1 Introduction to reducing variance in Monte Carlo simulations

Size: px
Start display at page:

Download "1 Introduction to reducing variance in Monte Carlo simulations"

Transcription

1 Copyright c 007 by Karl Sigma 1 Itroductio to reducig variace i Mote Carlo simulatios 11 Review of cofidece itervals for estimatig a mea I statistics, we estimate a uow mea µ = E(X) of a distributio by collectig iid samples from the distributio, X 1,, X ad usig the sample mea X() = 1 X j (1) Lettig σ = V ar(x) deote the variace of the distributio, we coclude that V ar(x()) = σ () The cetral limit theorem asserts that as, the distributio of def Z = σ (X() µ) teds to N(0, 1), the uit ormal distributio Lettig Z deote a N(0, 1) rv, we coclude that for sufficietly large, Z Z i distributio From here we obtai for ay z 0, P ( X() µ > z σ ) P ( Z > z) = P (Z > z) (We ca obtai ay value of P (Z > z) by referrig to tables, etc) For ay α > 0 o matter how small (such as α = 005), lettig z α/ be such that P (Z > z α/ ) = α/, we thus have P ( X() µ > z α/ σ ) α, which implies that the uow mea µ lies withi the iterval X() ± z α/ σ with (approximately) probability 1 α This allows us to costruct cofidece itervals for our estimate: we say that the iterval X() ± z α/ σ is a 100(1 α)% cofidece iterval for the mea µ Typically, we would use (say) α = 005 i which case z α/ = z 005 = 196, ad we thus obtai a 95% cofidece iterval X() ± (196) σ The legth of the cofidece iterval is (196) σ which of course teds to 0 as the sample size gets larger I practice we would ot actually ow the value of σ ; it would be uow (just as µ is) But this is ot really a problem: we istead use a estimate for it, the sample variace s () defied by s () = 1 1 (X j X ) It ca be show that s () σ, with probability 1, as ad that E(s ()) = σ, 1

2 So, i practice we would use s() is place of σ whe costructig our cofidece itervals For example, a 95% cofidece iterval is give by X() ± (196) s() The followig recursios ca be derived; they are useful whe implemetig a simulatio requirig a cofidece iterval: X +1 = X + X +1 X, + 1 ( S+1 = 1 1 ) S + ( + 1)(X +1 X ) 1 Applicatio to Mote Carlo simulatio I Mote Carlo simulatio, istead of collectig the iid data X 1,, X, we simulate it Moreover, we ca choose as large as we wat; = 10, 000 for example, so the cetral limit theorem justificatio for costructig cofidece itervals ca safely be used Thus we ca immediately obtai cofidece itervals for Mote Carlo estimates But simulatio also allows us to be clever: We ca purposely try to iduce egative correlatio amog the variables X 1,, X, or geerate copies that while havig the same mea, have a smaller variace, so that the variace of the estimator i (1) becomes smaller tha σ resultig i a smaller cofidece iterval The idea is to try to get eve better estimates by reducig the ucertaity i our estimate I the ext sectios, we explore ways of doig this 13 Atithetic variates method Let X i deote our copies of X (each has the same distributio hece the same mea µ ad variace σ ) but let us ot assume that they are idepedet Let = m, for some m 1, that is, is eve Note that where X() = 1 m m X j = 1 m Y j = Y (m), (3) m ad we coclude that Y 1 = X 1 + X Y = X 3 + X 4 Y m = X 1 + X, The two estimators Y (m) ad X() for E(X) i (3) are idetical Because they are idetical, we ca ad will use Y (m) i what follows Moreover, E(Y i ) = E(X) = µ (remember we are assumig that the X i all have the same distributio hece the same mea) This meas that for purposes of argumet here we ca view each Y i as the ed

