Turbomachinery CFD on many-core platforms experiences and strategies
|
|
|
- Beryl Flynn
- 10 years ago
- Views:
Transcription
1 Turbomachinery CFD on many-core platforms experiences and strategies Graham Pullan Whittle Laboratory, Department of Engineering, University of Cambridge MUSAF Colloquium, CERFACS, Toulouse September
2 Turbomachinery CFD on many-core platforms experiences and strategies Graham Pullan and Tobias Brandvik Whittle Laboratory, Department of Engineering, University of Cambridge MUSAF Colloquium, CERFACS, Toulouse September
3 Overview The future (the present) is many-core GPU hardware A strategy for programming GPUs for CFD Turbostream a many-core CFD solver for Turbomachinery Example simulations Conclusions
4 Many-core
5 Moore s Law Source: Intel
6 Clock speed the power wall Source: Tom s Hardware
7 Today s many-core chips Intel 4 core CPU AMD 6 core CPU NVIDIA 240 cores GPU
8 NVIDIA Tesla GPUs C2050 card for desktop PC; 448 cores, 3GB; peak 515 GFLOP/s (DP) S2050 1U rack mount; 4 x C2050 cards; requires connection to CPU host typical average density is 2 GPUs per 1U
9 Many-core summary Many-core computing is here today and the trend is for greater and greater core count in future The run-time of a scalar (non-parallel) code is no longer guaranteed to reduce with each new computer (it may even increase) Codes need to be parallel to take advantage of new hardware The current distributed parallel computing model (MPI) will not work well here (for many-core CPUs), and may not work at all (for GPUs)
10 GPUs what do we get from all those cores?
11 How so many cores on a GPU? Transistor usage: 4 cores >200 cores Source: NVIDIA
12 Why so many cores on a GPU?
13 GPUs and scientific computing GPUs are designed to apply the same shading function to many pixels simultaneously
14 GPUs and scientific computing GPUs are designed to apply the same function to many data simultaneously This is what CFD needs!
15 GPU performance
16 GPUs and CFD Good speedups (> 10x) can be expected for: Codes that apply the same function to lots of data Codes where amount communication to/from card is small (compared to the time to compute the data on the card up to 4GB)
17 GPUs and CFD Good speedups (> 10x) can be expected for: Codes that apply the same function to lots of data Codes where amount communication to/from card is small (compared to the time to compute the data on the card up to 4GB) Turbomachinery CFD is an excellent fit!
18 Programming GPUs for CFD
19 Solving PDEs on multi-core processors
20 Solving PDEs on multi-core processors Navier-Stokes
21 Solving PDEs on multi-core processors Navier-Stokes Finite volume, explicit time stepping
22 Solving PDEs on multi-core processors Navier-Stokes Finite volume, explicit time stepping Second order central differences, Scree scheme
23 Solving PDEs on multi-core processors Navier-Stokes Finite volume, explicit time stepping Second order central differences, Scree scheme Set flux, Sum flux, Shear Stress...
24 Solving PDEs on multi-core processors Navier-Stokes Finite volume, explicit time stepping Second order central differences, Scree scheme Set flux, Sum flux, Shear Stress... Multigrid, Mixing plane, Sliding plane...
25 Solving PDEs on multi-core processors Navier-Stokes Finite volume, explicit time stepping Stencil operations Second order central differences, Scree scheme Set flux, Sum flux, Shear Stress... Multigrid, Mixing plane, Sliding plane...
