Linear Algebra II. 4 Determinants. Notes 4 1st November Definition of determinant

Size: px
Start display at page:

Download "Linear Algebra II. 4 Determinants. Notes 4 1st November Definition of determinant"

Transcription

1 MTH6140 Liear Algebra II Notes 4 1st November Determiats The determiat is a fuctio defied o square matrices; its value is a scalar. It has some very importat properties: perhaps most importat is the fact that a matrix is ivertible if ad oly if its determiat is ot equal to zero. We deote the determiat fuctio by det, so that det(a) is the determiat of A. For a matrix writte out as a array, the determiat is deoted by replacig the square brackets by vertical bars: 1 2 det = Defiitio of determiat You have met determiats i earlier courses, ad you kow the formula for the determiat of a 2 2 or 3 3 matrix: a b a b c c d = ad bc, d e f = aei + b f g + cdh a f h bdi ceg. g h i Our first job is to defie the determiat for square matrices of ay size. We do this i a axiomatic maer: Defiitio 4.1 A fuctio D defied o matrices is a determiat if it satisfies the followig three coditios: (D1) For each 1 i, the fuctio D is a liear fuctio of the ith colum: this meas that, if A ad A are two matrices which agree everywhere except the ith colum, ad if A is the matrix whose ith colum is c times the ith colum of A plus c times the ith colum of A, but agreeig with A ad A everywhere else, the D(A ) = cd(a) + c D(A ). 1

2 (D2) If A has two equal colums, the D(A) = 0. (D3) D(I ) = 1, where I is the idetity matrix. We show the followig result: Theorem 4.1 There is a uique determiat fuctio o matrices, for ay. Proof First, we show that applyig elemetary colum operatios to A has a welldefied effect o D(A). (a) If B is obtaied from A by addig c times the jth colum to the ith, the D(B) = D(A). (b) If B is obtaied from A by multiplyig the ith colum by a o-zero scalar c, the D(B) = cd(a). (c) If B is obtaied from A by iterchagig two colums, the D(B) = D(A). For (a), let A be the matrix which agrees with A i all colums except the ith, which is equal to the jth colum of A. By rule (D2), D(A ) = 0. By rule (D1), D(B) = D(A) + cd(a ) = D(A). Part (b) follows immediately from rule (D1). To prove part (c), we observe that we ca iterchage the ith ad jth colums by the followig sequece of operatios: add the ith colum to the jth; multiply the ith colum by 1; add the jth colum to the ith; subtract the ith colum from the jth. I symbols, (c i,c j ) (c i,c j + c i ) ( c i,c j + c i ) (c j,c j + c i ) (c j,c i ). The first, third ad fourth steps do t chage the value of D, while the secod multiplies it by 1. Now we take the matrix A ad apply elemetary colum operatios to it, keepig track of the factors by which D gets multiplied accordig to rules (a) (c). The overall effect is to multiply D(A) by a certai o-zero scalar c, depedig o the operatios. 2

3 If A is ivertible, the we ca reduce A to the idetity (see Corollary 2.8), so that cd(a) = D(I) = 1 (by (D3)), whece D(A) = c 1. If A is ot ivertible, the its colum rak is less tha. So the colums of A are liearly depedet, ad oe colum ca be writte as a liear combiatio of the others. Applyig axiom (D1), we see that D(A) is a liear combiatio of values D(A ), where A are matrices with two equal colums; so D(A ) = 0 for all such A, whece D(A) = 0. This proves that the determiat fuctio, if it exists, is uique. We show its existece i the ext sectio, by givig a couple of formulae for it. Give the uiqueess of the determiat fuctio, we ow deote it by det(a) istead of D(A). The proof of the theorem shows a importat corollary: Corollary 4.2 A square matrix is ivertible if ad oly if det(a) 0. Proof See the case divisio at the ed of the proof of the theorem. Oe of the most importat properties of the determiat is the followig. Theorem 4.3 If A ad B are matrices over K, the det(ab) = det(a)det(b). Proof Suppose first that B is ot ivertible. The det(b) = 0. Also, AB is ot ivertible. (For, suppose that (AB) 1 = X, so that XAB = I. The XA is the iverse of B.) So det(ab) = 0, ad the theorem is true. I the other case, B is ivertible, so we ca apply a sequece of elemetary colum operatios to B to get to the idetity (by Corollary 2.8). The effect of these operatios is to multiply the determiat by a o-zero factor c (depedig o the operatios), so that cdet(b) = det(i) = 1, or c = (det(b)) 1. Now these operatios are represeted by elemetary matrices; so we see that BQ = I, where Q is a product of elemetary matrices (see Lemma 2.2). If we apply the same sequece of elemetary operatios to AB, we ed up with the matrix (AB)Q = A(BQ) = AI = A. The determiat is multiplied by the same factor, so we fid that cdet(ab) = det(a). Sice c = (det(b)) 1, this implies that det(ab) = det(a) det(b), as required. Fially, we have defied determiats usig colums, but we could have used rows istead: Propositio 4.4 The determiat is the uique fuctio D of matrices which satisfies the coditios 3

4 (D1 ) for each 1 i, the fuctio D is a liear fuctio of the ith row; (D2 ) if two rows of A are equal, the D(A) = 0; (D3 ) D(I ) = 1. The proof of uiqueess is almost idetical to that for colums. To see that D(A) = det(a): if A is ot ivertible, the D(A) = det(a) = 0; but if A is ivertible, the it is a product of elemetary matrices (which ca represet either row or colum operatios), ad the determiat is the product of the factors associated with these operatios. Corollary 4.5 If A deotes the traspose of A, the det(a ) = det(a). For, if D deotes the determiat computed by row operatios, the det(a) = D(A) = det(a ), sice row operatios o A correspod to colum operatios o A. 4.2 Calculatig determiats We ow give a couple of formulae for the determiat. This fiishes the job we left ope i the proof of the last theorem, amely, showig that a determiat fuctio actually exists! The first formula ivolves some backgroud otatio (see also the additioal sheet Permutatios, available from the module website). Defiitio 4.2 A permutatio of {1,...,} is a bijectio from the set {1,...,} to itself. The symmetric group S cosists of all permutatios of the set {1,...,}. (There are! such permutatios.) For ay permutatio π S, there is a umber sig(π) = ±1, computed as follows: write π as a product of disjoit cycles; if there are k cycles (icludig cycles of legth 1), the sig(π) = ( 1) k. A traspositio is a permutatio which iterchages two symbols ad leaves all the others fixed. Thus, if τ is a traspositio, the sig(τ) = 1. The last fact holds because a traspositio has oe cycle of size 2 ad 2 cycles of size 1, so 1 altogether; so sig(τ) = ( 1) ( 1) = 1. We eed oe more fact about sigs: if π is ay permutatio ad τ is a traspositio, the sig(πτ) = sig(π), where πτ deotes the compositio of π ad τ (apply first τ, the π). Defiitio 4.3 Let A be a matrix over K. The determiat of A is defied by the formula det(a) = π S sig(π)a 1π(1) A 2π(2) A π(). 4