3 copy that we wish to simulate from (istead of the X i ) We let Y = X 1+X deote a geeric Y i The problem of estimatio ca be re-cast as we are tryig to estimate µ = E(Y ) Computig variaces, V ar(y ) = (1/4)(σ + σ + Cov(X 1, X )) = (1/)(σ + Cov(X 1, X )) I the case whe the X i are iid, Cov(X 1, X ) = 0 ad thus V ar(y ) = σ / yieldig (as we already ow, recall ()) V ar(y (m)) = σ But if Cov(X 1, X ) < 0, the V ar(y ) < (1/)σ yieldig V ar(y (m)) < σ ; variace is reduced So it is i our iterest to somehow create some egative correlatio withi each pair (X 1, X ), (X 3, X 4 ),, but eep the pairs iid so that the Y i are iid (ad thus the CLT still applies); for the V ar(y (m)) will be lowered from what it would be if we simply used iid copies of the X i To motivate how we might create the desired egative correlatio, recall that we ca geerate a expoetially distributed rv X 1 = (1/λ) l (U) with U uiformly distributed o (0, 1) Now istead of usig a ew idepedet uiform to geerate a secod such copy, use 1 U which we well ow is also uiformly distributed o (0, 1); that is, defie X = (1/λ) l (1 U) Clearly X 1 ad X are egatively correlated sice if U icreases, the 1 U decreases ad the fuctio l(y) is a icreasig fuctio of y: X 1 icreases iff U icreases iff 1 U decreases iff X decreases More geerally, for ay distributio F (x) = P (X x) with iverse F 1 (y) we could geerate a egatively correlated pair via X 1 = F 1 (U), X = F 1 (1 U) sice F 1 (y) is a mootoe icreasig fuctio of y The radom variables U ad 1 U have a correlatio coefficiet ρ = 1, they are egatively correlated (to the largest extet), thus the mootoicity preserves the property of egative correlatio; ρ X1,X < 0 (ot ecessarily 1 though) I a geeral Mote Carlo simulatio our X is of the form X = h(u 1,, U ), for some (perhaps very complicated) fuctio h, ad some (perhaps large), that is, we eed iid U i to geerate each copy of X For example, if we are cosiderig X = C = ( 1 S i K) +, the payoff at time T = of a Asia call optio uder the biomial lattice model, the re-writig where the Y i are the iid up-dow rvs, we have h(u 1, U ) = 1 S i = (1/)S 0 Y 1 [1 + Y ], ( (1/)S 0 (ui{u 1 p} + di{u 1 > p})[1 + (ui{u p} + di{u > p})] K) + This fuctio is mootoe decreasig i U 1 ad U : as either variable icreases, they will exceed the value p ad hece the idicators will ted towards the lower value d as opposed to the higher value u > d Because the vectors (U 1, U ) ad (1 U 1, 1 U ) are idetically distributed, so are the rvs X 1 = h(u 1, U ) ad X = h(1 U 1, 1 U ); i particular they have the same mea E(X) But the mootoicity of h results i egative correlatio betwee them, Cov(X 1, X ) < 0 I geeral, as log as the fuctio h is mootoe (either icreasig or decreasig) i each variable, the it ca be show that X 1 = h(u 1,, U ) ad X = h(1 U 1,, 1 U ) are 3

4 ideed egatively correlated, ad are referred to as atithetic variates Agai, because the vectors (U 1, U, U ) ad (1 U 1, 1 U, 1 U ) have the same distributio, so do X 1 ad X ; i particular they have the same mea E(X) But because of the iduced egative correlatio (whe h is mootoe) the two are themselves egatively correlated copies: Propositio 11 If the fuctio h for geeratig X = h(u 1,, U ) is mootoe i each variable, the X 1 = h(u 1,, U ) ad X = h(1 U 1,, 1 U ) with the U i iid uiform o (0, 1) are i fact egatively correlated; Cov(X 1, X ) < 0 (Equivaletly E(X 1 X ) < E(X 1 )E(X ) = E (X)) Algorithm for usig atithetic variates to estimate µ = E(X), whe X = h(u 1,, U ) is mootoe i the U i : The method of simulatig our pairs is straightforward: 1 Geerate U 1, U Costruct a first pair: Set X 1 = h(u 1,, U ) ad X = h(1 U 1,, 1 U ) Now idepedetly geerate ew iid uiforms to costruct aother pair X 3, X 4 ad so o pair by pair util reachig m (large) desired pairs 3 Use the estimate where m Y (m) = Y j, Y 1 = X 1 + X Y = X 3 + X 4 Y m = X m 1 + X m To costruct our (ew ad better) cofidece iterval: Defie the sample variace as s (m) = 1 m 1 m (Y j Y m ) The the iterval Y (m) ± z α/ s(m) is a 100(1 α)% cofidece iterval for the mea µ As a very simple example recall that we ca estimate π by observig that π/4 = E( 1 U ) Sice h(y) = 1 y is mootoe decreasig i y, we ca use atithetic variates Thus we would use X 1 = 1 U1, X = 1 (1 U 1 ) for our first pair, X 3 = 1 U, X 4 = 1 (1 U ) ad so o 4

