Designing and Building Applications for Extreme Scale Systems CS598 William Gropp
|
|
|
- Ginger Johnson
- 10 years ago
- Views:
Transcription
1 Designing and Building Applications for Extreme Scale Systems CS598 William Gropp
2 Welcome! Who am I? William (Bill) Gropp Professor of Computer Science One of the Creators of the MPI parallel programming system We ll learn more about this in this course Creator of the MPICH implementation of MPI Creator of the PETSc library for scalable solution of PDEs on massively parallel processors We ll talk about the ideas behind this library and similar scalable tools 2
3 What is this Course About? Making effective use of the most powerful parallel computer systems for problems in science and engineering Doing this requires paying attention to every part of the parallel system It also requires a scientific and rigorous approach to performance 3
4 Course Goals Understand the sources of performance in modern architectures How to establish performance expectations Not precise performance predictions How to diagnose performance problems How to design algorithms and applications to maximize performance potential How to exploit parallelism at all levels 4
5 Course Organization: Lectures Lectures: Will primarily be prerecorded, available at least a few days before class You will often be expected to view these before the scheduled class We may review these during class time Lectures may include questions for you to check your comprehension of the material. Make sure you can apply the ideas before going on. Lectures are typically 10-40minutes So you will often be assigned two or more lectures before each class 5
6 Course Organization: In Class Time Will primarily be used for discussion, questions, and in-class assignments Weekly assignments, including machine problems Class is Wednesday and Fridays, 11-12:15, Siebel
7 Other Logistics Course Online Presence TA Moodle (start at ) Lectures (video and slide), assignments, discussion, etc. here Xiao Chen [email protected] Office hours TBA 7
8 Why This Organization? Evidence that conventional lectures are not the best way to instruct, Particularly for a graduate class where backgrounds are varied Two other institutions are sharing this class: University of North Dakota University of Wyoming The Video lectures Permit you to study the material, including followup and pause to check information, on your schedule You should take advantage of the opportunity to checkout suggested readings and try your own experiments 8
9 Evaluation Homework every week Includes machine problems as well as paper problems Project Students will form small (2-3 person) teams to explore scalability and performance for a problem of interest Project proposals due in March Final report due at end of term 9
10 Sample Projects Model the performance of a halo exchange and improve a simple implementation Modify a benchmark to take chip and node topology into account and compare to modeled performance Take an application that you are working on, analyze the I/O performance, and study one approach to improve that performance 10
11 More on Projects Feel free to propose something on which you are working as the project The best projects are the ones in which you have the most invested The purpose of the project proposal is to ensure that the project is not too large and not too small 11
12 My Schedule As my students know, I have a busy travel schedule I will lead as many of the class sessions as possible; shortening my trips where possible I am happy to schedule additional time to meet with you individually or in groups send me For our remote sites, we can arrange video sessions 12
13 Computer Resources Computer time will be made available to Illinois students on the Campus cluster (Taub) and for all students on Blue Waters Taub is a typical sized institutional cluster Not an extreme scale system, but sufficient for many experiments Some features of Taub make it a good platform to illustrate challenges J 13
14 Questions Write down answers to these questions and turn them in Do you know MPI (Message Passing Interface)? Do you consider yourself a beginner, intermediate, or expert? Do you know OpenMP? Do you consider yourself a beginner, intermediate, or expert? Which programming languages do you use? C? C++? Fortran? Python? Others? 14