5 Proof I order to show that this is a good defiitio, we eed to verify that it satisfies our three rules (D1) (D3). (D1) Accordig to the defiitio, det(a) is a sum of! terms. Each term, apart from a sig, is the product of elemets, oe from each row ad colum. If we look at a particular colum, say the ith, it is clear that each product is a liear fuctio of that colum; so the same is true for the determiat. (D2) Suppose that the ith ad jth colums of A are equal. Let τ be the traspositio which iterchages i ad j ad leaves the other symbols fixed. The π(τ(i)) = π( j) ad π(τ( j)) = π(i), whereas π(τ(k)) = π(k) for k i, j. Because the elemets i the ith ad jth colums of A are the same, we see that the products A 1π(1) A 2π(2) A π() ad A 1πτ(1) A 2πτ(2) A πτ() are equal. But sig(πτ) = sig(π). So the correspodig terms i the formula for the determiat cacel oe aother. The elemets of S ca be divided up ito!/2 pairs of the form {π,πτ}. As we have see, each pair of terms i the formula cacel out. We coclude that det(a) = 0. Thus (D2) holds. (D3) If A = I, the the oly permutatio π which cotributes to the sum is the idetity permutatio ι: for ay other permutatio π satisfies π(i) i for some i, so that A iπ(i) = 0. The sig of ι is +1, ad all the terms A iι(i) = A ii are equal to 1; so det(a) = 1, as required. This gives us a ice mathematical formula for the determiat of a matrix. Ufortuately, it is a terrible formula i practice, sice it ivolves workig out! terms, each a product of matrix etries, ad addig them up with + ad sigs. For of moderate size, this will take a very log time! (For example, 10! = ) Here is a secod formula, which is also theoretically importat but very iefficiet i practice. Defiitio 4.4 Let A be a matrix. For 1 i, j, we defie the (i, j) mior of A to be the ( 1) ( 1) matrix obtaied by deletig the ith row ad jth colum of A. Now we defie the (i, j) cofactor of A to be ( 1) i+ j times the determiat of the (i, j) mior. (These sigs have a chessboard patter, startig with sig + i the top left corer.) We deote the (i, j) cofactor of A by K i j (A). Fially, the adjugate of A is the matrix Adj(A) whose (i, j) etry is the ( j,i) cofactor K ji (A) of A. (Note the traspositio!) Theorem 4.6 (a) For 1 j, we have det(a) = i=1 A i j K i j (A). 5

6 (b) For 1 i, we have det(a) = A i j K i j (A). j=1 This theorem says that, if we take ay colum or row of A, multiply each elemet by the correspodig cofactor, ad add the results, we get the determiat of A. Example 4.1 Usig a cofactor expasio alog the first colum, we see that = = ( ) 4( ) + 7( ) = = 3 usig the stadard formula for a 2 2 determiat. Proof We prove (a); the proof for (b) is a simple modificatio, usig rows istead of colums. Let D(A) be the fuctio defied by the right-had side of (a) i the theorem, usig the jth colum of A. We verify rules (D1) (D3). (D1) It is clear that D(A) is a liear fuctio of the jth colum. For k j, the cofactors are liear fuctios of the kth colum (sice they are determiats), ad so D(A) is liear. (D2) If the kth ad lth colums of A are equal (where k ad l are differet from j), the each cofactor is the determiat of a matrix with two equal colums, ad so is zero. The harder case is whe the jth colum is equal to aother, say the kth. Usig iductio, each cofactor ca be expressed as a sum of elemets of the kth colum times ( 2) ( 2) determiats. I the resultig sum, it is easy to see that each such determiat occurs twice with opposite sigs ad multiplied by the same factor. So the terms all cacel. (D3) Suppose that A = I. The oly o-zero cofactor i the jth colum is K j j (I), which is equal to ( 1) j+ j det(i 1 ) = 1. So D(I) = 1. By the mai theorem, the expressio D(A) is equal to det(a). At first sight, this looks like a simple formula for the determiat, sice it is just the sum of terms, rather tha! as i the first case. But each term is a ( 1) ( 1) determiat. Workig dow the chai we fid that this method is just as labouritesive as the other oe. But the cofactor expasio has further ice properties: 6

7 Theorem 4.7 For ay matrix A, we have A Adj(A) = Adj(A) A = det(a) I. Proof We calculate the matrix product. Recall that the (i, j) etry of Adj(A) is K ji (A). Now the (i,i) etry of the product A Adj(A) is A ik (Adj(A)) ki = A ik K ik (A) = det(a), k=1 k=1 by the cofactor expasio. O the other had, if i j, the the (i, j) etry of the product is A ik (Adj(A)) k j = A ik K jk (A). k=1 k=1 This last expressio is the cofactor expasio of the matrix A which is the same of A except for the jth row, which has bee replaced by the ith row of A. (Note that chagig the jth row of a matrix has o effect o the cofactors of elemets i this row.) So the sum is det(a ). But A has two equal rows, so its determiat is zero. Thus A Adj(A) has etries det(a) o the diagoal ad 0 everywhere else; so it is equal to det(a) I. The proof for the product the other way aroud is the same, usig colums istead of rows. Corollary 4.8 If the matrix A is ivertible, the its iverse is equal to (det(a)) 1 Adj(A). So how ca you work out a determiat efficietly? The best method i practice is to use elemetary operatios. Apply elemetary operatios to the matrix, keepig track of the factor by which the determiat is multiplied by each operatio. If you wat, you ca reduce all the way to the idetity, ad the use the fact that det(i) = 1. Ofte it is simpler to stop at a earlier stage whe you ca recogise what the determiat is. For example, if the matrix A has diagoal etries a 1,...,a, ad all off-diagoal etries are zero, the det(a) is just the product a 1 a. Example 4.2 Let A =