26 Solving PDEs on multi-core processors Navier-Stokes Finite volume, explicit time stepping Stencil operations Non-stencil operations Second order central differences, Scree scheme Set flux, Sum flux, Shear Stress... Multigrid, Mixing plane, Sliding plane... 26
27 Solving PDEs on multi-core processors Navier-Stokes Finite volume, explicit time stepping Stencil operations Non-stencil operations Second order central differences, Scree scheme Set flux, Sum flux, Shear Stress... Multigrid, Mixing plane, Sliding plane... 90% of run-time 10% of run-time 27
28 Stencil operations on multi-core processors Single implementation? e.g. OpenCL but need to optimize for hardware Multiple implementations? e.g. C with SSE for CPU, CUDA for NVIDIA GPUs, Alternative: High level language for stencil operations a DSL Source-to-source compilation Brandvik, T. and Pullan, G. (2010) SBLOCK: A Framework for Efficient Stencil-Based PDE Solvers on Multi-Core Platforms 1 st International Workshop on the Frontier of GPU Computing, Bradford, July 2010
29 Stencil example Structured grid indexing i, j+1, k i, j, k+1 i-1, j, k i, j, k i+1, j, k i, j, k-1 i, j-1, k
30 Stencil example in Fortran
31 Stencil example Stencil definition:
32 Source-to-source compilation The stencil definition is transformed at compile-time into code that can run on the chosen processor The transformation is performed by filling in a pre-defined template using the stencil definition Stencil definition CPU template GPU template CPU source (.c) GPU source (.cu)
33 Source-to-source compilation The stencil definition is transformed at compile-time into code that can run on the chosen processor The transformation is performed by filling in a pre-defined template using the stencil definition Stencil definition CPU template GPU template X template CPU source (.c) GPU source (.cu) X source
34 Implementation details There are many optimisation strategies for stencil operations (see paper from Supercomputing 2008 by Datta et al.) CPUs: Parallelise with pthreads SSE vectorisation GPUs: Cyclic queues
35 CUDA strategy
36 CUDA strategy
37 CUDA strategy
38 CUDA strategy
39 CUDA strategy
40 CUDA strategy
41 Testbed CPU 1: Intel Core i7 920 (2.66 GHZ) CPU 2: AMD Phenom II X4 940 (3.0 GHz) GPU: NVIDIA GTX 280
42 Stencil benchmark
43 Stencil benchmark
44 Turbostream
45 Turbostream We have implemented a new solver that can run on both CPUs and GPUs The starting point was an existing solver (Fortran, MPI) called TBLOCK The new solver is called Turbostream Brandvik, T. and Pullan, G. (2009) An Accelerated 3D Navier-Stokes Solver for Flows in Turbomachines ASME IGTI Turbo Expo, Orlando, June 2009
46 TBLOCK Developed by John Denton Blocks with arbitrary patch interfaces Simple and fast algorithm 20,000 lines of Fortran 77 Main solver routines are only 10,000 lines
47 Turbostream 3000 lines of stencil definitions (~15 different stencil kernels) Code generated from stencil definitions is 15,000 lines Additional 5000 lines of C for boundary conditions, file I/O etc. Source code is very similar to TBLOCK every subroutine has an equivalent stencil definition
48 Turbostream performance Processor TBLOCK Turbostream Intel Nehalem AMD Phenom II NVIDIA GT TBLOCK runs in parallel on all four CPU cores using MPI Initial results from latest NVIDIA Fermi GPU show an further 2x seedup
49 Darwin GPU cluster Darwin is the central Cambridge cluster In 2008, NVIDIA made Cambridge a CUDA Centre of Excellence, donating 128 GPUs to Darwin
50 Scaling results Unsteady multi-stage turbine Baseline: 27 E6 nodes Largest: 432 E6 nodes Weak scaling: Increase grid size with # GPUs Strong scaling: Constant grid size (27 E6 nodes)
51 What can this be used for? Steady, single passage: 0.5 million nodes 40s (1 GPU) Steady, 3 stage: 3 million nodes 7.5 mins (1 GPU) Unsteady, 3 stage: 120 million nodes 4 hours (16 GPUs) per rev
52 Example simulations
53 Example simulations Three-stage steady turbine simulation (mixing planes) Three-stage unsteady compressor simulation (sliding planes)
54 Three-stage turbine Turbine from Rosic et al, ASME J. Turbo. (2006)
55 Entropy function through machine 4 million grid nodes 10 hours on a single CPU 8 minutes on four GPUs
56 Total pressure loss, Stator 3 exit Experiment Turbostream
57 Compressor simulation Three-stage compressor test rig at Siemens, UK 160 million grid nodes 5 revolutions needed to obtain a periodic solution (22500 time steps) On 32 NVIDIA GT200 GPUs, each revolution takes 24 hours
58 Entropy function contours at mid-span
59 Conclusions
60 Conclusions The switch to multi-core processors enables a step change in performance, but existing codes have to be rewritten The differences between processors make it difficult to hand-code a solver that will run on all of them We suggest a high level abstraction coupled with source-to-source compilation