15 Why Do We Need Extreme Scale Systems? Many problems cannot be solved exactly Even the three-body problem can only be solved for a few very special cases Apparently symmetric situations may not be E.g., evidence supernovae depend on fully 3D, non radially (or axially with rotating star) symmetric solution 15
16 Extreme Scale Computing Applies To A Broad Range Of Science And Engineering Disciplines Molecular Science Weather & Climate Forecas5ng Astrophysics Astronomy Earth Science Health Life Science Materials 16
17 What are the Limits of Extreme Scale Systems? PDE Simulations: nodes common (about 2k cubed) Often unstructured mesh Molecular dynamics and n-body problems particles common Discrete event simulations 10 9 and greater possible 17
18 Tentative Course Outline 1. Introduction 2. Extreme scale systems, Simple performance models 3. Benchmarks; performance models with sparse matrix-vector multiply 4. Cache memory; transpose 5. Memory hierarchy; blocking; Cache oblivious models 6. Processor execution 18
19 Tentative Course Outline 7. Vectors; Amdahl s law and n1/2 8. Moore s law and Dennard scaling; Multicore and Manycore 9. Threads and programming models 10. OpenMP basics; Loop parallelism 11. Task parallelism; Locks 12. Memory consistency; performance hazards 13. Distributed memory architecture 19
20 Tentative Course Outline 14. MPI Basics and performance models 15. Strategies for parallelism 16. MPI nonblocking and asynchronous communication; Progress 17. LogGP performance models 18. MPI Topology and interconnects 20
21 Tentative Course Outline 19. MPI Collectives and performance models 20. I/O and Parallel I/O 21. MPI I/O Basics 22. Different I/O organizations 23. MPI RMA and performance models 24. RMA put/get/accumulate operations; Atomic RMW 21
22 Tentative Course Outline 25. More on scaling; isoefficiency 26. Checkpointing basics 27. In memory checkpointing; fault models; performance models 22
23 Common Theme for Course Use as simple as possible models of computation (an execution model) to gain insight into performance issues Use both to diagnose issues and to design for performance One quick example that we ll revisit comparing scalable algorithms 23
24 Comparing Scalability Two algorithms run in parallel Perfect speedup is # of processors Algorithm 1 is (nearly) perfect Algorithm 2 is fading Which is best? 24
25 Scalability and Time Algorithm 1 has very poor uniprocessor performance Algorithm 2 has very good uniprocessor performance Not a (too) contrived case such examples have appeared in papers and proposals 25
26 Questions Why are you taking the class? Do you have a specific application in mind? What is the largest system you've run on? What is the longest job you've run (in terms of elapsed time from start to finish)? 26
27 How Do We Know if there is a Performance Problem? My application scales well! So what! Is it efficient? Making the scalar code more efficient decreases scalability How can we know? To what do we compare? In this class, we will develop techniques to answer this question and to guide in the development of high performance applications 27
Petascale Software Challenges. William Gropp www.cs.illinois.edu/~wgropp
Petascale Software Challenges William Gropp www.cs.illinois.edu/~wgropp Petascale Software Challenges Why should you care? What are they? Which are different from non-petascale? What has changed since
Multicore Parallel Computing with OpenMP
Multicore Parallel Computing with OpenMP Tan Chee Chiang (SVU/Academic Computing, Computer Centre) 1. OpenMP Programming The death of OpenMP was anticipated when cluster systems rapidly replaced large
Overlapping Data Transfer With Application Execution on Clusters
Overlapping Data Transfer With Application Execution on Clusters Karen L. Reid and Michael Stumm [email protected] [email protected] Department of Computer Science Department of Electrical and Computer
MPI and Hybrid Programming Models. William Gropp www.cs.illinois.edu/~wgropp
MPI and Hybrid Programming Models William Gropp www.cs.illinois.edu/~wgropp 2 What is a Hybrid Model? Combination of several parallel programming models in the same program May be mixed in the same source
High Performance Computing. Course Notes 2007-2008. HPC Fundamentals
High Performance Computing Course Notes 2007-2008 2008 HPC Fundamentals Introduction What is High Performance Computing (HPC)? Difficult to define - it s a moving target. Later 1980s, a supercomputer performs
