 Etc Perl Matlab Mathematica IDL R Lisp Haskell Ocaml Erlang Your favorite here
32 32 Programming in C
33 33 Programming in C Skeleton of an application
34 34 Programming in C Files Headers *.h Source *.c Building an application Compile source Link object files
35 Using Pointers 35
36 36 Arrays Dynamic arrays Memory allocation Freeing memory Pointer arithmetics
37 37 Matrix, etc Point to pointers Data allocated in v Pointers in A For 2D indexing One can have Matrix, tensor, Jagged arrays,
Introduction to GPU Programming Languages
CSC 391/691: GPU Programming Fall 2011 Introduction to GPU Programming Languages Copyright 2011 Samuel S. Cho http://www.umiacs.umd.edu/ research/gpu/facilities.html Maryland CPU/GPU Cluster Infrastructure
Part I Courses Syllabus
Part I Courses Syllabus This document provides detailed information about the basic courses of the MHPC first part activities. The list of courses is the following 1.1 Scientific Programming Environment
An Introduction to Parallel Computing/ Programming
An Introduction to Parallel Computing/ Programming Vicky Papadopoulou Lesta Astrophysics and High Performance Computing Research Group (http://ahpc.euc.ac.cy) Dep. of Computer Science and Engineering European
Chapter 1 Computer System Overview
Operating Systems: Internals and Design Principles Chapter 1 Computer System Overview Eighth Edition By William Stallings Operating System Exploits the hardware resources of one or more processors Provides
Using WestGrid. Patrick Mann, Manager, Technical Operations Jan.15, 2014
Using WestGrid Patrick Mann, Manager, Technical Operations Jan.15, 2014 Winter 2014 Seminar Series Date Speaker Topic 5 February Gino DiLabio Molecular Modelling Using HPC and Gaussian 26 February Jonathan
Introduction to Cloud Computing
Introduction to Cloud Computing Parallel Processing I 15 319, spring 2010 7 th Lecture, Feb 2 nd Majd F. Sakr Lecture Motivation Concurrency and why? Different flavors of parallel computing Get the basic
HPC Wales Skills Academy Course Catalogue 2015
HPC Wales Skills Academy Course Catalogue 2015 Overview The HPC Wales Skills Academy provides a variety of courses and workshops aimed at building skills in High Performance Computing (HPC). Our courses
GPUs for Scientific Computing
GPUs for Scientific Computing p. 1/16 GPUs for Scientific Computing Mike Giles [email protected] Oxford-Man Institute of Quantitative Finance Oxford University Mathematical Institute Oxford e-research
Programming models for heterogeneous computing. Manuel Ujaldón Nvidia CUDA Fellow and A/Prof. Computer Architecture Department University of Malaga
Programming models for heterogeneous computing Manuel Ujaldón Nvidia CUDA Fellow and A/Prof. Computer Architecture Department University of Malaga Talk outline [30 slides] 1. Introduction [5 slides] 2.
10- High Performance Compu5ng
10- High Performance Compu5ng (Herramientas Computacionales Avanzadas para la Inves6gación Aplicada) Rafael Palacios, Fernando de Cuadra MRE Contents Implemen8ng computa8onal tools 1. High Performance
Running applications on the Cray XC30 4/12/2015
Running applications on the Cray XC30 4/12/2015 1 Running on compute nodes By default, users do not log in and run applications on the compute nodes directly. Instead they launch jobs on compute nodes
Miami University RedHawk Cluster Working with batch jobs on the Cluster
Miami University RedHawk Cluster Working with batch jobs on the Cluster The RedHawk cluster is a general purpose research computing resource available to support the research community at Miami University.
Parallel Computing: Strategies and Implications. Dori Exterman CTO IncrediBuild.
Parallel Computing: Strategies and Implications Dori Exterman CTO IncrediBuild. In this session we will discuss Multi-threaded vs. Multi-Process Choosing between Multi-Core or Multi- Threaded development
Intro to GPU computing. Spring 2015 Mark Silberstein, 048661, Technion 1
Intro to GPU computing Spring 2015 Mark Silberstein, 048661, Technion 1 Serial vs. parallel program One instruction at a time Multiple instructions in parallel Spring 2015 Mark Silberstein, 048661, Technion
Overview on Modern Accelerators and Programming Paradigms Ivan Giro7o [email protected]
Overview on Modern Accelerators and Programming Paradigms Ivan Giro7o [email protected] Informa(on & Communica(on Technology Sec(on (ICTS) Interna(onal Centre for Theore(cal Physics (ICTP) Mul(ple Socket
What is a programming language?