5 Remar 11 I a real simulatio applicatio, computig exactly Cov(X 1, X ) whe X 1 ad X are atithetic is ever possible i geeral; after all, we do ot eve ow (i geeral) either E(X) or V ar(x) But this is ot importat sice our objective was oly to reduce the variace, ad we accomplished that 14 Atithetic ormal rvs I may fiace applicatios, the fudametal rvs eeded to costruct a desired output copy X are uit ormals, Z 1, Z, For example, whe usig geometric Browia motio for asset pricig, our payoffs typically ca be writte i the form X = h(z 1,, Z ) Notig that Z is also a uit ormal if Z is, ad that the correlatio coefficiet betwee them is ρ = 1, the followig is the Gaussia aalogue to Propositio 11 Propositio 1 If the fuctio h for geeratig X = h(z 1,, Z ) is mootoe i each variable, the X 1 = h(z 1,, Z ) ad X = h( Z 1,, Z ) with the Z i iid N(0, 1) are i fact egatively correlated; Cov(X 1, X ) < 0 Example with a Asia call optio: Suppose for example you wish to estimate the expected payoff of a Asia call optio (termiatio date T ) averaged over the time poits 0 = t 0 < t 1 < t < < t = T The payoff is the X = C T = ( 1 S(t ) K) + We ext show how to costruct the atithetic pairs 1 Geerate iid N(0, 1) rvs, Z 1,, Z Set Recursively set L i = e σ t i t i 1 Z i +µ(t i t i 1 ), i {1,,, } (4) S(t 1 ) = S(0)L 1 S(t ) = S(t 1 )L = S 0 L 1 L S(t ) = S(t 1 )L = S 0 L 1 L L Set X 1 = ( 1 S(t ) K) + 3 Now reset the L i i (5) by usig Z 1,, Z i place of Z 1,, Z, that is, set L i = e σ t i t i 1 Z i +µ(t i t i 1 ), i {1,,, } (5) 5

6 4 Recursively set S(t 1 ) = S(0)L 1 S(t ) = S(t 1 )L = S 0 L 1 L S(t ) = S(t 1 )L = S 0 L 1 L L Set X = ( 1 S(t ) K) + 5 Set Y = X 1 + X Deotig the above copy by Y 1 = Y, we ca geerate a secod idepedet such copy by startig agai at (1) with a ew (idepedet) Z 1,, Z ad settigy = Y Repeatig this procedure m times yields our desired m iid copies of Y 15 Cotrol variates Suppose we wish to estimate µ = E(X) usig Mote Carlo simulatio (eg, usig X() with iid copies of X) Lettig C be ay other rv, with mea E(C), ad b a costat, ote that the rv Y give by Y = X b(c E(C)), (6) has the same desired mea: E(Y ) = E(X) Thus, if we could simulate iid copies of Y, Y 1, Y, the we could use as our estimate Y () istead of X() Notig further that σ Y = V ar(y ) = σ X + b σ C bσ X,C, (7) we see that by choosig C ad b wisely, it might be possible to reduce variace, that is, to have σy < σ X thus resultig i the lower variace estimator Y () tha the usual X() If X is oegative, the this would amout to choosig b > 0 ad selectig C ad X to have high positive correlatio, but i geeral may possibilities might come ito play Before we ivestigate this further, ote that it would be very helpful if C was already part of the simulatio of X i the sese that wheever we simulated a copy of X, a copy of C ecessarily came out for free alog the way Also we wat C to be such that we exactly ow the value E(C) The idea beig that we do ot wat to have to icrease our wor A example would be X = ([S(t 1 )+S(t )]/ K) + ad C = S(t ) for a Asia call optio This method of itroducig such a C for purpose of reducig variace is the cotrol variates method, ad C E(C) is called the cotrol variate for estimatig E(X) For a give C, we ca view (7) as a fuctio of b, g(b) = σy (b), ad the usig elemetary calculus, set g (b) = bσc σ x,c = 0 ad solve for the miimum b This yields: b = σ X,C σc, (8) σy (b ) = σx(1 ρ X,C), (9) 6

7 where ρ X,C = σ X,C /(σ X σ C ) deotes the correlatio coefficiet Thus by choosig ay C for which σ X,C 0 we ca always reduce variace, ad it is desirable to choose a C that is strogly correlated with X I practice we would ot be able to compute the value of b exactly sice it is uliely that we would ow σ X,C ad maybe ot eve σc But we could estimate it i advace by simulatio: Choose large ad use b b () = (X i X())(C i E(C)) (C i E(C)) (10) I other words we would first (just oce) ru a simulatio (large ) to obtai the estimate b (), ad the use that fixed value throughout our desired Mote Carlo simulatio Examples with GBM 1 Asia call optio: With 0 < t 1 < < t = T, the payoff at time T is X = ( 1 S(t i ) K) + A atural choice for C is the stoc itself at the termial value, C = S(T ) = S(t ) We certaily ca compute E(C) it is part of the simulatio ayhow ad is clearly positively correlated with X Aother choice would be the payoff of a Europea call C = (S(T ) K) +, sice i this case E(C) is ow exactly from the Blac-Scholes optios pricig formula A eve better choice (more correlatio) would be to use C = (Π S(t i) K) +, the payoff of a geometrically averaged Asia optio Here to, it turs out that the expected payoff E(C) is exactly ow (a formula exists), ad because it icorporates all values of the GBM, it yields a higher correlatio with X It should ot be surprisig that the choice of C might also deped o the strie price K For example, if K is very small compared to S(0), oe would, with high probability, obtai a positive payoff of 1 S(t i ) K, yieldig a high correlatio with (say) ay of the choices of C metioed above, whereas if K is very large compared to S(0) the oe would, with high probability, obtai o payoff at all, thus yieldig a low correlatio with a choice of C = S(T ) (but still a high oe with the geometrically averaged payoff above) There is o obvious best choice that wors with all payoffs; oe must tae ito cosideratio the specific structure of a payoff, ad its parameters I payoffs with multiple assets such as a spread optio, oe ca use a cotrol that uses all (or some) of the assets For example, for X = ( S 1 (T ) S (T ) K) + oe might try C = S 1 (T ) S (T ) 7