Introduction to Cloud Computing
Introduction to Cloud Computing Parallel Processing I 15 319, spring 2010 7 th Lecture, Feb 2 nd Majd F. Sakr Lecture Motivation Concurrency and why? Different flavors of parallel computing Get the basic
Part I Courses Syllabus
Part I Courses Syllabus This document provides detailed information about the basic courses of the MHPC first part activities. The list of courses is the following 1.1 Scientific Programming Environment
Scientific Computing Programming with Parallel Objects
Scientific Computing Programming with Parallel Objects Esteban Meneses, PhD School of Computing, Costa Rica Institute of Technology Parallel Architectures Galore Personal Computing Embedded Computing Moore
Building an Inexpensive Parallel Computer
Res. Lett. Inf. Math. Sci., (2000) 1, 113-118 Available online at http://www.massey.ac.nz/~wwiims/rlims/ Building an Inexpensive Parallel Computer Lutz Grosz and Andre Barczak I.I.M.S., Massey University
An Introduction to Parallel Computing/ Programming
An Introduction to Parallel Computing/ Programming Vicky Papadopoulou Lesta Astrophysics and High Performance Computing Research Group (http://ahpc.euc.ac.cy) Dep. of Computer Science and Engineering European
18-742 Lecture 4. Parallel Programming II. Homework & Reading. Page 1. Projects handout On Friday Form teams, groups of two
age 1 18-742 Lecture 4 arallel rogramming II Spring 2005 rof. Babak Falsafi http://www.ece.cmu.edu/~ece742 write X Memory send X Memory read X Memory Slides developed in part by rofs. Adve, Falsafi, Hill,
ParFUM: A Parallel Framework for Unstructured Meshes. Aaron Becker, Isaac Dooley, Terry Wilmarth, Sayantan Chakravorty Charm++ Workshop 2008
ParFUM: A Parallel Framework for Unstructured Meshes Aaron Becker, Isaac Dooley, Terry Wilmarth, Sayantan Chakravorty Charm++ Workshop 2008 What is ParFUM? A framework for writing parallel finite element
Parallel Computing. Benson Muite. [email protected] http://math.ut.ee/ benson. https://courses.cs.ut.ee/2014/paralleel/fall/main/homepage
Parallel Computing Benson Muite [email protected] http://math.ut.ee/ benson https://courses.cs.ut.ee/2014/paralleel/fall/main/homepage 3 November 2014 Hadoop, Review Hadoop Hadoop History Hadoop Framework
CS252 Graduate Computer Architecture Spring 2014 Lecture 1: Introduc<on [email protected] http://inst.eecs.berkeley.
CS252 Graduate Computer Architecture Spring 2014 Lecture 1: Introduc
22S:295 Seminar in Applied Statistics High Performance Computing in Statistics
22S:295 Seminar in Applied Statistics High Performance Computing in Statistics Luke Tierney Department of Statistics & Actuarial Science University of Iowa August 30, 2007 Luke Tierney (U. of Iowa) HPC
HPC Wales Skills Academy Course Catalogue 2015
HPC Wales Skills Academy Course Catalogue 2015 Overview The HPC Wales Skills Academy provides a variety of courses and workshops aimed at building skills in High Performance Computing (HPC). Our courses
The Asynchronous Dynamic Load-Balancing Library
The Asynchronous Dynamic Load-Balancing Library Rusty Lusk, Steve Pieper, Ralph Butler, Anthony Chan Mathematics and Computer Science Division Nuclear Physics Division Outline The Nuclear Physics problem
Program Optimization for Multi-core Architectures
Program Optimization for Multi-core Architectures Sanjeev K Aggarwal ([email protected]) M Chaudhuri ([email protected]) R Moona ([email protected]) Department of Computer Science and Engineering, IIT Kanpur
Exascale Challenges and General Purpose Processors. Avinash Sodani, Ph.D. Chief Architect, Knights Landing Processor Intel Corporation
Exascale Challenges and General Purpose Processors Avinash Sodani, Ph.D. Chief Architect, Knights Landing Processor Intel Corporation Jun-93 Aug-94 Oct-95 Dec-96 Feb-98 Apr-99 Jun-00 Aug-01 Oct-02 Dec-03
OpenMP & MPI CISC 879. Tristan Vanderbruggen & John Cavazos Dept of Computer & Information Sciences University of Delaware
OpenMP & MPI CISC 879 Tristan Vanderbruggen & John Cavazos Dept of Computer & Information Sciences University of Delaware 1 Lecture Overview Introduction OpenMP MPI Model Language extension: directives-based
CHAPTER 1 INTRODUCTION
1 CHAPTER 1 INTRODUCTION 1.1 MOTIVATION OF RESEARCH Multicore processors have two or more execution cores (processors) implemented on a single chip having their own set of execution and architectural recourses.