Overview Introduction Motivation Why study programming languages? Some key concepts What is a programming language? Artificial language" Computers" Programs" Syntax" Semantics" What is a programming language?...there
Introducing PgOpenCL A New PostgreSQL Procedural Language Unlocking the Power of the GPU! By Tim Child
Introducing A New PostgreSQL Procedural Language Unlocking the Power of the GPU! By Tim Child Bio Tim Child 35 years experience of software development Formerly VP Oracle Corporation VP BEA Systems Inc.
Overview of HPC Resources at Vanderbilt
Overview of HPC Resources at Vanderbilt Will French Senior Application Developer and Research Computing Liaison Advanced Computing Center for Research and Education June 10, 2015 2 Computing Resources
Parallel Programming for Multi-Core, Distributed Systems, and GPUs Exercises
Parallel Programming for Multi-Core, Distributed Systems, and GPUs Exercises Pierre-Yves Taunay Research Computing and Cyberinfrastructure 224A Computer Building The Pennsylvania State University University
Data Centric Systems (DCS)
Data Centric Systems (DCS) Architecture and Solutions for High Performance Computing, Big Data and High Performance Analytics High Performance Computing with Data Centric Systems 1 Data Centric Systems
Parallel Computing with MATLAB
Parallel Computing with MATLAB Scott Benway Senior Account Manager Jiro Doke, Ph.D. Senior Application Engineer 2013 The MathWorks, Inc. 1 Acceleration Strategies Applied in MATLAB Approach Options Best
High Performance Computing
High Performance Computing Trey Breckenridge Computing Systems Manager Engineering Research Center Mississippi State University What is High Performance Computing? HPC is ill defined and context dependent.
Getting Started with HPC
Getting Started with HPC An Introduction to the Minerva High Performance Computing Resource 17 Sep 2013 Outline of Topics Introduction HPC Accounts Logging onto the HPC Clusters Common Linux Commands Storage
Grid Engine Basics. Table of Contents. Grid Engine Basics Version 1. (Formerly: Sun Grid Engine)
Grid Engine Basics (Formerly: Sun Grid Engine) Table of Contents Table of Contents Document Text Style Associations Prerequisites Terminology What is the Grid Engine (SGE)? Loading the SGE Module on Turing
Chapter 2 Parallel Architecture, Software And Performance
Chapter 2 Parallel Architecture, Software And Performance UCSB CS140, T. Yang, 2014 Modified from texbook slides Roadmap Parallel hardware Parallel software Input and output Performance Parallel program
22S:295 Seminar in Applied Statistics High Performance Computing in Statistics
22S:295 Seminar in Applied Statistics High Performance Computing in Statistics Luke Tierney Department of Statistics & Actuarial Science University of Iowa August 30, 2007 Luke Tierney (U. of Iowa) HPC
Enhancing Cloud-based Servers by GPU/CPU Virtualization Management
Enhancing Cloud-based Servers by GPU/CPU Virtualiz Management Tin-Yu Wu 1, Wei-Tsong Lee 2, Chien-Yu Duan 2 Department of Computer Science and Inform Engineering, Nal Ilan University, Taiwan, ROC 1 Department
The Lattice Project: A Multi-Model Grid Computing System. Center for Bioinformatics and Computational Biology University of Maryland
The Lattice Project: A Multi-Model Grid Computing System Center for Bioinformatics and Computational Biology University of Maryland Parallel Computing PARALLEL COMPUTING a form of computation in which
Introduction to GPU hardware and to CUDA
Introduction to GPU hardware and to CUDA Philip Blakely Laboratory for Scientific Computing, University of Cambridge Philip Blakely (LSC) GPU introduction 1 / 37 Course outline Introduction to GPU hardware
Work Environment. David Tur HPC Expert. HPC Users Training September, 18th 2015
Work Environment David Tur HPC Expert HPC Users Training September, 18th 2015 1. Atlas Cluster: Accessing and using resources 2. Software Overview 3. Job Scheduler 1. Accessing Resources DIPC technicians
HPC at IU Overview. Abhinav Thota Research Technologies Indiana University
HPC at IU Overview Abhinav Thota Research Technologies Indiana University What is HPC/cyberinfrastructure? Why should you care? Data sizes are growing Need to get to the solution faster Compute power is
Lecture 3: Evaluating Computer Architectures. Software & Hardware: The Virtuous Cycle?