8 Subtractig twice the first colum from the secod, ad three times the secod colum from the third (these operatios do t chage the determiat) gives Now the cofactor expasio alog the first row gives det(a) = = = 3. (At the last step, it is easiest to use the formula for the determiat of a 2 2 matrix rather tha do ay further reductio.) 4.3 The Cayley Hamilto Theorem Sice we ca add ad multiply matrices, we ca substitute them ito a polyomial. For example, if 0 1 A =, 2 3 the the result of substitutig A ito the polyomial x 2 3x + 2 is A A + 2I = + + = We say that the matrix A satisfies the equatio x 2 3x + 2 = 0. (Notice that for the costat term 2 we substituted 2I.) It turs out that, for every matrix A, we ca calculate a polyomial equatio of degree satisfied by A. Defiitio 4.5 Let A be a matrix. The characteristic polyomial of A is the polyomial c A (x) = det(xi A). This is a polyomial i x of degree. the For example, if A = 0 1, 2 3 c A (x) = x 1 2 x 3 = x(x 3) + 2 = x2 3x + 2. Ideed, it turs out that this is the polyomial we wat i geeral: 8.

9 Theorem 4.9 (Cayley Hamilto Theorem) Let A be a matrix with characteristic polyomial c A (x). The c A (A) = O. Example 4.3 Let us just check the theorem for 2 2 matrices. If a b A =, c d the ad so c A (A) = c A (x) = x a c a 2 + bc ab + bd ac + cd bc + d 2 (a + d) after a small amout of calculatio. Proof We use the theorem b x d = x2 (a + d)x + (ad bc), a b c d A Adj(A) = det(a) I. I place of A, we put the matrix xi A ito this formula: + (ad bc) (xi A)Adj(xI A) = det(xi A)I = c A (x)i. 1 0 = O, 0 1 Now it is very temptig just to substitute x = A ito this formula: o the right we have c A (A)I = c A (A), while o the left there is a factor AI A = O. Ufortuately this is ot valid; it is importat to see why. The matrix Adj(xI A) is a matrix whose etries are determiats of ( 1) ( 1) matrices with etries ivolvig x. So the etries of Adj(xI A) are polyomials i x, ad if we try to substitute A for x the size of the matrix will be chaged! Istead, we argue as follows. As we have said, Adj(xI A) is a matrix whose etries are polyomials, so we ca write it as a sum of powers of x times matrices, that is, as a polyomial whose coefficiets are matrices. For example, x x 3x 4 x + 2 = x x The etries i Adj(xI A) are ( 1) ( 1) determiats, so the highest power of x that ca arise is x 1. So we ca write Adj(xI A) = x 1 B 1 + x 2 B xb 1 + B 0, 9.

10 for suitable matrices B 0,...,B 1. Hece c A (x)i = (xi A)Adj(xI A) = (xi A)(x 1 B 1 + x 2 B xb 1 + B 0 ) = x B 1 + x 1 ( AB 1 + B 2 ) + + x( AB 1 + B 0 ) AB 0. So, if we let the we read off that c A (x) = x + c 1 x c 1 x + c 0, B 1 = I, AB 1 + B 2 = c 1 I, AB 1 + B 0 = c 1 I, AB 0 = c 0 I. We take this system of equatios, ad multiply the first by A, the secod by A 1,..., ad the last by A 0 = I. What happes? O the left, all the terms cacel i pairs: we have A B 1 + A 1 ( AB 1 + B 2 ) + + A( AB 1 + B 0 ) + I( AB 0 ) = O. O the right, we have So c A (A) = O, as claimed. A + c 1 A c 1 A + c 0 I = c A (A). 10

1. MATHEMATICAL INDUCTION

1. MATHEMATICAL INDUCTION 1. MATHEMATICAL INDUCTION EXAMPLE 1: Prove that for ay iteger 1. Proof: 1 + 2 + 3 +... + ( + 1 2 (1.1 STEP 1: For 1 (1.1 is true, sice 1 1(1 + 1. 2 STEP 2: Suppose (1.1 is true for some k 1, that is 1

More information

Chapter 5: Inner Product Spaces

Chapter 5: Inner Product Spaces Chapter 5: Ier Product Spaces Chapter 5: Ier Product Spaces SECION A Itroductio to Ier Product Spaces By the ed of this sectio you will be able to uderstad what is meat by a ier product space give examples

More information

Permutations, the Parity Theorem, and Determinants

Permutations, the Parity Theorem, and Determinants 1 Permutatios, the Parity Theorem, ad Determiats Joh A. Guber Departmet of Electrical ad Computer Egieerig Uiversity of Wiscosi Madiso Cotets 1 What is a Permutatio 1 2 Cycles 2 2.1 Traspositios 4 3 Orbits

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This documet was writte ad copyrighted by Paul Dawkis. Use of this documet ad its olie versio is govered by the Terms ad Coditios of Use located at http://tutorial.math.lamar.edu/terms.asp. The olie versio

More information

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix

FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. 1. Powers of a matrix FIBONACCI NUMBERS: AN APPLICATION OF LINEAR ALGEBRA. Powers of a matrix We begi with a propositio which illustrates the usefuless of the diagoalizatio. Recall that a square matrix A is diogaalizable if

More information

Soving Recurrence Relations

Soving Recurrence Relations Sovig Recurrece Relatios Part 1. Homogeeous liear 2d degree relatios with costat coefficiets. Cosider the recurrece relatio ( ) T () + at ( 1) + bt ( 2) = 0 This is called a homogeeous liear 2d degree

More information

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n

THE REGRESSION MODEL IN MATRIX FORM. For simple linear regression, meaning one predictor, the model is. for i = 1, 2, 3,, n We will cosider the liear regressio model i matrix form. For simple liear regressio, meaig oe predictor, the model is i = + x i + ε i for i =,,,, This model icludes the assumptio that the ε i s are a sample

More information

Infinite Sequences and Series

Infinite Sequences and Series CHAPTER 4 Ifiite Sequeces ad Series 4.1. Sequeces A sequece is a ifiite ordered list of umbers, for example the sequece of odd positive itegers: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29...