Unleashing the Performance Potential of GPUs for Atmospheric Dynamic Solvers
Unleashing the Performance Potential of GPUs for Atmospheric Dynamic Solvers Haohuan Fu [email protected] High Performance Geo-Computing (HPGC) Group Center for Earth System Science Tsinghua University
Making Multicore Work and Measuring its Benefits. Markus Levy, president EEMBC and Multicore Association
Making Multicore Work and Measuring its Benefits Markus Levy, president EEMBC and Multicore Association Agenda Why Multicore? Standards and issues in the multicore community What is Multicore Association?
PARALLEL & CLUSTER COMPUTING CS 6260 PROFESSOR: ELISE DE DONCKER BY: LINA HUSSEIN
1 PARALLEL & CLUSTER COMPUTING CS 6260 PROFESSOR: ELISE DE DONCKER BY: LINA HUSSEIN Introduction What is cluster computing? Classification of Cluster Computing Technologies: Beowulf cluster Construction
Symmetric Multiprocessing
Multicore Computing A multi-core processor is a processing system composed of two or more independent cores. One can describe it as an integrated circuit to which two or more individual processors (called
Course Development of Programming for General-Purpose Multicore Processors
Course Development of Programming for General-Purpose Multicore Processors Wei Zhang Department of Electrical and Computer Engineering Virginia Commonwealth University Richmond, VA 23284 [email protected]
Parallel Programming at the Exascale Era: A Case Study on Parallelizing Matrix Assembly For Unstructured Meshes
Parallel Programming at the Exascale Era: A Case Study on Parallelizing Matrix Assembly For Unstructured Meshes Eric Petit, Loïc Thebault, Quang V. Dinh May 2014 EXA2CT Consortium 2 WPs Organization Proto-Applications
David Rioja Redondo Telecommunication Engineer Englobe Technologies and Systems
David Rioja Redondo Telecommunication Engineer Englobe Technologies and Systems About me David Rioja Redondo Telecommunication Engineer - Universidad de Alcalá >2 years building and managing clusters UPM
BIG CPU, BIG DATA. Solving the World s Toughest Computational Problems with Parallel Computing. Alan Kaminsky
Solving the World s Toughest Computational Problems with Parallel Computing Solving the World s Toughest Computational Problems with Parallel Computing Department of Computer Science B. Thomas Golisano
Advanced Operating Systems CS428
Advanced Operating Systems CS428 Lecture TEN Semester I, 2009-10 Graham Ellis NUI Galway, Ireland DIY Parallelism MPI is useful for C and Fortran programming. DIY Parallelism MPI is useful for C and Fortran
A Simultaneous Solution for General Linear Equations on a Ring or Hierarchical Cluster
Acta Technica Jaurinensis Vol. 3. No. 1. 010 A Simultaneous Solution for General Linear Equations on a Ring or Hierarchical Cluster G. Molnárka, N. Varjasi Széchenyi István University Győr, Hungary, H-906
White Paper The Numascale Solution: Extreme BIG DATA Computing
White Paper The Numascale Solution: Extreme BIG DATA Computing By: Einar Rustad ABOUT THE AUTHOR Einar Rustad is CTO of Numascale and has a background as CPU, Computer Systems and HPC Systems De-signer
Multi-core Curriculum Development at Georgia Tech: Experience and Future Steps
Multi-core Curriculum Development at Georgia Tech: Experience and Future Steps Ada Gavrilovska, Hsien-Hsin-Lee, Karsten Schwan, Sudha Yalamanchili, Matt Wolf CERCS Georgia Institute of Technology Background
Introduction History Design Blue Gene/Q Job Scheduler Filesystem Power usage Performance Summary Sequoia is a petascale Blue Gene/Q supercomputer Being constructed by IBM for the National Nuclear Security
Mesh Generation and Load Balancing