Lecture 3: Evaluating Computer Architectures Announcements - Reminder: Homework 1 due Thursday 2/2 Last Time technology back ground Computer elements Circuits and timing Virtuous cycle of the past and
The Fastest Way to Parallel Programming for Multicore, Clusters, Supercomputers and the Cloud.
White Paper 021313-3 Page 1 : A Software Framework for Parallel Programming* The Fastest Way to Parallel Programming for Multicore, Clusters, Supercomputers and the Cloud. ABSTRACT Programming for Multicore,
LSN 2 Computer Processors
LSN 2 Computer Processors Department of Engineering Technology LSN 2 Computer Processors Microprocessors Design Instruction set Processor organization Processor performance Bandwidth Clock speed LSN 2
A Comparison of Distributed Systems: ChorusOS and Amoeba
A Comparison of Distributed Systems: ChorusOS and Amoeba Angelo Bertolli Prepared for MSIT 610 on October 27, 2004 University of Maryland University College Adelphi, Maryland United States of America Abstract.
Learning Outcomes. Simple CPU Operation and Buses. Composition of a CPU. A simple CPU design
Learning Outcomes Simple CPU Operation and Buses Dr Eddie Edwards [email protected] At the end of this lecture you will Understand how a CPU might be put together Be able to name the basic components
Overview. Lecture 1: an introduction to CUDA. Hardware view. Hardware view. hardware view software view CUDA programming
Overview Lecture 1: an introduction to CUDA Mike Giles [email protected] hardware view software view Oxford University Mathematical Institute Oxford e-research Centre Lecture 1 p. 1 Lecture 1 p.
Martinos Center Compute Clusters
Intro What are the compute clusters How to gain access Housekeeping Usage Log In Submitting Jobs Queues Request CPUs/vmem Email Status I/O Interactive Dependencies Daisy Chain Wrapper Script In Progress
MapReduce on GPUs. Amit Sabne, Ahmad Mujahid Mohammed Razip, Kun Xu
1 MapReduce on GPUs Amit Sabne, Ahmad Mujahid Mohammed Razip, Kun Xu 2 MapReduce MAP Shuffle Reduce 3 Hadoop Open-source MapReduce framework from Apache, written in Java Used by Yahoo!, Facebook, Ebay,
Linux für bwgrid. Sabine Richling, Heinz Kredel. Universitätsrechenzentrum Heidelberg Rechenzentrum Universität Mannheim. 27.
Linux für bwgrid Sabine Richling, Heinz Kredel Universitätsrechenzentrum Heidelberg Rechenzentrum Universität Mannheim 27. June 2011 Richling/Kredel (URZ/RUM) Linux für bwgrid FS 2011 1 / 33 Introduction
Next Generation GPU Architecture Code-named Fermi
Next Generation GPU Architecture Code-named Fermi The Soul of a Supercomputer in the Body of a GPU Why is NVIDIA at Super Computing? Graphics is a throughput problem paint every pixel within frame time
Performance Analysis and Optimization Tool
Performance Analysis and Optimization Tool Andres S. CHARIF-RUBIAL [email protected] Performance Analysis Team, University of Versailles http://www.maqao.org Introduction Performance Analysis Develop
Tutorial: Using WestGrid. Drew Leske Compute Canada/WestGrid Site Lead University of Victoria
Tutorial: Using WestGrid Drew Leske Compute Canada/WestGrid Site Lead University of Victoria Fall 2013 Seminar Series Date Speaker Topic 23 September Lindsay Sill Introduction to WestGrid 9 October Drew
SLURM: Resource Management and Job Scheduling Software. Advanced Computing Center for Research and Education www.accre.vanderbilt.
SLURM: Resource Management and Job Scheduling Software Advanced Computing Center for Research and Education www.accre.vanderbilt.edu Simple Linux Utility for Resource Management But it s also a job scheduler!