Output Analysis (2, Chapters 10 &11 Law)

Output Analysis (2, Chapters 10 &11 Law) B. Maddah ENMG 6 Simulatio 05/0/07 Output Aalysis (, Chapters 10 &11 Law) Comparig alterative system cofiguratio Sice the output of a simulatio is radom, the comparig differet systems via simulatio should

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

Hypothesis testing. Null and alternative hypotheses

Hypothesis testing. Null and alternative hypotheses Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate

More information

Properties of MLE: consistency, asymptotic normality. Fisher information.

Properties of MLE: consistency, asymptotic normality. Fisher information. Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

More information

Overview of some probability distributions.

Overview of some probability distributions. Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability

More information

1 Review of Probability

1 Review of Probability Copyright c 27 by Karl Sigma 1 Review of Probability Radom variables are deoted by X, Y, Z, etc. The cumulative distributio fuctio (c.d.f.) of a radom variable X is deoted by F (x) = P (X x), < x

More information

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas: Chapter 7 - Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries

More information

A probabilistic proof of a binomial identity

A probabilistic proof of a binomial identity A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two

More information

I. Chi-squared Distributions

I. Chi-squared Distributions 1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

More information

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5 Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.

More information

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value

More information

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chi-square (χ ) distributio.

More information

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means)

CHAPTER 7: Central Limit Theorem: CLT for Averages (Means) CHAPTER 7: Cetral Limit Theorem: CLT for Averages (Meas) X = the umber obtaied whe rollig oe six sided die oce. If we roll a six sided die oce, the mea of the probability distributio is X P(X = x) Simulatio:

More information

Chapter 7 Methods of Finding Estimators

Chapter 7 Methods of Finding Estimators Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

More information

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the.

Confidence Intervals. CI for a population mean (σ is known and n > 30 or the variable is normally distributed in the. Cofidece Itervals A cofidece iterval is a iterval whose purpose is to estimate a parameter (a umber that could, i theory, be calculated from the populatio, if measuremets were available for the whole populatio).

More information

1. C. The formula for the confidence interval for a population mean is: x t, which was

1. C. The formula for the confidence interval for a population mean is: x t, which was s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : p-value

More information

1 Computing the Standard Deviation of Sample Means

1 Computing the Standard Deviation of Sample Means Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.

More information

Normal Distribution.

Normal Distribution. Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued

More information

Math C067 Sampling Distributions

Math C067 Sampling Distributions Math C067 Samplig Distributios Sample Mea ad Sample Proportio Richard Beigel Some time betwee April 16, 2007 ad April 16, 2007 Examples of Samplig A pollster may try to estimate the proportio of voters

More information

Confidence Intervals for One Mean

Confidence Intervals for One Mean Chapter 420 Cofidece Itervals for Oe Mea Itroductio This routie calculates the sample size ecessary to achieve a specified distace from the mea to the cofidece limit(s) at a stated cofidece level for a

More information

Determining the sample size

Determining the sample size Determiig the sample size Oe of the most commo questios ay statisticia gets asked is How large a sample size do I eed? Researchers are ofte surprised to fid out that the aswer depeds o a umber of factors

More information

A Recursive Formula for Moments of a Binomial Distribution

A Recursive Formula for Moments of a Binomial Distribution A Recursive Formula for Momets of a Biomial Distributio Árpád Béyi beyi@mathumassedu, Uiversity of Massachusetts, Amherst, MA 01003 ad Saverio M Maago smmaago@psavymil Naval Postgraduate School, Moterey,

More information

Sequences and Series

Sequences and Series CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

More information

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval

More information

THE HEIGHT OF q-binary SEARCH TREES

THE HEIGHT OF q-binary SEARCH TREES THE HEIGHT OF q-binary SEARCH TREES MICHAEL DRMOTA AND HELMUT PRODINGER Abstract. q biary search trees are obtaied from words, equipped with the geometric distributio istead of permutatios. The average