61 Conclusions A new solver called Turbostream, which is based on Denton s TBLOCK, has been implemented Turbostream is ~10 times faster than TBLOCK when running on an NVIDIA GPU as compared to a quad-core Intel or AMD CPUs Single blade-row calculations almost interactive on a desktop (10 30 seconds) Multi-stage calculations in a few minutes on a small cluster ($10,000) Full annulus unsteady calculations complete overnight on a modest cluster ($100,000)
GPU System Architecture. Alan Gray EPCC The University of Edinburgh
GPU System Architecture EPCC The University of Edinburgh Outline Why do we want/need accelerators such as GPUs? GPU-CPU comparison Architectural reasons for GPU performance advantages GPU accelerated systems
Multicore Parallel Computing with OpenMP
Multicore Parallel Computing with OpenMP Tan Chee Chiang (SVU/Academic Computing, Computer Centre) 1. OpenMP Programming The death of OpenMP was anticipated when cluster systems rapidly replaced large
PyFR: Bringing Next Generation Computational Fluid Dynamics to GPU Platforms
PyFR: Bringing Next Generation Computational Fluid Dynamics to GPU Platforms P. E. Vincent! Department of Aeronautics Imperial College London! 25 th March 2014 Overview Motivation Flux Reconstruction Many-Core
GPUs for Scientific Computing
GPUs for Scientific Computing p. 1/16 GPUs for Scientific Computing Mike Giles [email protected] Oxford-Man Institute of Quantitative Finance Oxford University Mathematical Institute Oxford e-research
Graphics Cards and Graphics Processing Units. Ben Johnstone Russ Martin November 15, 2011
Graphics Cards and Graphics Processing Units Ben Johnstone Russ Martin November 15, 2011 Contents Graphics Processing Units (GPUs) Graphics Pipeline Architectures 8800-GTX200 Fermi Cayman Performance Analysis
A GPU COMPUTING PLATFORM (SAGA) AND A CFD CODE ON GPU FOR AEROSPACE APPLICATIONS
A GPU COMPUTING PLATFORM (SAGA) AND A CFD CODE ON GPU FOR AEROSPACE APPLICATIONS SUDHAKARAN.G APCF, AERO, VSSC, ISRO 914712564742 [email protected] THOMAS.C.BABU APCF, AERO, VSSC, ISRO 914712565833
Optimizing a 3D-FWT code in a cluster of CPUs+GPUs
Optimizing a 3D-FWT code in a cluster of CPUs+GPUs Gregorio Bernabé Javier Cuenca Domingo Giménez Universidad de Murcia Scientific Computing and Parallel Programming Group XXIX Simposium Nacional de la
Accelerating CFD using OpenFOAM with GPUs
Accelerating CFD using OpenFOAM with GPUs Authors: Saeed Iqbal and Kevin Tubbs The OpenFOAM CFD Toolbox is a free, open source CFD software package produced by OpenCFD Ltd. Its user base represents a wide
Simulation Platform Overview
Simulation Platform Overview Build, compute, and analyze simulations on demand www.rescale.com CASE STUDIES Companies in the aerospace and automotive industries use Rescale to run faster simulations Aerospace
Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms
Design and Optimization of OpenFOAM-based CFD Applications for Hybrid and Heterogeneous HPC Platforms Amani AlOnazi, David E. Keyes, Alexey Lastovetsky, Vladimir Rychkov Extreme Computing Research Center,
Evaluation of CUDA Fortran for the CFD code Strukti
Evaluation of CUDA Fortran for the CFD code Strukti Practical term report from Stephan Soller High performance computing center Stuttgart 1 Stuttgart Media University 2 High performance computing center
CUDA programming on NVIDIA GPUs
p. 1/21 on NVIDIA GPUs Mike Giles [email protected] Oxford University Mathematical Institute Oxford-Man Institute for Quantitative Finance Oxford eresearch Centre p. 2/21 Overview hardware view
Accelerating Simulation & Analysis with Hybrid GPU Parallelization and Cloud Computing
Accelerating Simulation & Analysis with Hybrid GPU Parallelization and Cloud Computing Innovation Intelligence Devin Jensen August 2012 Altair Knows HPC Altair is the only company that: makes HPC tools
Trends in High-Performance Computing for Power Grid Applications
Trends in High-Performance Computing for Power Grid Applications Franz Franchetti ECE, Carnegie Mellon University www.spiral.net Co-Founder, SpiralGen www.spiralgen.com This talk presents my personal views
ST810 Advanced Computing
ST810 Advanced Computing Lecture 17: Parallel computing part I Eric B. Laber Hua Zhou Department of Statistics North Carolina State University Mar 13, 2013 Outline computing Hardware computing overview
Programming models for heterogeneous computing. Manuel Ujaldón Nvidia CUDA Fellow and A/Prof. Computer Architecture Department University of Malaga
Programming models for heterogeneous computing Manuel Ujaldón Nvidia CUDA Fellow and A/Prof. Computer Architecture Department University of Malaga Talk outline [30 slides] 1. Introduction [5 slides] 2.