More information

Convexity, Inequalities, and Norms

Convexity, Inequalities, and Norms Covexity, Iequalities, ad Norms Covex Fuctios You are probably familiar with the otio of cocavity of fuctios. Give a twicedifferetiable fuctio ϕ: R R, We say that ϕ is covex (or cocave up) if ϕ (x) 0 for

More information

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth

.04. This means $1000 is multiplied by 1.02 five times, once for each of the remaining sixmonth Questio 1: What is a ordiary auity? Let s look at a ordiary auity that is certai ad simple. By this, we mea a auity over a fixed term whose paymet period matches the iterest coversio period. Additioally,

More information

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008

In nite Sequences. Dr. Philippe B. Laval Kennesaw State University. October 9, 2008 I ite Sequeces Dr. Philippe B. Laval Keesaw State Uiversity October 9, 2008 Abstract This had out is a itroductio to i ite sequeces. mai de itios ad presets some elemetary results. It gives the I ite Sequeces

More information

Department of Computer Science, University of Otago

Department of Computer Science, University of Otago Departmet of Computer Sciece, Uiversity of Otago Techical Report OUCS-2006-09 Permutatios Cotaiig May Patters Authors: M.H. Albert Departmet of Computer Sciece, Uiversity of Otago Micah Colema, Rya Fly

More information

I. Chi-squared Distributions

I. Chi-squared Distributions 1 M 358K Supplemet to Chapter 23: CHI-SQUARED DISTRIBUTIONS, T-DISTRIBUTIONS, AND DEGREES OF FREEDOM To uderstad t-distributios, we first eed to look at aother family of distributios, the chi-squared distributios.

More information

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean

Definition. A variable X that takes on values X 1, X 2, X 3,...X k with respective frequencies f 1, f 2, f 3,...f k has mean 1 Social Studies 201 October 13, 2004 Note: The examples i these otes may be differet tha used i class. However, the examples are similar ad the methods used are idetical to what was preseted i class.

More information

Properties of MLE: consistency, asymptotic normality. Fisher information.

Properties of MLE: consistency, asymptotic normality. Fisher information. Lecture 3 Properties of MLE: cosistecy, asymptotic ormality. Fisher iformatio. I this sectio we will try to uderstad why MLEs are good. Let us recall two facts from probability that we be used ofte throughout

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 8 CME 30: NUMERICAL LINEAR ALGEBRA FALL 005/06 LECTURE 8 GENE H GOLUB 1 Positive Defiite Matrices A matrix A is positive defiite if x Ax > 0 for all ozero x A positive defiite matrix has real ad positive

More information

CS103X: Discrete Structures Homework 4 Solutions

CS103X: Discrete Structures Homework 4 Solutions CS103X: Discrete Structures Homewor 4 Solutios Due February 22, 2008 Exercise 1 10 poits. Silico Valley questios: a How may possible six-figure salaries i whole dollar amouts are there that cotai at least

More information

Sequences and Series

Sequences and Series CHAPTER 9 Sequeces ad Series 9.. Covergece: Defiitio ad Examples Sequeces The purpose of this chapter is to itroduce a particular way of geeratig algorithms for fidig the values of fuctios defied by their

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is

Trigonometric Form of a Complex Number. The Complex Plane. axis. ( 2, 1) or 2 i FIGURE 6.44. The absolute value of the complex number z a bi is 0_0605.qxd /5/05 0:45 AM Page 470 470 Chapter 6 Additioal Topics i Trigoometry 6.5 Trigoometric Form of a Complex Number What you should lear Plot complex umbers i the complex plae ad fid absolute values

More information

Lecture 5: Span, linear independence, bases, and dimension

Lecture 5: Span, linear independence, bases, and dimension Lecture 5: Spa, liear idepedece, bases, ad dimesio Travis Schedler Thurs, Sep 23, 2010 (versio: 9/21 9:55 PM) 1 Motivatio Motivatio To uderstad what it meas that R has dimesio oe, R 2 dimesio 2, etc.;

More information

A probabilistic proof of a binomial identity

A probabilistic proof of a binomial identity A probabilistic proof of a biomial idetity Joatho Peterso Abstract We give a elemetary probabilistic proof of a biomial idetity. The proof is obtaied by computig the probability of a certai evet i two

More information

Basic Elements of Arithmetic Sequences and Series

Basic Elements of Arithmetic Sequences and Series MA40S PRE-CALCULUS UNIT G GEOMETRIC SEQUENCES CLASS NOTES (COMPLETED NO NEED TO COPY NOTES FROM OVERHEAD) Basic Elemets of Arithmetic Sequeces ad Series Objective: To establish basic elemets of arithmetic

More information

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009)

Lecture 13. Lecturer: Jonathan Kelner Scribe: Jonathan Pines (2009) 18.409 A Algorithmist s Toolkit October 27, 2009 Lecture 13 Lecturer: Joatha Keler Scribe: Joatha Pies (2009) 1 Outlie Last time, we proved the Bru-Mikowski iequality for boxes. Today we ll go over the

More information

How To Solve The Homewor Problem Beautifully

How To Solve The Homewor Problem Beautifully Egieerig 33 eautiful Homewor et 3 of 7 Kuszmar roblem.5.5 large departmet store sells sport shirts i three sizes small, medium, ad large, three patters plaid, prit, ad stripe, ad two sleeve legths log

More information

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here).