More information

Z-TEST / Z-STATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown

Z-TEST / Z-STATISTIC: used to test hypotheses about. µ when the population standard deviation is unknown Z-TEST / Z-STATISTIC: used to test hypotheses about µ whe the populatio stadard deviatio is kow ad populatio distributio is ormal or sample size is large T-TEST / T-STATISTIC: used to test hypotheses about

More information

Section 11.3: The Integral Test

Section 11.3: The Integral Test Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

More information

Asymptotic Growth of Functions

Asymptotic Growth of Functions CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll

More information

Department of Computer Science, University of Otago

Department of Computer Science, University of Otago Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly

More information

CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homework 4 Solutions CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

More information

Maximum Likelihood Estimators.

Maximum Likelihood Estimators. Lecture 2 Maximum Likelihood Estimators. Matlab example. As a motivatio, let us look at oe Matlab example. Let us geerate a radom sample of size 00 from beta distributio Beta(5, 2). We will lear the defiitio

More information

THE ABRACADABRA PROBLEM

THE ABRACADABRA PROBLEM THE ABRACADABRA PROBLEM FRANCESCO CARAVENNA Abstract. We preset a detailed solutio of Exercise E0.6 i [Wil9]: i a radom sequece of letters, draw idepedetly ad uiformly from the Eglish alphabet, the expected

More information

1 Correlation and Regression Analysis

1 Correlation and Regression Analysis 1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

More information

Convexity, Inequalities, and Norms

Convexity, Inequalities, and Norms Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for

More information

5: Introduction to Estimation

5: Introduction to Estimation 5: Itroductio to Estimatio Cotets Acroyms ad symbols... 1 Statistical iferece... Estimatig µ with cofidece... 3 Samplig distributio of the mea... 3 Cofidece Iterval for μ whe σ is kow before had... 4 Sample

More information

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find 1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.

More information

Chapter 14 Nonparametric Statistics

Chapter 14 Nonparametric Statistics Chapter 14 Noparametric Statistics A.K.A. distributio-free statistics! Does ot deped o the populatio fittig ay particular type of distributio (e.g, ormal). Sice these methods make fewer assumptios, they

More information

Incremental calculation of weighted mean and variance

Incremental calculation of weighted mean and variance Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically

More information

1. MATHEMATICAL INDUCTION

1. MATHEMATICAL INDUCTION 1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1

More information

Confidence Intervals

Confidence Intervals Cofidece Itervals Cofidece Itervals are a extesio of the cocept of Margi of Error which we met earlier i this course. Remember we saw: The sample proportio will differ from the populatio proportio by more

More information

Lecture 5: Span, linear independence, bases, and dimension

Lecture 5: Span, linear independence, bases, and dimension Lecture 5: Spa, liear idepedece, bases, ad dimesio Travis Schedler Thurs, Sep 23, 2010 (versio: 9/21 9:55 PM) 1 Motivatio Motivatio To uderstad what it meas that R has dimesio oe, R 2 dimesio 2, etc.;

More information

The Stable Marriage Problem

The Stable Marriage Problem The Stable Marriage Problem William Hut Lae Departmet of Computer Sciece ad Electrical Egieerig, West Virgiia Uiversity, Morgatow, WV William.Hut@mail.wvu.edu 1 Itroductio Imagie you are a matchmaker,

More information

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio

More information

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006 Exam format UC Bereley Departmet of Electrical Egieerig ad Computer Sciece EE 6: Probablity ad Radom Processes Solutios 9 Sprig 006 The secod midterm will be held o Wedesday May 7; CHECK the fial exam

More information

Basic Elements of Arithmetic Sequences and Series

Basic Elements of Arithmetic Sequences and Series MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic

More information

A RANDOM PERMUTATION MODEL ARISING IN CHEMISTRY

A RANDOM PERMUTATION MODEL ARISING IN CHEMISTRY J. Appl. Prob. 45, 060 070 2008 Prited i Eglad Applied Probability Trust 2008 A RANDOM PERMUTATION MODEL ARISING IN CHEMISTRY MARK BROWN, The City College of New York EROL A. PEKÖZ, Bosto Uiversity SHELDON

More information

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL. Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio - Israel Istitute of Techology, 3000, Haifa, Israel I memory

More information

Statistical inference: example 1. Inferential Statistics

Statistical inference: example 1. Inferential Statistics Statistical iferece: example 1 Iferetial Statistics POPULATION SAMPLE A clothig store chai regularly buys from a supplier large quatities of a certai piece of clothig. Each item ca be classified either