Mesh Generation and Load Balancing Stan Tomov Innovative Computing Laboratory Computer Science Department The University of Tennessee April 04, 2012 CS 594 04/04/2012 Slide 1 / 19 Outline Motivation Reliable
OpenFOAM: Computational Fluid Dynamics. Gauss Siedel iteration : (L + D) * x new = b - U * x old
OpenFOAM: Computational Fluid Dynamics Gauss Siedel iteration : (L + D) * x new = b - U * x old What s unique about my tuning work The OpenFOAM (Open Field Operation and Manipulation) CFD Toolbox is a
BIG CPU, BIG DATA. Solving the World s Toughest Computational Problems with Parallel Computing. Alan Kaminsky
Solving the World s Toughest Computational Problems with Parallel Computing Alan Kaminsky Solving the World s Toughest Computational Problems with Parallel Computing Alan Kaminsky Department of Computer
Performance Metrics and Scalability Analysis. Performance Metrics and Scalability Analysis
Performance Metrics and Scalability Analysis 1 Performance Metrics and Scalability Analysis Lecture Outline Following Topics will be discussed Requirements in performance and cost Performance metrics Work
A Lab Course on Computer Architecture
A Lab Course on Computer Architecture Pedro López José Duato Depto. de Informática de Sistemas y Computadores Facultad de Informática Universidad Politécnica de Valencia Camino de Vera s/n, 46071 - Valencia,
Scalability evaluation of barrier algorithms for OpenMP
Scalability evaluation of barrier algorithms for OpenMP Ramachandra Nanjegowda, Oscar Hernandez, Barbara Chapman and Haoqiang H. Jin High Performance Computing and Tools Group (HPCTools) Computer Science
Software and the Concurrency Revolution
Software and the Concurrency Revolution A: The world s fastest supercomputer, with up to 4 processors, 128MB RAM, 942 MFLOPS (peak). 2 Q: What is a 1984 Cray X-MP? (Or a fractional 2005 vintage Xbox )
Turbomachinery CFD on many-core platforms experiences and strategies
Turbomachinery CFD on many-core platforms experiences and strategies Graham Pullan Whittle Laboratory, Department of Engineering, University of Cambridge MUSAF Colloquium, CERFACS, Toulouse September 27-29
Chapter 12: Multiprocessor Architectures. Lesson 01: Performance characteristics of Multiprocessor Architectures and Speedup
Chapter 12: Multiprocessor Architectures Lesson 01: Performance characteristics of Multiprocessor Architectures and Speedup Objective Be familiar with basic multiprocessor architectures and be able to
Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi
Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi ICPP 6 th International Workshop on Parallel Programming Models and Systems Software for High-End Computing October 1, 2013 Lyon, France
Data Centric Systems (DCS)
Data Centric Systems (DCS) Architecture and Solutions for High Performance Computing, Big Data and High Performance Analytics High Performance Computing with Data Centric Systems 1 Data Centric Systems
Fast Multipole Method for particle interactions: an open source parallel library component
Fast Multipole Method for particle interactions: an open source parallel library component F. A. Cruz 1,M.G.Knepley 2,andL.A.Barba 1 1 Department of Mathematics, University of Bristol, University Walk,
Parallel Computing for Data Science
Parallel Computing for Data Science With Examples in R, C++ and CUDA Norman Matloff University of California, Davis USA (g) CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint
numascale White Paper The Numascale Solution: Extreme BIG DATA Computing Hardware Accellerated Data Intensive Computing By: Einar Rustad ABSTRACT
numascale Hardware Accellerated Data Intensive Computing White Paper The Numascale Solution: Extreme BIG DATA Computing By: Einar Rustad www.numascale.com Supemicro delivers 108 node system with Numascale