Outline. High Performance Computing (HPC) Big Data meets HPC. Case Studies: Some facts about Big Data Technologies HPC and Big Data converging
Outline High Performance Computing (HPC) Towards exascale computing: a brief history Challenges in the exascale era Big Data meets HPC Some facts about Big Data Technologies HPC and Big Data converging
Parallel Computing using MATLAB Distributed Compute Server ZORRO HPC
Parallel Computing using MATLAB Distributed Compute Server ZORRO HPC Goals of the session Overview of parallel MATLAB Why parallel MATLAB? Multiprocessing in MATLAB Parallel MATLAB using the Parallel Computing
Applications to Computational Financial and GPU Computing. May 16th. Dr. Daniel Egloff +41 44 520 01 17 +41 79 430 03 61
F# Applications to Computational Financial and GPU Computing May 16th Dr. Daniel Egloff +41 44 520 01 17 +41 79 430 03 61 Today! Why care about F#? Just another fashion?! Three success stories! How Alea.cuBase
NEC HPC-Linux-Cluster
NEC HPC-Linux-Cluster Hardware configuration: 4 Front-end servers: each with SandyBridge-EP processors: 16 cores per node 128 GB memory 134 compute nodes: 112 nodes with SandyBridge-EP processors (16 cores
Parallel Algorithm Engineering
Parallel Algorithm Engineering Kenneth S. Bøgh PhD Fellow Based on slides by Darius Sidlauskas Outline Background Current multicore architectures UMA vs NUMA The openmp framework Examples Software crisis
An Introduction to High Performance Computing in the Department
An Introduction to High Performance Computing in the Department Ashley Ford & Chris Jewell Department of Statistics University of Warwick October 30, 2012 1 Some Background 2 How is Buster used? 3 Software
Computer System: User s View. Computer System Components: High Level View. Input. Output. Computer. Computer System: Motherboard Level
System: User s View System Components: High Level View Input Output 1 System: Motherboard Level 2 Components: Interconnection I/O MEMORY 3 4 Organization Registers ALU CU 5 6 1 Input/Output I/O MEMORY
L20: GPU Architecture and Models
L20: GPU Architecture and Models scribe(s): Abdul Khalifa 20.1 Overview GPUs (Graphics Processing Units) are large parallel structure of processing cores capable of rendering graphics efficiently on displays.
Designing and Building Applications for Extreme Scale Systems CS598 William Gropp www.cs.illinois.edu/~wgropp
Designing and Building Applications for Extreme Scale Systems CS598 William Gropp www.cs.illinois.edu/~wgropp Welcome! Who am I? William (Bill) Gropp Professor of Computer Science One of the Creators of
Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi
Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi ICPP 6 th International Workshop on Parallel Programming Models and Systems Software for High-End Computing October 1, 2013 Lyon, France
Guillimin HPC Users Meeting. Bryan Caron
November 13, 2014 Bryan Caron [email protected] [email protected] McGill University / Calcul Québec / Compute Canada Montréal, QC Canada Outline Compute Canada News October Service Interruption
Parallel Programming Survey
Christian Terboven 02.09.2014 / Aachen, Germany Stand: 26.08.2014 Version 2.3 IT Center der RWTH Aachen University Agenda Overview: Processor Microarchitecture Shared-Memory
Scalability and Classifications
Scalability and Classifications 1 Types of Parallel Computers MIMD and SIMD classifications shared and distributed memory multicomputers distributed shared memory computers 2 Network Topologies static
Middleware and Distributed Systems. Introduction. Dr. Martin v. Löwis
Middleware and Distributed Systems Introduction Dr. Martin v. Löwis 14 3. Software Engineering What is Middleware? Bauer et al. Software Engineering, Report on a conference sponsored by the NATO SCIENCE
Neptune. A Domain Specific Language for Deploying HPC Software on Cloud Platforms. Chris Bunch Navraj Chohan Chandra Krintz Khawaja Shams