Example 2 Find the square root of 0. The only square root of 0 is 0 (since 0 is not positive or negative, so those choices don t exist here). BEGINNING ALGEBRA Roots ad Radicals (revised summer, 00 Olso) Packet to Supplemet the Curret Textbook - Part Review of Square Roots & Irratioals (This portio ca be ay time before Part ad should mostly

More information

Theorems About Power Series

Theorems About Power Series Physics 6A Witer 20 Theorems About Power Series Cosider a power series, f(x) = a x, () where the a are real coefficiets ad x is a real variable. There exists a real o-egative umber R, called the radius

More information

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction

THE ARITHMETIC OF INTEGERS. - multiplication, exponentiation, division, addition, and subtraction THE ARITHMETIC OF INTEGERS - multiplicatio, expoetiatio, divisio, additio, ad subtractio What to do ad what ot to do. THE INTEGERS Recall that a iteger is oe of the whole umbers, which may be either positive,

More information

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations

CS103A Handout 23 Winter 2002 February 22, 2002 Solving Recurrence Relations CS3A Hadout 3 Witer 00 February, 00 Solvig Recurrece Relatios Itroductio A wide variety of recurrece problems occur i models. Some of these recurrece relatios ca be solved usig iteratio or some other ad

More information

Notes on Linear Algebra. Peter J. Cameron

Notes on Linear Algebra. Peter J. Cameron Notes on Linear Algebra Peter J. Cameron ii Preface Linear algebra has two aspects. Abstractly, it is the study of vector spaces over fields, and their linear maps and bilinear forms. Concretely, it is

More information

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL.

Annuities Under Random Rates of Interest II By Abraham Zaks. Technion I.I.T. Haifa ISRAEL and Haifa University Haifa ISRAEL. Auities Uder Radom Rates of Iterest II By Abraham Zas Techio I.I.T. Haifa ISRAEL ad Haifa Uiversity Haifa ISRAEL Departmet of Mathematics, Techio - Israel Istitute of Techology, 3000, Haifa, Israel I memory

More information

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx

SAMPLE QUESTIONS FOR FINAL EXAM. (1) (2) (3) (4) Find the following using the definition of the Riemann integral: (2x + 1)dx SAMPLE QUESTIONS FOR FINAL EXAM REAL ANALYSIS I FALL 006 3 4 Fid the followig usig the defiitio of the Riema itegral: a 0 x + dx 3 Cosider the partitio P x 0 3, x 3 +, x 3 +,......, x 3 3 + 3 of the iterval

More information

3. Greatest Common Divisor - Least Common Multiple

3. Greatest Common Divisor - Least Common Multiple 3 Greatest Commo Divisor - Least Commo Multiple Defiitio 31: The greatest commo divisor of two atural umbers a ad b is the largest atural umber c which divides both a ad b We deote the greatest commo gcd

More information

Asymptotic Growth of Functions

Asymptotic Growth of Functions CMPS Itroductio to Aalysis of Algorithms Fall 3 Asymptotic Growth of Fuctios We itroduce several types of asymptotic otatio which are used to compare the performace ad efficiecy of algorithms As we ll

More information

Running Time ( 3.1) Analysis of Algorithms. Experimental Studies ( 3.1.1) Limitations of Experiments. Pseudocode ( 3.1.2) Theoretical Analysis

Running Time ( 3.1) Analysis of Algorithms. Experimental Studies ( 3.1.1) Limitations of Experiments. Pseudocode ( 3.1.2) Theoretical Analysis Ruig Time ( 3.) Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Most algorithms trasform iput objects ito output objects.

More information

Incremental calculation of weighted mean and variance

Incremental calculation of weighted mean and variance Icremetal calculatio of weighted mea ad variace Toy Fich faf@cam.ac.uk dot@dotat.at Uiversity of Cambridge Computig Service February 009 Abstract I these otes I eplai how to derive formulae for umerically

More information

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley

Cooley-Tukey. Tukey FFT Algorithms. FFT Algorithms. Cooley Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Cosider a legth- sequece x[ with a -poit DFT X[ where Represet the idices ad as +, +, Cooley Cooley-Tuey Tuey FFT Algorithms FFT Algorithms Usig these

More information

BINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients

BINOMIAL EXPANSIONS 12.5. In this section. Some Examples. Obtaining the Coefficients 652 (12-26) Chapter 12 Sequeces ad Series 12.5 BINOMIAL EXPANSIONS I this sectio Some Examples Otaiig the Coefficiets The Biomial Theorem I Chapter 5 you leared how to square a iomial. I this sectio you

More information

Mathematical goals. Starting points. Materials required. Time needed

Mathematical goals. Starting points. Materials required. Time needed Level A1 of challege: C A1 Mathematical goals Startig poits Materials required Time eeded Iterpretig algebraic expressios To help learers to: traslate betwee words, symbols, tables, ad area represetatios

More information

Elementary Theory of Russian Roulette

Elementary Theory of Russian Roulette Elemetary Theory of Russia Roulette -iterestig patters of fractios- Satoshi Hashiba Daisuke Miematsu Ryohei Miyadera Itroductio. Today we are goig to study mathematical theory of Russia roulette. If some

More information

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable

Week 3 Conditional probabilities, Bayes formula, WEEK 3 page 1 Expected value of a random variable Week 3 Coditioal probabilities, Bayes formula, WEEK 3 page 1 Expected value of a radom variable We recall our discussio of 5 card poker hads. Example 13 : a) What is the probability of evet A that a 5

More information

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method

Chapter 6: Variance, the law of large numbers and the Monte-Carlo method Chapter 6: Variace, the law of large umbers ad the Mote-Carlo method Expected value, variace, ad Chebyshev iequality. If X is a radom variable recall that the expected value of X, E[X] is the average value

More information

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem

Lecture 4: Cauchy sequences, Bolzano-Weierstrass, and the Squeeze theorem Lecture 4: Cauchy sequeces, Bolzao-Weierstrass, ad the Squeeze theorem The purpose of this lecture is more modest tha the previous oes. It is to state certai coditios uder which we are guarateed that limits

More information

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series

Our aim is to show that under reasonable assumptions a given 2π-periodic function f can be represented as convergent series 8 Fourier Series Our aim is to show that uder reasoable assumptios a give -periodic fuctio f ca be represeted as coverget series f(x) = a + (a cos x + b si x). (8.) By defiitio, the covergece of the series

More information

Notes on exponential generating functions and structures.