Parallel Compression and Decompression of DNA Sequence Reads in FASTQ Format
, pp.91-100 http://dx.doi.org/10.14257/ijhit.2014.7.4.09 Parallel Compression and Decompression of DNA Sequence Reads in FASTQ Format Jingjing Zheng 1,* and Ting Wang 1, 2 1,* Parallel Software and Computational
A Study on the Scalability of Hybrid LS-DYNA on Multicore Architectures
11 th International LS-DYNA Users Conference Computing Technology A Study on the Scalability of Hybrid LS-DYNA on Multicore Architectures Yih-Yih Lin Hewlett-Packard Company Abstract In this paper, the
MAQAO Performance Analysis and Optimization Tool
MAQAO Performance Analysis and Optimization Tool Andres S. CHARIF-RUBIAL [email protected] Performance Evaluation Team, University of Versailles S-Q-Y http://www.maqao.org VI-HPS 18 th Grenoble 18/22
Lecture 1 Introduction to Parallel Programming
Lecture 1 Introduction to Parallel Programming EN 600.320/420 Instructor: Randal Burns 4 September 2008 Department of Computer Science, Johns Hopkins University Pipelined Processor From http://arstechnica.com/articles/paedia/cpu/pipelining-2.ars
FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG
FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG INSTITUT FÜR INFORMATIK (MATHEMATISCHE MASCHINEN UND DATENVERARBEITUNG) Lehrstuhl für Informatik 10 (Systemsimulation) Massively Parallel Multilevel Finite
Incorporating Multicore Programming in Bachelor of Science in Computer Engineering Program
Incorporating Multicore Programming in Bachelor of Science in Computer Engineering Program ITESO University Guadalajara, Jalisco México 1 Instituto Tecnológico y de Estudios Superiores de Occidente Jesuit
Load Balancing using Potential Functions for Hierarchical Topologies
Acta Technica Jaurinensis Vol. 4. No. 4. 2012 Load Balancing using Potential Functions for Hierarchical Topologies Molnárka Győző, Varjasi Norbert Széchenyi István University Dept. of Machine Design and
Client/Server Computing Distributed Processing, Client/Server, and Clusters
Client/Server Computing Distributed Processing, Client/Server, and Clusters Chapter 13 Client machines are generally single-user PCs or workstations that provide a highly userfriendly interface to the
Parallel & Distributed Optimization. Based on Mark Schmidt s slides
Parallel & Distributed Optimization Based on Mark Schmidt s slides Motivation behind using parallel & Distributed optimization Performance Computational throughput have increased exponentially in linear
Vorlesung Rechnerarchitektur 2 Seite 178 DASH
Vorlesung Rechnerarchitektur 2 Seite 178 Architecture for Shared () The -architecture is a cache coherent, NUMA multiprocessor system, developed at CSL-Stanford by John Hennessy, Daniel Lenoski, Monica
Lecture 23: Multiprocessors
Lecture 23: Multiprocessors Today s topics: RAID Multiprocessor taxonomy Snooping-based cache coherence protocol 1 RAID 0 and RAID 1 RAID 0 has no additional redundancy (misnomer) it uses an array of disks
Keys to node-level performance analysis and threading in HPC applications
Keys to node-level performance analysis and threading in HPC applications Thomas GUILLET (Intel; Exascale Computing Research) IFERC seminar, 18 March 2015 Legal Disclaimer & Optimization Notice INFORMATION
Matrix Multiplication
Matrix Multiplication CPS343 Parallel and High Performance Computing Spring 2016 CPS343 (Parallel and HPC) Matrix Multiplication Spring 2016 1 / 32 Outline 1 Matrix operations Importance Dense and sparse
Large Vector-Field Visualization, Theory and Practice: Large Data and Parallel Visualization Hank Childs + D. Pugmire, D. Camp, C. Garth, G.