Neptune A Domain Specific Language for Deploying HPC Software on Cloud Platforms Chris Bunch Navraj Chohan Chandra Krintz Khawaja Shams ScienceCloud 2011 @ San Jose, CA June 8, 2011 Cloud Computing Three
Bringing Big Data Modelling into the Hands of Domain Experts
Bringing Big Data Modelling into the Hands of Domain Experts David Willingham Senior Application Engineer MathWorks [email protected] 2015 The MathWorks, Inc. 1 Data is the sword of the
Characteristics of Java (Optional) Y. Daniel Liang Supplement for Introduction to Java Programming
Characteristics of Java (Optional) Y. Daniel Liang Supplement for Introduction to Java Programming Java has become enormously popular. Java s rapid rise and wide acceptance can be traced to its design
Turbomachinery CFD on many-core platforms experiences and strategies
Turbomachinery CFD on many-core platforms experiences and strategies Graham Pullan Whittle Laboratory, Department of Engineering, University of Cambridge MUSAF Colloquium, CERFACS, Toulouse September 27-29
Data-parallel Acceleration of PARSEC Black-Scholes Benchmark
Data-parallel Acceleration of PARSEC Black-Scholes Benchmark AUGUST ANDRÉN and PATRIK HAGERNÄS KTH Information and Communication Technology Bachelor of Science Thesis Stockholm, Sweden 2013 TRITA-ICT-EX-2013:158
MPI and Hybrid Programming Models. William Gropp www.cs.illinois.edu/~wgropp
MPI and Hybrid Programming Models William Gropp www.cs.illinois.edu/~wgropp 2 What is a Hybrid Model? Combination of several parallel programming models in the same program May be mixed in the same source
The Methodology of Application Development for Hybrid Architectures
Computer Technology and Application 4 (2013) 543-547 D DAVID PUBLISHING The Methodology of Application Development for Hybrid Architectures Vladimir Orekhov, Alexander Bogdanov and Vladimir Gaiduchok Department
Unleashing the Performance Potential of GPUs for Atmospheric Dynamic Solvers
Unleashing the Performance Potential of GPUs for Atmospheric Dynamic Solvers Haohuan Fu [email protected] High Performance Geo-Computing (HPGC) Group Center for Earth System Science Tsinghua University
CUDA programming on NVIDIA GPUs
p. 1/21 on NVIDIA GPUs Mike Giles [email protected] Oxford University Mathematical Institute Oxford-Man Institute for Quantitative Finance Oxford eresearch Centre p. 2/21 Overview hardware view
ST810 Advanced Computing
ST810 Advanced Computing Lecture 17: Parallel computing part I Eric B. Laber Hua Zhou Department of Statistics North Carolina State University Mar 13, 2013 Outline computing Hardware computing overview
David Rioja Redondo Telecommunication Engineer Englobe Technologies and Systems
David Rioja Redondo Telecommunication Engineer Englobe Technologies and Systems About me David Rioja Redondo Telecommunication Engineer - Universidad de Alcalá >2 years building and managing clusters UPM
Matlab on a Supercomputer
Matlab on a Supercomputer Shelley L. Knuth Research Computing April 9, 2015 Outline Description of Matlab and supercomputing Interactive Matlab jobs Non-interactive Matlab jobs Parallel Computing Slides
Le langage OCaml et la programmation des GPU
Le langage OCaml et la programmation des GPU GPU programming with OCaml Mathias Bourgoin - Emmanuel Chailloux - Jean-Luc Lamotte Le projet OpenGPU : un an plus tard Ecole Polytechnique - 8 juin 2011 Outline
High Performance. CAEA elearning Series. Jonathan G. Dudley, Ph.D. 06/09/2015. 2015 CAE Associates
High Performance Computing (HPC) CAEA elearning Series Jonathan G. Dudley, Ph.D. 06/09/2015 2015 CAE Associates Agenda Introduction HPC Background Why HPC SMP vs. DMP Licensing HPC Terminology Types of
SLURM: Resource Management and Job Scheduling Software. Advanced Computing Center for Research and Education www.accre.vanderbilt.
SLURM: Resource Management and Job Scheduling Software Advanced Computing Center for Research and Education www.accre.vanderbilt.edu Simple Linux Utility for Resource Management But it s also a job scheduler!