Mixed Precision Iterative Refinement Methods Energy Efficiency on Hybrid Hardware Platforms
Mixed Precision Iterative Refinement Methods Energy Efficiency on Hybrid Hardware Platforms Björn Rocker Hamburg, June 17th 2010 Engineering Mathematics and Computing Lab (EMCL) KIT University of the State
Introduction to GPU hardware and to CUDA
Introduction to GPU hardware and to CUDA Philip Blakely Laboratory for Scientific Computing, University of Cambridge Philip Blakely (LSC) GPU introduction 1 / 37 Course outline Introduction to GPU hardware
Experiences on using GPU accelerators for data analysis in ROOT/RooFit
Experiences on using GPU accelerators for data analysis in ROOT/RooFit Sverre Jarp, Alfio Lazzaro, Julien Leduc, Yngve Sneen Lindal, Andrzej Nowak European Organization for Nuclear Research (CERN), Geneva,
HPC Wales Skills Academy Course Catalogue 2015
HPC Wales Skills Academy Course Catalogue 2015 Overview The HPC Wales Skills Academy provides a variety of courses and workshops aimed at building skills in High Performance Computing (HPC). Our courses
walberla: A software framework for CFD applications on 300.000 Compute Cores
walberla: A software framework for CFD applications on 300.000 Compute Cores J. Götz (LSS Erlangen, [email protected]), K. Iglberger, S. Donath, C. Feichtinger, U. Rüde Lehrstuhl für Informatik 10 (Systemsimulation)
Overview on Modern Accelerators and Programming Paradigms Ivan Giro7o [email protected]
Overview on Modern Accelerators and Programming Paradigms Ivan Giro7o [email protected] Informa(on & Communica(on Technology Sec(on (ICTS) Interna(onal Centre for Theore(cal Physics (ICTP) Mul(ple Socket
Overview of HPC Resources at Vanderbilt
Overview of HPC Resources at Vanderbilt Will French Senior Application Developer and Research Computing Liaison Advanced Computing Center for Research and Education June 10, 2015 2 Computing Resources
Overview. Lecture 1: an introduction to CUDA. Hardware view. Hardware view. hardware view software view CUDA programming
Overview Lecture 1: an introduction to CUDA Mike Giles [email protected] hardware view software view Oxford University Mathematical Institute Oxford e-research Centre Lecture 1 p. 1 Lecture 1 p.
High Performance. CAEA elearning Series. Jonathan G. Dudley, Ph.D. 06/09/2015. 2015 CAE Associates
High Performance Computing (HPC) CAEA elearning Series Jonathan G. Dudley, Ph.D. 06/09/2015 2015 CAE Associates Agenda Introduction HPC Background Why HPC SMP vs. DMP Licensing HPC Terminology Types of
Introduction to GPGPU. Tiziano Diamanti [email protected]
[email protected] Agenda From GPUs to GPGPUs GPGPU architecture CUDA programming model Perspective projection Vectors that connect the vanishing point to every point of the 3D model will intersecate
Lecture 11: Multi-Core and GPU. Multithreading. Integration of multiple processor cores on a single chip.
Lecture 11: Multi-Core and GPU Multi-core computers Multithreading GPUs General Purpose GPUs Zebo Peng, IDA, LiTH 1 Multi-Core System Integration of multiple processor cores on a single chip. To provide
Stream Processing on GPUs Using Distributed Multimedia Middleware
Stream Processing on GPUs Using Distributed Multimedia Middleware Michael Repplinger 1,2, and Philipp Slusallek 1,2 1 Computer Graphics Lab, Saarland University, Saarbrücken, Germany 2 German Research
Unleashing the Performance Potential of GPUs for Atmospheric Dynamic Solvers
Unleashing the Performance Potential of GPUs for Atmospheric Dynamic Solvers Haohuan Fu [email protected] High Performance Geo-Computing (HPGC) Group Center for Earth System Science Tsinghua University
Acceleration of a CFD Code with a GPU
Acceleration of a CFD Code with a GPU Dennis C. Jespersen ABSTRACT The Computational Fluid Dynamics code Overflow includes as one of its solver options an algorithm which is a fairly small piece of code
GPGPU accelerated Computational Fluid Dynamics
t e c h n i s c h e u n i v e r s i t ä t b r a u n s c h w e i g Carl-Friedrich Gauß Faculty GPGPU accelerated Computational Fluid Dynamics 5th GACM Colloquium on Computational Mechanics Hamburg Institute
High Performance Computing in CST STUDIO SUITE
High Performance Computing in CST STUDIO SUITE Felix Wolfheimer GPU Computing Performance Speedup 18 16 14 12 10 8 6 4 2 0 Promo offer for EUC participants: 25% discount for K40 cards Speedup of Solver
QCD as a Video Game?