Large Vector-Field Visualization, Theory and Practice: Large Data and Parallel Visualization Hank Childs + D. Pugmire, D. Camp, C. Garth, G. Weber, S. Ahern, & K. Joy Lawrence Berkeley National Laboratory
CS550. Distributed Operating Systems (Advanced Operating Systems) Instructor: Xian-He Sun
CS550 Distributed Operating Systems (Advanced Operating Systems) Instructor: Xian-He Sun Email: [email protected], Phone: (312) 567-5260 Office hours: 2:10pm-3:10pm Tuesday, 3:30pm-4:30pm Thursday at SB229C,
Chapter 18: Database System Architectures. Centralized Systems
Chapter 18: Database System Architectures! Centralized Systems! Client--Server Systems! Parallel Systems! Distributed Systems! Network Types 18.1 Centralized Systems! Run on a single computer system and
MOSIX: High performance Linux farm
MOSIX: High performance Linux farm Paolo Mastroserio [[email protected]] Francesco Maria Taurino [[email protected]] Gennaro Tortone [[email protected]] Napoli Index overview on Linux farm farm
Parallel Algorithm Engineering
Parallel Algorithm Engineering Kenneth S. Bøgh PhD Fellow Based on slides by Darius Sidlauskas Outline Background Current multicore architectures UMA vs NUMA The openmp framework Examples Software crisis
GridSolve: : A Seamless Bridge Between the Standard Programming Interfaces and Remote Resources
GridSolve: : A Seamless Bridge Between the Standard Programming Interfaces and Remote Resources Jack Dongarra University of Tennessee and Oak Ridge National Laboratory 2/25/2006 1 Overview Grid/NetSolve
Client/Server and Distributed Computing
Adapted from:operating Systems: Internals and Design Principles, 6/E William Stallings CS571 Fall 2010 Client/Server and Distributed Computing Dave Bremer Otago Polytechnic, N.Z. 2008, Prentice Hall Traditional
Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Intel Xeon Processor E7 v2 Family-Based Platforms
Maximize Performance and Scalability of RADIOSS* Structural Analysis Software on Family-Based Platforms Executive Summary Complex simulations of structural and systems performance, such as car crash simulations,
Parallel Algorithm for Dense Matrix Multiplication
Parallel Algorithm for Dense Matrix Multiplication CSE633 Parallel Algorithms Fall 2012 Ortega, Patricia Outline Problem definition Assumptions Implementation Test Results Future work Conclusions Problem
CUDA programming on NVIDIA GPUs
p. 1/21 on NVIDIA GPUs Mike Giles [email protected] Oxford University Mathematical Institute Oxford-Man Institute for Quantitative Finance Oxford eresearch Centre p. 2/21 Overview hardware view
White Paper The Numascale Solution: Affordable BIG DATA Computing
White Paper The Numascale Solution: Affordable BIG DATA Computing By: John Russel PRODUCED BY: Tabor Custom Publishing IN CONJUNCTION WITH: ABSTRACT Big Data applications once limited to a few exotic disciplines
NVIDIA CUDA Software and GPU Parallel Computing Architecture. David B. Kirk, Chief Scientist
NVIDIA CUDA Software and GPU Parallel Computing Architecture David B. Kirk, Chief Scientist Outline Applications of GPU Computing CUDA Programming Model Overview Programming in CUDA The Basics How to Get
Multi-GPU Load Balancing for Simulation and Rendering
Multi- Load Balancing for Simulation and Rendering Yong Cao Computer Science Department, Virginia Tech, USA In-situ ualization and ual Analytics Instant visualization and interaction of computing tasks
HPC performance applications on Virtual Clusters
Panagiotis Kritikakos EPCC, School of Physics & Astronomy, University of Edinburgh, Scotland - UK [email protected] 4 th IC-SCCE, Athens 7 th July 2010 This work investigates the performance of (Java)