Notes on exponential generating functions and structures. Notes o expoetial geeratig fuctios ad structures. 1. The cocept of a structure. Cosider the followig coutig problems: (1) to fid for each the umber of partitios of a -elemet set, (2) to fid for each the

More information

Factoring x n 1: cyclotomic and Aurifeuillian polynomials Paul Garrett <garrett@math.umn.edu>

Factoring x n 1: cyclotomic and Aurifeuillian polynomials Paul Garrett <garrett@math.umn.edu> (March 16, 004) Factorig x 1: cyclotomic ad Aurifeuillia polyomials Paul Garrett Polyomials of the form x 1, x 3 1, x 4 1 have at least oe systematic factorizatio x 1 = (x 1)(x 1

More information

Overview of some probability distributions.

Overview of some probability distributions. Lecture Overview of some probability distributios. I this lecture we will review several commo distributios that will be used ofte throughtout the class. Each distributio is usually described by its probability

More information

GCE Further Mathematics (6360) Further Pure Unit 2 (MFP2) Textbook. Version: 1.4

GCE Further Mathematics (6360) Further Pure Unit 2 (MFP2) Textbook. Version: 1.4 GCE Further Mathematics (660) Further Pure Uit (MFP) Tetbook Versio: 4 MFP Tetbook A-level Further Mathematics 660 Further Pure : Cotets Chapter : Comple umbers 4 Itroductio 5 The geeral comple umber 5

More information

Lesson 17 Pearson s Correlation Coefficient

Lesson 17 Pearson s Correlation Coefficient Outlie Measures of Relatioships Pearso s Correlatio Coefficiet (r) -types of data -scatter plots -measure of directio -measure of stregth Computatio -covariatio of X ad Y -uique variatio i X ad Y -measurig

More information

1 Correlation and Regression Analysis

1 Correlation and Regression Analysis 1 Correlatio ad Regressio Aalysis I this sectio we will be ivestigatig the relatioship betwee two cotiuous variable, such as height ad weight, the cocetratio of a ijected drug ad heart rate, or the cosumptio

More information

SEQUENCES AND SERIES

SEQUENCES AND SERIES Chapter 9 SEQUENCES AND SERIES Natural umbers are the product of huma spirit. DEDEKIND 9.1 Itroductio I mathematics, the word, sequece is used i much the same way as it is i ordiary Eglish. Whe we say

More information

Class Meeting # 16: The Fourier Transform on R n

Class Meeting # 16: The Fourier Transform on R n MATH 18.152 COUSE NOTES - CLASS MEETING # 16 18.152 Itroductio to PDEs, Fall 2011 Professor: Jared Speck Class Meetig # 16: The Fourier Trasform o 1. Itroductio to the Fourier Trasform Earlier i the course,

More information

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find

Approximating Area under a curve with rectangles. To find the area under a curve we approximate the area using rectangles and then use limits to find 1.8 Approximatig Area uder a curve with rectagles 1.6 To fid the area uder a curve we approximate the area usig rectagles ad the use limits to fid 1.4 the area. Example 1 Suppose we wat to estimate 1.

More information

5.3. Generalized Permutations and Combinations

5.3. Generalized Permutations and Combinations 53 GENERALIZED PERMUTATIONS AND COMBINATIONS 73 53 Geeralized Permutatios ad Combiatios 53 Permutatios with Repeated Elemets Assume that we have a alphabet with letters ad we wat to write all possible

More information

S. Tanny MAT 344 Spring 1999. be the minimum number of moves required.

S. Tanny MAT 344 Spring 1999. be the minimum number of moves required. S. Tay MAT 344 Sprig 999 Recurrece Relatios Tower of Haoi Let T be the miimum umber of moves required. T 0 = 0, T = 7 Iitial Coditios * T = T + $ T is a sequece (f. o itegers). Solve for T? * is a recurrece,

More information

Factors of sums of powers of binomial coefficients

Factors of sums of powers of binomial coefficients ACTA ARITHMETICA LXXXVI.1 (1998) Factors of sums of powers of biomial coefficiets by Neil J. Cali (Clemso, S.C.) Dedicated to the memory of Paul Erdős 1. Itroductio. It is well ow that if ( ) a f,a = the

More information

2-3 The Remainder and Factor Theorems

2-3 The Remainder and Factor Theorems - The Remaider ad Factor Theorems Factor each polyomial completely usig the give factor ad log divisio 1 x + x x 60; x + So, x + x x 60 = (x + )(x x 15) Factorig the quadratic expressio yields x + x x

More information

Fast Fourier Transform

Fast Fourier Transform 18.310 lecture otes November 18, 2013 Fast Fourier Trasform Lecturer: Michel Goemas I these otes we defie the Discrete Fourier Trasform, ad give a method for computig it fast: the Fast Fourier Trasform.

More information

Lecture 4: Cheeger s Inequality

Lecture 4: Cheeger s Inequality Spectral Graph Theory ad Applicatios WS 0/0 Lecture 4: Cheeger s Iequality Lecturer: Thomas Sauerwald & He Su Statemet of Cheeger s Iequality I this lecture we assume for simplicity that G is a d-regular

More information

INFINITE SERIES KEITH CONRAD

INFINITE SERIES KEITH CONRAD INFINITE SERIES KEITH CONRAD. Itroductio The two basic cocepts of calculus, differetiatio ad itegratio, are defied i terms of limits (Newto quotiets ad Riema sums). I additio to these is a third fudametal

More information

Measures of Spread and Boxplots Discrete Math, Section 9.4

Measures of Spread and Boxplots Discrete Math, Section 9.4 Measures of Spread ad Boxplots Discrete Math, Sectio 9.4 We start with a example: Example 1: Comparig Mea ad Media Compute the mea ad media of each data set: S 1 = {4, 6, 8, 10, 1, 14, 16} S = {4, 7, 9,

More information

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5

0.7 0.6 0.2 0 0 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 96.5 97 97.5 98 98.5 99 99.5 100 100.5 Sectio 13 Kolmogorov-Smirov test. Suppose that we have a i.i.d. sample X 1,..., X with some ukow distributio P ad we would like to test the hypothesis that P is equal to a particular distributio P 0, i.e.