QCD as a Video Game? Sándor D. Katz Eötvös University Budapest in collaboration with Győző Egri, Zoltán Fodor, Christian Hoelbling Dániel Nógrádi, Kálmán Szabó Outline 1. Introduction 2. GPU architecture
Introducing PgOpenCL A New PostgreSQL Procedural Language Unlocking the Power of the GPU! By Tim Child
Introducing A New PostgreSQL Procedural Language Unlocking the Power of the GPU! By Tim Child Bio Tim Child 35 years experience of software development Formerly VP Oracle Corporation VP BEA Systems Inc.
Parallel Programming Survey
Christian Terboven 02.09.2014 / Aachen, Germany Stand: 26.08.2014 Version 2.3 IT Center der RWTH Aachen University Agenda Overview: Processor Microarchitecture Shared-Memory
LBM BASED FLOW SIMULATION USING GPU COMPUTING PROCESSOR
LBM BASED FLOW SIMULATION USING GPU COMPUTING PROCESSOR Frédéric Kuznik, frederic.kuznik@insa lyon.fr 1 Framework Introduction Hardware architecture CUDA overview Implementation details A simple case:
Next Generation GPU Architecture Code-named Fermi
Next Generation GPU Architecture Code-named Fermi The Soul of a Supercomputer in the Body of a GPU Why is NVIDIA at Super Computing? Graphics is a throughput problem paint every pixel within frame time
AeroFluidX: A Next Generation GPU-Based CFD Solver for Engineering Applications
AeroFluidX: A Next Generation GPU-Based CFD Solver for Engineering Applications Dr. Bjoern Landmann Dr. Kerstin Wieczorek Stefan Bachschuster 18.03.2015 FluiDyna GmbH, Lichtenbergstr. 8, 85748 Garching
Scientific Computing Programming with Parallel Objects
Scientific Computing Programming with Parallel Objects Esteban Meneses, PhD School of Computing, Costa Rica Institute of Technology Parallel Architectures Galore Personal Computing Embedded Computing Moore
GPU Acceleration of the SENSEI CFD Code Suite
GPU Acceleration of the SENSEI CFD Code Suite Chris Roy, Brent Pickering, Chip Jackson, Joe Derlaga, Xiao Xu Aerospace and Ocean Engineering Primary Collaborators: Tom Scogland, Wu Feng (Computer Science)
Computer Graphics Hardware An Overview
Computer Graphics Hardware An Overview Graphics System Monitor Input devices CPU/Memory GPU Raster Graphics System Raster: An array of picture elements Based on raster-scan TV technology The screen (and
RWTH GPU Cluster. Sandra Wienke [email protected] November 2012. Rechen- und Kommunikationszentrum (RZ) Fotos: Christian Iwainsky
RWTH GPU Cluster Fotos: Christian Iwainsky Sandra Wienke [email protected] November 2012 Rechen- und Kommunikationszentrum (RZ) The RWTH GPU Cluster GPU Cluster: 57 Nvidia Quadro 6000 (Fermi) innovative
Clusters: Mainstream Technology for CAE
Clusters: Mainstream Technology for CAE Alanna Dwyer HPC Division, HP Linux and Clusters Sparked a Revolution in High Performance Computing! Supercomputing performance now affordable and accessible Linux
Parallel Algorithm Engineering
Parallel Algorithm Engineering Kenneth S. Bøgh PhD Fellow Based on slides by Darius Sidlauskas Outline Background Current multicore architectures UMA vs NUMA The openmp framework Examples Software crisis
How To Build A Supermicro Computer With A 32 Core Power Core (Powerpc) And A 32-Core (Powerpc) (Powerpowerpter) (I386) (Amd) (Microcore) (Supermicro) (
TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 7 th CALL (Tier-0) Contributing sites and the corresponding computer systems for this call are: GCS@Jülich, Germany IBM Blue Gene/Q GENCI@CEA, France Bull Bullx
Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi
Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi ICPP 6 th International Workshop on Parallel Programming Models and Systems Software for High-End Computing October 1, 2013 Lyon, France
Lecture 3: Modern GPUs A Hardware Perspective Mohamed Zahran (aka Z) [email protected] http://www.mzahran.com
CSCI-GA.3033-012 Graphics Processing Units (GPUs): Architecture and Programming Lecture 3: Modern GPUs A Hardware Perspective Mohamed Zahran (aka Z) [email protected] http://www.mzahran.com Modern GPU
Project Discussion Multi-Core Architectures and Programming
Project Discussion Multi-Core Architectures and Programming Oliver Reiche, Christian Schmitt, Frank Hannig Hardware/Software Co-Design, University of Erlangen-Nürnberg May 15, 2014 Administrative Trivia
Performance of the JMA NWP models on the PC cluster TSUBAME.