Pedraforca: ARM + GPU prototype
www.bsc.es Pedraforca: ARM + GPU prototype Filippo Mantovani Workshop on exascale and PRACE prototypes Barcelona, 20 May 2014 Overview Goals: Test the performance, scalability, and energy efficiency of
www.xenon.com.au STORAGE HIGH SPEED INTERCONNECTS HIGH PERFORMANCE COMPUTING VISUALISATION GPU COMPUTING
www.xenon.com.au STORAGE HIGH SPEED INTERCONNECTS HIGH PERFORMANCE COMPUTING GPU COMPUTING VISUALISATION XENON Accelerating Exploration Mineral, oil and gas exploration is an expensive and challenging
Parallelization: Binary Tree Traversal
By Aaron Weeden and Patrick Royal Shodor Education Foundation, Inc. August 2012 Introduction: According to Moore s law, the number of transistors on a computer chip doubles roughly every two years. First
Chapter 2 Heterogeneous Multicore Architecture
Chapter 2 Heterogeneous Multicore Architecture 2.1 Architecture Model In order to satisfy the high-performance and low-power requirements for advanced embedded systems with greater fl exibility, it is
Programming Languages & Tools
4 Programming Languages & Tools Almost any programming language one is familiar with can be used for computational work (despite the fact that some people believe strongly that their own favorite programming
Numerical Analysis. Professor Donna Calhoun. Fall 2013 Math 465/565. Office : MG241A Office Hours : Wednesday 10:00-12:00 and 1:00-3:00
Numerical Analysis Professor Donna Calhoun Office : MG241A Office Hours : Wednesday 10:00-12:00 and 1:00-3:00 Fall 2013 Math 465/565 http://math.boisestate.edu/~calhoun/teaching/math565_fall2013 What is
Manjrasoft Market Oriented Cloud Computing Platform
Manjrasoft Market Oriented Cloud Computing Platform Aneka Aneka is a market oriented Cloud development and management platform with rapid application development and workload distribution capabilities.
COSCO 2015 Heterogeneous Computing Programming
COSCO 2015 Heterogeneous Computing Programming Michael Meyer, Shunsuke Ishikuro Supporters: Kazuaki Sasamoto, Ryunosuke Murakami July 24th, 2015 Heterogeneous Computing Programming 1. Overview 2. Methodology
Optimizing Shared Resource Contention in HPC Clusters
Optimizing Shared Resource Contention in HPC Clusters Sergey Blagodurov Simon Fraser University Alexandra Fedorova Simon Fraser University Abstract Contention for shared resources in HPC clusters occurs
Home Exam 3: Distributed Video Encoding using Dolphin PCI Express Networks. October 20 th 2015
INF5063: Programming heterogeneous multi-core processors because the OS-course is just to easy! Home Exam 3: Distributed Video Encoding using Dolphin PCI Express Networks October 20 th 2015 Håkon Kvale
Tutorial-4a: Parallel (multi-cpu) Computing
HTTP://WWW.HEP.LU.SE/COURSES/MNXB01 Introduction to Programming and Computing for Scientists (2015 HT) Tutorial-4a: Parallel (multi-cpu) Computing Balazs Konya (Lund University) Programming for Scientists
Trends in High-Performance Computing for Power Grid Applications
Trends in High-Performance Computing for Power Grid Applications Franz Franchetti ECE, Carnegie Mellon University www.spiral.net Co-Founder, SpiralGen www.spiralgen.com This talk presents my personal views
BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON
BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON Overview * Introduction * Multiple faces of Big Data * Challenges of Big Data * Cloud Computing
Data Analytics at NERSC. Joaquin Correa [email protected] NERSC Data and Analytics Services
Data Analytics at NERSC Joaquin Correa [email protected] NERSC Data and Analytics Services NERSC User Meeting August, 2015 Data analytics at NERSC Science Applications Climate, Cosmology, Kbase, Materials,
Introduction to DISC and Hadoop
Introduction to DISC and Hadoop Alice E. Fischer April 24, 2009 Alice E. Fischer DISC... 1/20 1 2 History Hadoop provides a three-layer paradigm Alice E. Fischer DISC... 2/20 Parallel Computing Past and
CHAPTER 1 INTRODUCTION
1 CHAPTER 1 INTRODUCTION 1.1 MOTIVATION OF RESEARCH Multicore processors have two or more execution cores (processors) implemented on a single chip having their own set of execution and architectural recourses.
Agenda. Michele Taliercio, Il circuito Integrato, Novembre 2001
Agenda Introduzione Il mercato Dal circuito integrato al System on a Chip (SoC) La progettazione di un SoC La tecnologia Una fabbrica di circuiti integrati 28 How to handle complexity G The engineering
Introduction to Sun Grid Engine (SGE)
Introduction to Sun Grid Engine (SGE) What is SGE? Sun Grid Engine (SGE) is an open source community effort to facilitate the adoption of distributed computing solutions. Sponsored by Sun Microsystems
Parallel Programming
Parallel Programming Parallel Architectures Diego Fabregat-Traver and Prof. Paolo Bientinesi HPAC, RWTH Aachen [email protected] WS15/16 Parallel Architectures Acknowledgements Prof. Felix