More information

CHAPTER 3 THE TIME VALUE OF MONEY

CHAPTER 3 THE TIME VALUE OF MONEY CHAPTER 3 THE TIME VALUE OF MONEY OVERVIEW A dollar i the had today is worth more tha a dollar to be received i the future because, if you had it ow, you could ivest that dollar ad ear iterest. Of all

More information

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles

The following example will help us understand The Sampling Distribution of the Mean. C1 C2 C3 C4 C5 50 miles 84 miles 38 miles 120 miles 48 miles The followig eample will help us uderstad The Samplig Distributio of the Mea Review: The populatio is the etire collectio of all idividuals or objects of iterest The sample is the portio of the populatio

More information

Your organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows:

Your organization has a Class B IP address of 166.144.0.0 Before you implement subnetting, the Network ID and Host ID are divided as follows: Subettig Subettig is used to subdivide a sigle class of etwork i to multiple smaller etworks. Example: Your orgaizatio has a Class B IP address of 166.144.0.0 Before you implemet subettig, the Network

More information

BENEFIT-COST ANALYSIS Financial and Economic Appraisal using Spreadsheets

BENEFIT-COST ANALYSIS Financial and Economic Appraisal using Spreadsheets BENEIT-CST ANALYSIS iacial ad Ecoomic Appraisal usig Spreadsheets Ch. 2: Ivestmet Appraisal - Priciples Harry Campbell & Richard Brow School of Ecoomics The Uiversity of Queeslad Review of basic cocepts

More information

GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number.

GCSE STATISTICS. 4) How to calculate the range: The difference between the biggest number and the smallest number. GCSE STATISTICS You should kow: 1) How to draw a frequecy diagram: e.g. NUMBER TALLY FREQUENCY 1 3 5 ) How to draw a bar chart, a pictogram, ad a pie chart. 3) How to use averages: a) Mea - add up all

More information

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13

Discrete Mathematics and Probability Theory Spring 2014 Anant Sahai Note 13 EECS 70 Discrete Mathematics ad Probability Theory Sprig 2014 Aat Sahai Note 13 Itroductio At this poit, we have see eough examples that it is worth just takig stock of our model of probability ad may

More information

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Solutions 9 Spring 2006 Exam format UC Bereley Departmet of Electrical Egieerig ad Computer Sciece EE 6: Probablity ad Radom Processes Solutios 9 Sprig 006 The secod midterm will be held o Wedesday May 7; CHECK the fial exam

More information

. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2

. P. 4.3 Basic feasible solutions and vertices of polyhedra. x 1. x 2 4. Basic feasible solutios ad vertices of polyhedra Due to the fudametal theorem of Liear Programmig, to solve ay LP it suffices to cosider the vertices (fiitely may) of the polyhedro P of the feasible

More information

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern.

Repeating Decimals are decimal numbers that have number(s) after the decimal point that repeat in a pattern. 5.5 Fractios ad Decimals Steps for Chagig a Fractio to a Decimal. Simplify the fractio, if possible. 2. Divide the umerator by the deomiator. d d Repeatig Decimals Repeatig Decimals are decimal umbers

More information

Chapter 7 Methods of Finding Estimators

Chapter 7 Methods of Finding Estimators Chapter 7 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 011 Chapter 7 Methods of Fidig Estimators Sectio 7.1 Itroductio Defiitio 7.1.1 A poit estimator is ay fuctio W( X) W( X1, X,, X ) of

More information

Solutions to Selected Problems In: Pattern Classification by Duda, Hart, Stork

Solutions to Selected Problems In: Pattern Classification by Duda, Hart, Stork Solutios to Selected Problems I: Patter Classificatio by Duda, Hart, Stork Joh L. Weatherwax February 4, 008 Problem Solutios Chapter Bayesia Decisio Theory Problem radomized rules Part a: Let Rx be the

More information

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized?

5.4 Amortization. Question 1: How do you find the present value of an annuity? Question 2: How is a loan amortized? 5.4 Amortizatio Questio 1: How do you fid the preset value of a auity? Questio 2: How is a loa amortized? Questio 3: How do you make a amortizatio table? Oe of the most commo fiacial istrumets a perso

More information

Solutions to Exercises Chapter 4: Recurrence relations and generating functions

Solutions to Exercises Chapter 4: Recurrence relations and generating functions Solutios to Exercises Chapter 4: Recurrece relatios ad geeratig fuctios 1 (a) There are seatig positios arraged i a lie. Prove that the umber of ways of choosig a subset of these positios, with o two chose

More information

Section 11.3: The Integral Test

Section 11.3: The Integral Test Sectio.3: The Itegral Test Most of the series we have looked at have either diverged or have coverged ad we have bee able to fid what they coverge to. I geeral however, the problem is much more difficult

More information

Chapter 04.05 System of Equations

Chapter 04.05 System of Equations hpter 04.05 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

More information

Analysis Notes (only a draft, and the first one!)

Analysis Notes (only a draft, and the first one!) Aalysis Notes (oly a draft, ad the first oe!) Ali Nesi Mathematics Departmet Istabul Bilgi Uiversity Kuştepe Şişli Istabul Turkey aesi@bilgi.edu.tr Jue 22, 2004 2 Cotets 1 Prelimiaries 9 1.1 Biary Operatio...........................

More information

Solving equations. Pre-test. Warm-up

Solving equations. Pre-test. Warm-up Solvig equatios 8 Pre-test Warm-up We ca thik of a algebraic equatio as beig like a set of scales. The two sides of the equatio are equal, so the scales are balaced. If we add somethig to oe side of the

More information

2 MATH 101B: ALGEBRA II, PART D: REPRESENTATIONS OF GROUPS

2 MATH 101B: ALGEBRA II, PART D: REPRESENTATIONS OF GROUPS 2 MATH 101B: ALGEBRA II, PART D: REPRESENTATIONS OF GROUPS 1. The group rig k[g] The mai idea is that represetatios of a group G over a field k are the same as modules over the group rig k[g]. First I

More information

5 Boolean Decision Trees (February 11)

5 Boolean Decision Trees (February 11) 5 Boolea Decisio Trees (February 11) 5.1 Graph Coectivity Suppose we are give a udirected graph G, represeted as a boolea adjacecy matrix = (a ij ), where a ij = 1 if ad oly if vertices i ad j are coected