Performance of the JMA NWP models on the PC cluster TSUBAME. K.Takenouchi 1), S.Yokoi 1), T.Hara 1) *, T.Aoki 2), C.Muroi 1), K.Aranami 1), K.Iwamura 1), Y.Aikawa 1) 1) Japan Meteorological Agency (JMA)
LS-DYNA Best-Practices: Networking, MPI and Parallel File System Effect on LS-DYNA Performance
11 th International LS-DYNA Users Conference Session # LS-DYNA Best-Practices: Networking, MPI and Parallel File System Effect on LS-DYNA Performance Gilad Shainer 1, Tong Liu 2, Jeff Layton 3, Onur Celebioglu
HPC enabling of OpenFOAM R for CFD applications
HPC enabling of OpenFOAM R for CFD applications Towards the exascale: OpenFOAM perspective Ivan Spisso 25-27 March 2015, Casalecchio di Reno, BOLOGNA. SuperComputing Applications and Innovation Department,
Recent Advances in HPC for Structural Mechanics Simulations
Recent Advances in HPC for Structural Mechanics Simulations 1 Trends in Engineering Driving Demand for HPC Increase product performance and integrity in less time Consider more design variants Find the
Achieving Nanosecond Latency Between Applications with IPC Shared Memory Messaging
Achieving Nanosecond Latency Between Applications with IPC Shared Memory Messaging In some markets and scenarios where competitive advantage is all about speed, speed is measured in micro- and even nano-seconds.
Retargeting PLAPACK to Clusters with Hardware Accelerators
Retargeting PLAPACK to Clusters with Hardware Accelerators Manuel Fogué 1 Francisco Igual 1 Enrique S. Quintana-Ortí 1 Robert van de Geijn 2 1 Departamento de Ingeniería y Ciencia de los Computadores.
Case Study on Productivity and Performance of GPGPUs
Case Study on Productivity and Performance of GPGPUs Sandra Wienke [email protected] ZKI Arbeitskreis Supercomputing April 2012 Rechen- und Kommunikationszentrum (RZ) RWTH GPU-Cluster 56 Nvidia
A Fast Double Precision CFD Code using CUDA
A Fast Double Precision CFD Code using CUDA Jonathan M. Cohen *, M. Jeroen Molemaker** *NVIDIA Corporation, Santa Clara, CA 95050, USA (e-mail: [email protected]) **IGPP UCLA, Los Angeles, CA 90095, USA
Performance Evaluation of Amazon EC2 for NASA HPC Applications!
National Aeronautics and Space Administration Performance Evaluation of Amazon EC2 for NASA HPC Applications! Piyush Mehrotra!! J. Djomehri, S. Heistand, R. Hood, H. Jin, A. Lazanoff,! S. Saini, R. Biswas!
GeoImaging Accelerator Pansharp Test Results
GeoImaging Accelerator Pansharp Test Results Executive Summary After demonstrating the exceptional performance improvement in the orthorectification module (approximately fourteen-fold see GXL Ortho Performance
HPC Deployment of OpenFOAM in an Industrial Setting
HPC Deployment of OpenFOAM in an Industrial Setting Hrvoje Jasak [email protected] Wikki Ltd, United Kingdom PRACE Seminar: Industrial Usage of HPC Stockholm, Sweden, 28-29 March 2011 HPC Deployment
HPC Cluster Decisions and ANSYS Configuration Best Practices. Diana Collier Lead Systems Support Specialist Houston UGM May 2014
HPC Cluster Decisions and ANSYS Configuration Best Practices Diana Collier Lead Systems Support Specialist Houston UGM May 2014 1 Agenda Introduction Lead Systems Support Specialist Cluster Decisions Job
Introduction to GPU Computing
Matthis Hauschild Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Technische Aspekte Multimodaler Systeme December 4, 2014 M. Hauschild - 1 Table of Contents 1. Architecture
Introduction to Numerical General Purpose GPU Computing with NVIDIA CUDA. Part 1: Hardware design and programming model
Introduction to Numerical General Purpose GPU Computing with NVIDIA CUDA Part 1: Hardware design and programming model Amin Safi Faculty of Mathematics, TU dortmund January 22, 2016 Table of Contents Set
Evoluzione dell Infrastruttura di Calcolo e Data Analytics per la ricerca
Evoluzione dell Infrastruttura di Calcolo e Data Analytics per la ricerca Carlo Cavazzoni CINECA Supercomputing Application & Innovation www.cineca.it 21 Aprile 2015 FERMI Name: Fermi Architecture: BlueGene/Q
The Uintah Framework: A Unified Heterogeneous Task Scheduling and Runtime System
The Uintah Framework: A Unified Heterogeneous Task Scheduling and Runtime System Qingyu Meng, Alan Humphrey, Martin Berzins Thanks to: John Schmidt and J. Davison de St. Germain, SCI Institute Justin Luitjens
Parallel Computing with MATLAB
Parallel Computing with MATLAB Scott Benway Senior Account Manager Jiro Doke, Ph.D. Senior Application Engineer 2013 The MathWorks, Inc. 1 Acceleration Strategies Applied in MATLAB Approach Options Best
Scalable and High Performance Computing for Big Data Analytics in Understanding the Human Dynamics in the Mobile Age
Scalable and High Performance Computing for Big Data Analytics in Understanding the Human Dynamics in the Mobile Age Xuan Shi GRA: Bowei Xue University of Arkansas Spatiotemporal Modeling of Human Dynamics
Embedded Systems: map to FPGA, GPU, CPU?