MEng, BSc Applied Computer Science
School of Computing FACULTY OF ENGINEERING MEng, BSc Applied Computer Science Year 1 COMP1212 Computer Processor Effective programming depends on understanding not only how to give a machine instructions
Cellular Computing on a Linux Cluster
Cellular Computing on a Linux Cluster Alexei Agueev, Bernd Däne, Wolfgang Fengler TU Ilmenau, Department of Computer Architecture Topics 1. Cellular Computing 2. The Experiment 3. Experimental Results
GPU System Architecture. Alan Gray EPCC The University of Edinburgh
GPU System Architecture EPCC The University of Edinburgh Outline Why do we want/need accelerators such as GPUs? GPU-CPU comparison Architectural reasons for GPU performance advantages GPU accelerated systems
INTEL Software Development Conference - LONDON 2015. High Performance Computing - BIG DATA ANALYTICS - FINANCE
INTEL Software Development Conference - LONDON 2015 High Performance Computing - BIG DATA ANALYTICS - FINANCE London, Canary Wharf December 10 th & 11 th 2015 Level39, One Canada Square INTEL Software
OpenACC Programming and Best Practices Guide
OpenACC Programming and Best Practices Guide June 2015 2015 openacc-standard.org. All Rights Reserved. Contents 1 Introduction 3 Writing Portable Code........................................... 3 What
Lecture 2 Parallel Programming Platforms
Lecture 2 Parallel Programming Platforms Flynn s Taxonomy In 1966, Michael Flynn classified systems according to numbers of instruction streams and the number of data stream. Data stream Single Multiple
GPU Hardware and Programming Models. Jeremy Appleyard, September 2015
GPU Hardware and Programming Models Jeremy Appleyard, September 2015 A brief history of GPUs In this talk Hardware Overview Programming Models Ask questions at any point! 2 A Brief History of GPUs 3 Once
CMSC 611: Advanced Computer Architecture
CMSC 611: Advanced Computer Architecture Parallel Computation Most slides adapted from David Patterson. Some from Mohomed Younis Parallel Computers Definition: A parallel computer is a collection of processing
LS-DYNA Scalability on Cray Supercomputers. Tin-Ting Zhu, Cray Inc. Jason Wang, Livermore Software Technology Corp.
LS-DYNA Scalability on Cray Supercomputers Tin-Ting Zhu, Cray Inc. Jason Wang, Livermore Software Technology Corp. WP-LS-DYNA-12213 www.cray.com Table of Contents Abstract... 3 Introduction... 3 Scalability
Multi-core Programming System Overview
Multi-core Programming System Overview Based on slides from Intel Software College and Multi-Core Programming increasing performance through software multi-threading by Shameem Akhter and Jason Roberts,
Agenda. HPC Software Stack. HPC Post-Processing Visualization. Case Study National Scientific Center. European HPC Benchmark Center Montpellier PSSC
HPC Architecture End to End Alexandre Chauvin Agenda HPC Software Stack Visualization National Scientific Center 2 Agenda HPC Software Stack Alexandre Chauvin Typical HPC Software Stack Externes LAN Typical
Advances in Smart Systems Research : ISSN 2050-8662 : http://nimbusvault.net/publications/koala/assr/ Vol. 3. No. 3 : pp.
Advances in Smart Systems Research : ISSN 2050-8662 : http://nimbusvault.net/publications/koala/assr/ Vol. 3. No. 3 : pp.49-54 : isrp13-005 Optimized Communications on Cloud Computer Processor by Using
Scheduling Task Parallelism" on Multi-Socket Multicore Systems"
Scheduling Task Parallelism" on Multi-Socket Multicore Systems" Stephen Olivier, UNC Chapel Hill Allan Porterfield, RENCI Kyle Wheeler, Sandia National Labs Jan Prins, UNC Chapel Hill Outline" Introduction