More information

1. C. The formula for the confidence interval for a population mean is: x t, which was

1. C. The formula for the confidence interval for a population mean is: x t, which was s 1. C. The formula for the cofidece iterval for a populatio mea is: x t, which was based o the sample Mea. So, x is guarateed to be i the iterval you form.. D. Use the rule : p-value

More information

Now here is the important step

Now here is the important step LINEST i Excel The Excel spreadsheet fuctio "liest" is a complete liear least squares curve fittig routie that produces ucertaity estimates for the fit values. There are two ways to access the "liest"

More information

NATIONAL SENIOR CERTIFICATE GRADE 12

NATIONAL SENIOR CERTIFICATE GRADE 12 NATIONAL SENIOR CERTIFICATE GRADE MATHEMATICS P EXEMPLAR 04 MARKS: 50 TIME: 3 hours This questio paper cosists of 8 pages ad iformatio sheet. Please tur over Mathematics/P DBE/04 NSC Grade Eemplar INSTRUCTIONS

More information

MARTINGALES AND A BASIC APPLICATION

MARTINGALES AND A BASIC APPLICATION MARTINGALES AND A BASIC APPLICATION TURNER SMITH Abstract. This paper will develop the measure-theoretic approach to probability i order to preset the defiitio of martigales. From there we will apply this

More information

1 Computing the Standard Deviation of Sample Means

1 Computing the Standard Deviation of Sample Means Computig the Stadard Deviatio of Sample Meas Quality cotrol charts are based o sample meas ot o idividual values withi a sample. A sample is a group of items, which are cosidered all together for our aalysis.

More information

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER?

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I tought Topological Groups at the Göttige Georg August Uiversity. This

More information

Hypothesis testing. Null and alternative hypotheses

Hypothesis testing. Null and alternative hypotheses Hypothesis testig Aother importat use of samplig distributios is to test hypotheses about populatio parameters, e.g. mea, proportio, regressio coefficiets, etc. For example, it is possible to stipulate

More information

Section 8.3 : De Moivre s Theorem and Applications

Section 8.3 : De Moivre s Theorem and Applications The Sectio 8 : De Moivre s Theorem ad Applicatios Let z 1 ad z be complex umbers, where z 1 = r 1, z = r, arg(z 1 ) = θ 1, arg(z ) = θ z 1 = r 1 (cos θ 1 + i si θ 1 ) z = r (cos θ + i si θ ) ad z 1 z =

More information

The Binomial Multi- Section Transformer

The Binomial Multi- Section Transformer 4/15/21 The Bioial Multisectio Matchig Trasforer.doc 1/17 The Bioial Multi- Sectio Trasforer Recall that a ulti-sectio atchig etwork ca be described usig the theory of sall reflectios as: where: Γ ( ω

More information

Complex Numbers. where x represents a root of Equation 1. Note that the ± sign tells us that quadratic equations will have

Complex Numbers. where x represents a root of Equation 1. Note that the ± sign tells us that quadratic equations will have Comple Numbers I spite of Calvi s discomfiture, imagiar umbers (a subset of the set of comple umbers) eist ad are ivaluable i mathematics, egieerig, ad sciece. I fact, i certai fields, such as electrical

More information

How Euler Did It. In a more modern treatment, Hardy and Wright [H+W] state this same theorem as. n n+ is perfect.

How Euler Did It. In a more modern treatment, Hardy and Wright [H+W] state this same theorem as. n n+ is perfect. Amicable umbers November 005 How Euler Did It by Ed Sadifer Six is a special umber. It is divisible by, ad 3, ad, i what at first looks like a strage coicidece, 6 = + + 3. The umber 8 shares this remarkable

More information

A Constant-Factor Approximation Algorithm for the Link Building Problem

A Constant-Factor Approximation Algorithm for the Link Building Problem A Costat-Factor Approximatio Algorithm for the Lik Buildig Problem Marti Olse 1, Aastasios Viglas 2, ad Ilia Zvedeiouk 2 1 Ceter for Iovatio ad Busiess Developmet, Istitute of Busiess ad Techology, Aarhus

More information

THE ABRACADABRA PROBLEM

THE ABRACADABRA PROBLEM THE ABRACADABRA PROBLEM FRANCESCO CARAVENNA Abstract. We preset a detailed solutio of Exercise E0.6 i [Wil9]: i a radom sequece of letters, draw idepedetly ad uiformly from the Eglish alphabet, the expected

More information

2. Degree Sequences. 2.1 Degree Sequences

2. Degree Sequences. 2.1 Degree Sequences 2. Degree Sequeces The cocept of degrees i graphs has provided a framewor for the study of various structural properties of graphs ad has therefore attracted the attetio of may graph theorists. Here we

More information

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution

University of California, Los Angeles Department of Statistics. Distributions related to the normal distribution Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 100B Istructor: Nicolas Christou Three importat distributios: Distributios related to the ormal distributio Chi-square (χ ) distributio.

More information

Normal Distribution.

Normal Distribution. Normal Distributio www.icrf.l Normal distributio I probability theory, the ormal or Gaussia distributio, is a cotiuous probability distributio that is ofte used as a first approimatio to describe realvalued

More information

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas:

Chapter 7 - Sampling Distributions. 1 Introduction. What is statistics? It consist of three major areas: Chapter 7 - Samplig Distributios 1 Itroductio What is statistics? It cosist of three major areas: Data Collectio: samplig plas ad experimetal desigs Descriptive Statistics: umerical ad graphical summaries

More information

A Recursive Formula for Moments of a Binomial Distribution

A Recursive Formula for Moments of a Binomial Distribution A Recursive Formula for Momets of a Biomial Distributio Árpád Béyi beyi@mathumassedu, Uiversity of Massachusetts, Amherst, MA 01003 ad Saverio M Maago smmaago@psavymil Naval Postgraduate School, Moterey,

More information

Ekkehart Schlicht: Economic Surplus and Derived Demand

Ekkehart Schlicht: Economic Surplus and Derived Demand Ekkehart Schlicht: Ecoomic Surplus ad Derived Demad Muich Discussio Paper No. 2006-17 Departmet of Ecoomics Uiversity of Muich Volkswirtschaftliche Fakultät Ludwig-Maximilias-Uiversität Müche Olie at http://epub.ub.ui-mueche.de/940/

More information