Embedded Systems: map to FPGA, GPU, CPU? Jos van Eijndhoven [email protected] Bits&Chips Embedded systems Nov 7, 2013 # of transistors Moore s law versus Amdahl s law Computational Capacity Hardware
OpenACC Programming and Best Practices Guide
OpenACC Programming and Best Practices Guide June 2015 2015 openacc-standard.org. All Rights Reserved. Contents 1 Introduction 3 Writing Portable Code........................................... 3 What
Module 6 Case Studies
Module 6 Case Studies 1 Lecture 6.1 A CFD Code for Turbomachinery Flows 2 Development of a CFD Code The lecture material in the previous Modules help the student to understand the domain knowledge required
How To Compare Amazon Ec2 To A Supercomputer For Scientific Applications
Amazon Cloud Performance Compared David Adams Amazon EC2 performance comparison How does EC2 compare to traditional supercomputer for scientific applications? "Performance Analysis of High Performance
Le langage OCaml et la programmation des GPU
Le langage OCaml et la programmation des GPU GPU programming with OCaml Mathias Bourgoin - Emmanuel Chailloux - Jean-Luc Lamotte Le projet OpenGPU : un an plus tard Ecole Polytechnique - 8 juin 2011 Outline
Enhancing Cloud-based Servers by GPU/CPU Virtualization Management
Enhancing Cloud-based Servers by GPU/CPU Virtualiz Management Tin-Yu Wu 1, Wei-Tsong Lee 2, Chien-Yu Duan 2 Department of Computer Science and Inform Engineering, Nal Ilan University, Taiwan, ROC 1 Department
~ Greetings from WSU CAPPLab ~
~ Greetings from WSU CAPPLab ~ Multicore with SMT/GPGPU provides the ultimate performance; at WSU CAPPLab, we can help! Dr. Abu Asaduzzaman, Assistant Professor and Director Wichita State University (WSU)
Home Exam 3: Distributed Video Encoding using Dolphin PCI Express Networks. October 20 th 2015
INF5063: Programming heterogeneous multi-core processors because the OS-course is just to easy! Home Exam 3: Distributed Video Encoding using Dolphin PCI Express Networks October 20 th 2015 Håkon Kvale
HP ProLiant SL270s Gen8 Server. Evaluation Report
HP ProLiant SL270s Gen8 Server Evaluation Report Thomas Schoenemeyer, Hussein Harake and Daniel Peter Swiss National Supercomputing Centre (CSCS), Lugano Institute of Geophysics, ETH Zürich [email protected]
NVIDIA CUDA Software and GPU Parallel Computing Architecture. David B. Kirk, Chief Scientist
NVIDIA CUDA Software and GPU Parallel Computing Architecture David B. Kirk, Chief Scientist Outline Applications of GPU Computing CUDA Programming Model Overview Programming in CUDA The Basics How to Get
Graphical Processing Units to Accelerate Orthorectification, Atmospheric Correction and Transformations for Big Data
Graphical Processing Units to Accelerate Orthorectification, Atmospheric Correction and Transformations for Big Data Amanda O Connor, Bryan Justice, and A. Thomas Harris IN52A. Big Data in the Geosciences:
Design and Optimization of a Portable Lattice Boltzmann Code for Heterogeneous Architectures
Design and Optimization of a Portable Lattice Boltzmann Code for Heterogeneous Architectures E Calore, S F Schifano, R Tripiccione Enrico Calore INFN Ferrara, Italy Perspectives of GPU Computing in Physics
GPU Hardware and Programming Models. Jeremy Appleyard, September 2015
GPU Hardware and Programming Models Jeremy Appleyard, September 2015 A brief history of GPUs In this talk Hardware Overview Programming Models Ask questions at any point! 2 A Brief History of GPUs 3 Once
Recommended hardware system configurations for ANSYS users
Recommended hardware system configurations for ANSYS users The purpose of this document is to recommend system configurations that will deliver high performance for ANSYS users across the entire range
Unit A451: Computer systems and programming. Section 2: Computing Hardware 1/5: Central Processing Unit
Unit A451: Computer systems and programming Section 2: Computing Hardware 1/5: Central Processing Unit Section Objectives Candidates should be able to: (a) State the purpose of the CPU (b) Understand the