More information

Theorems About Power Series

Theorems About Power Series Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real o-egative umber R, called the radius

More information

Center, Spread, and Shape in Inference: Claims, Caveats, and Insights

Center, Spread, and Shape in Inference: Claims, Caveats, and Insights Ceter, Spread, ad Shape i Iferece: Claims, Caveats, ad Isights Dr. Nacy Pfeig (Uiversity of Pittsburgh) AMATYC November 2008 Prelimiary Activities 1. I would like to produce a iterval estimate for the

More information

Lesson 17 Pearson s Correlation Coefficient

Lesson 17 Pearson s Correlation Coefficient Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) -types of data -scatter plots -measure of directio -measure of stregth Computatio -covariatio of X ad Y -uique variatio i X ad Y -measurig

More information

Swaps: Constant maturity swaps (CMS) and constant maturity. Treasury (CMT) swaps

Swaps: Constant maturity swaps (CMS) and constant maturity. Treasury (CMT) swaps Swaps: Costat maturity swaps (CMS) ad costat maturity reasury (CM) swaps A Costat Maturity Swap (CMS) swap is a swap where oe of the legs pays (respectively receives) a swap rate of a fixed maturity, while

More information

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Cosider a legth- sequece x[ with a -poit DFT X[ where Represet the idices ad as +, +, Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Usig these

More information

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem Lecture 4: Cauchy sequeces, Bolzao-Weierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits

More information

PSYCHOLOGICAL STATISTICS

PSYCHOLOGICAL STATISTICS UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION B Sc. Cousellig Psychology (0 Adm.) IV SEMESTER COMPLEMENTARY COURSE PSYCHOLOGICAL STATISTICS QUESTION BANK. Iferetial statistics is the brach of statistics

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13 EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may

More information

Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling

Taking DCOP to the Real World: Efficient Complete Solutions for Distributed Multi-Event Scheduling Taig DCOP to the Real World: Efficiet Complete Solutios for Distributed Multi-Evet Schedulig Rajiv T. Maheswara, Milid Tambe, Emma Bowrig, Joatha P. Pearce, ad Pradeep araatham Uiversity of Souther Califoria

More information

Estimating Probability Distributions by Observing Betting Practices

Estimating Probability Distributions by Observing Betting Practices 5th Iteratioal Symposium o Imprecise Probability: Theories ad Applicatios, Prague, Czech Republic, 007 Estimatig Probability Distributios by Observig Bettig Practices Dr C Lych Natioal Uiversity of Irelad,

More information

Case Study. Normal and t Distributions. Density Plot. Normal Distributions

Case Study. Normal and t Distributions. Density Plot. Normal Distributions Case Study Normal ad t Distributios Bret Halo ad Bret Larget Departmet of Statistics Uiversity of Wiscosi Madiso October 11 13, 2011 Case Study Body temperature varies withi idividuals over time (it ca

More information

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here). BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

More information

Ekkehart Schlicht: Economic Surplus and Derived Demand

Ekkehart Schlicht: Economic Surplus and Derived Demand Ekkehart Schlicht: Ecoomic Surplus ad Derived Demad Muich Discussio Paper No. 2006-17 Departmet of Ecoomics Uiversity of Muich Volkswirtschaftliche Fakultät Ludwig-Maximilias-Uiversität Müche Olie at http://epub.ub.ui-mueche.de/940/

More information

, a Wishart distribution with n -1 degrees of freedom and scale matrix.

, a Wishart distribution with n -1 degrees of freedom and scale matrix. UMEÅ UNIVERSITET Matematisk-statistiska istitutioe Multivariat dataaalys D MSTD79 PA TENTAMEN 004-0-9 LÖSNINGSFÖRSLAG TILL TENTAMEN I MATEMATISK STATISTIK Multivariat dataaalys D, 5 poäg.. Assume that

More information

Inverse Gaussian Distribution

Inverse Gaussian Distribution 5 Kauhisa Matsuda All rights reserved. Iverse Gaussia Distributio Abstract Kauhisa Matsuda Departmet of Ecoomics The Graduate Ceter The City Uiversity of New York 65 Fifth Aveue New York NY 6-49 Email:

More information

Non-life insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring

Non-life insurance mathematics. Nils F. Haavardsson, University of Oslo and DNB Skadeforsikring No-life isurace mathematics Nils F. Haavardsso, Uiversity of Oslo ad DNB Skadeforsikrig Mai issues so far Why does isurace work? How is risk premium defied ad why is it importat? How ca claim frequecy

More information

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I tought Topological Groups at the Göttige Georg August Uiversity. This