GPU Computing with CUDA Lecture 2 - CUDA Memories. Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile
GPU Computing with CUDA Lecture 2 - CUDA Memories Christopher Cooper Boston University August, 2011 UTFSM, Valparaíso, Chile 1 Outline of lecture Recap of Lecture 1 Warp scheduling CUDA Memory hierarchy
DYNAMIC LOAD BALANCING APPLICATIONS ON A HETEROGENEOUS UNIX/NT CLUSTER
European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2000 Barcelona, 11-14 September 2000 ECCOMAS DYNAMIC LOAD BALANCING APPLICATIONS ON A HETEROGENEOUS UNIX/NT CLUSTER
The Lattice Project: A Multi-Model Grid Computing System. Center for Bioinformatics and Computational Biology University of Maryland
The Lattice Project: A Multi-Model Grid Computing System Center for Bioinformatics and Computational Biology University of Maryland Parallel Computing PARALLEL COMPUTING a form of computation in which
1 Bull, 2011 Bull Extreme Computing
1 Bull, 2011 Bull Extreme Computing Table of Contents HPC Overview. Cluster Overview. FLOPS. 2 Bull, 2011 Bull Extreme Computing HPC Overview Ares, Gerardo, HPC Team HPC concepts HPC: High Performance
Cluster Computing at HRI
Cluster Computing at HRI J.S.Bagla Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019. E-mail: [email protected] 1 Introduction and some local history High performance computing
Hardware-Aware Analysis and. Presentation Date: Sep 15 th 2009 Chrissie C. Cui
Hardware-Aware Analysis and Optimization of Stable Fluids Presentation Date: Sep 15 th 2009 Chrissie C. Cui Outline Introduction Highlights Flop and Bandwidth Analysis Mehrstellen Schemes Advection Caching
Graphic Processing Units: a possible answer to High Performance Computing?
4th ABINIT Developer Workshop RESIDENCE L ESCANDILLE AUTRANS HPC & Graphic Processing Units: a possible answer to High Performance Computing? Luigi Genovese ESRF - Grenoble 26 March 2009 http://inac.cea.fr/l_sim/
Benchmark Hadoop and Mars: MapReduce on cluster versus on GPU
Benchmark Hadoop and Mars: MapReduce on cluster versus on GPU Heshan Li, Shaopeng Wang The Johns Hopkins University 3400 N. Charles Street Baltimore, Maryland 21218 {heshanli, shaopeng}@cs.jhu.edu 1 Overview
HPC with Multicore and GPUs
HPC with Multicore and GPUs Stan Tomov Electrical Engineering and Computer Science Department University of Tennessee, Knoxville CS 594 Lecture Notes March 4, 2015 1/18 Outline! Introduction - Hardware
An Introduction to Parallel Computing/ Programming
An Introduction to Parallel Computing/ Programming Vicky Papadopoulou Lesta Astrophysics and High Performance Computing Research Group (http://ahpc.euc.ac.cy) Dep. of Computer Science and Engineering European
HPC-related R&D in 863 Program
HPC-related R&D in 863 Program Depei Qian Sino-German Joint Software Institute (JSI) Beihang University Aug. 27, 2010 Outline The 863 key project on HPC and Grid Status and Next 5 years 863 efforts on
High Performance Computing. Course Notes 2007-2008. HPC Fundamentals
High Performance Computing Course Notes 2007-2008 2008 HPC Fundamentals Introduction What is High Performance Computing (HPC)? Difficult to define - it s a moving target. Later 1980s, a supercomputer performs
HPC and Big Data. EPCC The University of Edinburgh. Adrian Jackson Technical Architect [email protected]
HPC and Big Data EPCC The University of Edinburgh Adrian Jackson Technical Architect [email protected] EPCC Facilities Technology Transfer European Projects HPC Research Visitor Programmes Training
ultra fast SOM using CUDA
ultra fast SOM using CUDA SOM (Self-Organizing Map) is one of the most popular artificial neural network algorithms in the unsupervised learning category. Sijo Mathew Preetha Joy Sibi Rajendra Manoj A
Part I Courses Syllabus
Part I Courses Syllabus This document provides detailed information about the basic courses of the MHPC first part activities. The list of courses is the following 1.1 Scientific Programming Environment