More information

LECTURE 13: Cross-validation

LECTURE 13: Cross-validation LECTURE 3: Cross-validatio Resampli methods Cross Validatio Bootstrap Bias ad variace estimatio with the Bootstrap Three-way data partitioi Itroductio to Patter Aalysis Ricardo Gutierrez-Osua Texas A&M

More information

Quadrat Sampling in Population Ecology

Quadrat Sampling in Population Ecology Quadrat Samplig i Populatio Ecology Backgroud Estimatig the abudace of orgaisms. Ecology is ofte referred to as the "study of distributio ad abudace". This beig true, we would ofte like to kow how may

More information

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series 8 Fourier Series Our aim is to show that uder reasoable assumptios a give -periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series

More information

Chapter 5: Inner Product Spaces

Chapter 5: Inner Product Spaces Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples

More information

Infinite Sequences and Series

Infinite Sequences and Series CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

More information

Practice Problems for Test 3

Practice Problems for Test 3 Practice Problems for Test 3 Note: these problems oly cover CIs ad hypothesis testig You are also resposible for kowig the samplig distributio of the sample meas, ad the Cetral Limit Theorem Review all

More information

Confidence intervals and hypothesis tests

Confidence intervals and hypothesis tests Chapter 2 Cofidece itervals ad hypothesis tests This chapter focuses o how to draw coclusios about populatios from sample data. We ll start by lookig at biary data (e.g., pollig), ad lear how to estimate

More information

Solutions to Selected Problems In: Pattern Classification by Duda, Hart, Stork

Solutions to Selected Problems In: Pattern Classification by Duda, Hart, Stork Solutios to Selected Problems I: Patter Classificatio by Duda, Hart, Stork Joh L. Weatherwax February 4, 008 Problem Solutios Chapter Bayesia Decisio Theory Problem radomized rules Part a: Let Rx be the

More information

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5

More information

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return

where: T = number of years of cash flow in investment's life n = the year in which the cash flow X n i = IRR = the internal rate of return EVALUATING ALTERNATIVE CAPITAL INVESTMENT PROGRAMS By Ke D. Duft, Extesio Ecoomist I the March 98 issue of this publicatio we reviewed the procedure by which a capital ivestmet project was assessed. The

More information

A Mathematical Perspective on Gambling

A Mathematical Perspective on Gambling A Mathematical Perspective o Gamblig Molly Maxwell Abstract. This paper presets some basic topics i probability ad statistics, icludig sample spaces, probabilistic evets, expectatios, the biomial ad ormal

More information

Page 1. Real Options for Engineering Systems. What are we up to? Today s agenda. J1: Real Options for Engineering Systems. Richard de Neufville

Page 1. Real Options for Engineering Systems. What are we up to? Today s agenda. J1: Real Options for Engineering Systems. Richard de Neufville Real Optios for Egieerig Systems J: Real Optios for Egieerig Systems By (MIT) Stefa Scholtes (CU) Course website: http://msl.mit.edu/cmi/ardet_2002 Stefa Scholtes Judge Istitute of Maagemet, CU Slide What

More information

MARTINGALES AND A BASIC APPLICATION

MARTINGALES AND A BASIC APPLICATION MARTINGALES AND A BASIC APPLICATION TURNER SMITH Abstract. This paper will develop the measure-theoretic approach to probability i order to preset the defiitio of martigales. From there we will apply this

More information

Chapter 7: Confidence Interval and Sample Size

Chapter 7: Confidence Interval and Sample Size Chapter 7: Cofidece Iterval ad Sample Size Learig Objectives Upo successful completio of Chapter 7, you will be able to: Fid the cofidece iterval for the mea, proportio, ad variace. Determie the miimum

More information

CHAPTER 3 DIGITAL CODING OF SIGNALS

CHAPTER 3 DIGITAL CODING OF SIGNALS CHAPTER 3 DIGITAL CODING OF SIGNALS Computers are ofte used to automate the recordig of measuremets. The trasducers ad sigal coditioig circuits produce a voltage sigal that is proportioal to a quatity

More information

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical ad Mathematical Scieces 2015, 1, p. 15 19 M a t h e m a t i c s AN ALTERNATIVE MODEL FOR BONUS-MALUS SYSTEM A. G. GULYAN Chair of Actuarial Mathematics

More information

Factors of sums of powers of binomial coefficients

Factors of sums of powers of binomial coefficients ACTA ARITHMETICA LXXXVI.1 (1998) Factors of sums of powers of biomial coefficiets by Neil J. Cali (Clemso, S.C.) Dedicated to the memory of Paul Erdős 1. Itroductio. It is well ow that if ( ) a f,a = the

More information

Universal coding for classes of sources

Universal coding for classes of sources Coexios module: m46228 Uiversal codig for classes of sources Dever Greee This work is produced by The Coexios Project ad licesed uder the Creative Commos Attributio Licese We have discussed several parametric

More information

Modified Line Search Method for Global Optimization

Modified Line Search Method for Global Optimization Modified Lie Search Method for Global Optimizatio Cria Grosa ad Ajith Abraham Ceter of Excellece for Quatifiable Quality of Service Norwegia Uiversity of Sciece ad Techology Trodheim, Norway {cria, ajith}@q2s.tu.o

More information

Domain 1: Designing a SQL Server Instance and a Database Solution

Domain 1: Designing a SQL Server Instance and a Database Solution Maual SQL Server 2008 Desig, Optimize ad Maitai (70-450) 1-800-418-6789 Domai 1: Desigig a SQL Server Istace ad a Database Solutio Desigig for CPU, Memory ad Storage Capacity Requiremets Whe desigig a

More information

Partial Di erential Equations

Partial Di erential Equations Partial Di eretial Equatios Partial Di eretial Equatios Much of moder sciece, egieerig, ad mathematics is based o the study of partial di eretial equatios, where a partial di eretial equatio is a equatio

More information

Efficient tree methods for pricing digital barrier options

Efficient tree methods for pricing digital barrier options Efficiet tree methods for pricig digital barrier optios arxiv:1401.900v [q-fi.cp] 7 Ja 014 Elisa Appolloi Sapieza Uiversità di Roma MEMOTEF elisa.appolloi@uiroma1.it Abstract Adrea igori Uiversità di Roma

More information

COMPARISON OF THE EFFICIENCY OF S-CONTROL CHART AND EWMA-S 2 CONTROL CHART FOR THE CHANGES IN A PROCESS

COMPARISON OF THE EFFICIENCY OF S-CONTROL CHART AND EWMA-S 2 CONTROL CHART FOR THE CHANGES IN A PROCESS COMPARISON OF THE EFFICIENCY OF S-CONTROL CHART AND EWMA-S CONTROL CHART FOR THE CHANGES IN A PROCESS Supraee Lisawadi Departmet of Mathematics ad Statistics, Faculty of Sciece ad Techoology, Thammasat

More information

The analysis of the Cournot oligopoly model considering the subjective motive in the strategy selection

The analysis of the Cournot oligopoly model considering the subjective motive in the strategy selection The aalysis of the Courot oligopoly model cosiderig the subjective motive i the strategy selectio Shigehito Furuyama Teruhisa Nakai Departmet of Systems Maagemet Egieerig Faculty of Egieerig Kasai Uiversity

More information

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009) 18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the Bru-Mikowski iequality for boxes. Today we ll go over the

More information

One-sample test of proportions

One-sample test of proportions Oe-sample test of proportios The Settig: Idividuals i some populatio ca be classified ito oe of two categories. You wat to make iferece about the proportio i each category, so you draw a sample. Examples:

More information

Institute of Actuaries of India Subject CT1 Financial Mathematics

Institute of Actuaries of India Subject CT1 Financial Mathematics Istitute of Actuaries of Idia Subject CT1 Fiacial Mathematics For 2014 Examiatios Subject CT1 Fiacial Mathematics Core Techical Aim The aim of the Fiacial Mathematics subject is to provide a groudig i

More information

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern. 5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers

More information

Lecture 4: Cheeger s Inequality

Lecture 4: Cheeger s Inequality Spectral Graph Theory ad Applicatios WS 0/0 Lecture 4: Cheeger s Iequality Lecturer: Thomas Sauerwald & He Su Statemet of Cheeger s Iequality I this lecture we assume for simplicity that G is a d-regular

More information

Overview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals

Overview. Learning Objectives. Point Estimate. Estimation. Estimating the Value of a Parameter Using Confidence Intervals Overview Estimatig the Value of a Parameter Usig Cofidece Itervals We apply the results about the sample mea the problem of estimatio Estimatio is the process of usig sample data estimate the value of

More information

Class Meeting # 16: The Fourier Transform on R n

Class Meeting # 16: The Fourier Transform on R n MATH 18.152 COUSE NOTES - CLASS MEETING # 16 18.152 Itroductio to PDEs, Fall 2011 Professor: Jared Speck Class Meetig # 16: The Fourier Trasform o 1. Itroductio to the Fourier Trasform Earlier i the course,

More information

SEQUENCES AND SERIES

SEQUENCES AND SERIES Chapter 9 SEQUENCES AND SERIES Natural umbers are the product of huma spirit. DEDEKIND 9.1 Itroductio I mathematics, the word, sequece is used i much the same way as it is i ordiary Eglish. Whe we say

More information

3. Greatest Common Divisor - Least Common Multiple

3. Greatest Common Divisor - Least Common Multiple 3 Greatest Commo Divisor - Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd

More information