GRE MATH REVIEW #5. 1. Variable: A letter that represents an unknown number.

Size: px
Start display at page:

Download "GRE MATH REVIEW #5. 1. Variable: A letter that represents an unknown number."

Transcription

1 GRE MATH REVIEW #5 Eponents and Radicals Many numbers can be epressed as the product of a number multiplied by itself a number of times. For eample, 16 can be epressed as. Another way to write this is 4. The 4 is called the eponent and the is called the base. The epression 4 is read to the fourth power. Here is a list of some definitions you need to know in order to follow this discussion of algebra. However, you will not need to know the definitions on the GRE. 1. Variable: A letter that represents an unknown number.. Term: A product of any combination of variables and numbers. For eample,, 3y, 10y 3, etc. are all terms. 3. Coefficient: A number or variable in a term. For eample, in the term y, is a coefficient of y, is a coefficient of y, y is a coefficient of, etc. 4. Epression: Any number of terms combined by addition or subtraction signs. For eample, 3yz + 6 y 10z is an algebraic epression. 5. Equation: Two epressions or terms set equal to each other. Do not get an epression and an equation confused. An equation has an equal sign in it; and an epression does not. An easy way to remember the definitions of term, equation, and epression is to think of an equation as the algebraic equivalent of a sentence and an epression as the algebraic equivalent of a phrase. Then a term is just one word in the sentence or phrase. When multiplying terms with the same base, just add the eponents. For eample, 5 3 = 8. However, 5 y 3 (y) 8 because 5 and y 3 do not have the same base. Do not make the mistake of adding the eponents when multiplying numbers with different bases. Another common error is adding the eponents when adding two terms with like bases. This rule does not apply to addition. For eample, When dividing terms with the same base, just subtract the eponents. For eample, = 3. Again, this rule does not apply to division of terms with different bases or to subtraction of terms with like bases. For eample, 5 y 3 (/y) and 4. When adding or subtracting two or more terms with eponents the terms must have like bases and like eponents. If the bases and eponents are just alike, simply add the

2 numerical coefficients. Remember that if there is no numerical coefficient, it is understood to be 1. For eample, + 5 = 4. When raising an eponent to another eponent, simply multiply the eponents. For eample, ( 5 ) = 10. If there is a term with several coefficients in the parentheses, you must distribute the eponent to every coefficient. For eample, (y ) 3 = 8 3 y 6 and (3/) = 9/4. This rule does not apply if there is an addition or subtraction sign inside the parentheses. For eample, ( + 3y) 4 + 9y, this is a very common mistake, so be careful not to make it! The following is a list of characteristics of eponents that you should commit to memory for the GRE: 1. Any number raised to 0 is always 1. For eample, 5 0 = 1, 0 = 1, etc.. Any number without an eponent is understood to have an eponent of 1. For eample, = 1, = 1, etc. 3. Raising a number greater than 1 to a power greater than 1 results in a bigger number. For eample, = Raising a fraction between 0 and 1to a power greater than 1 results in a smaller fraction. For eample, (1/) = 1/4. Recall from our discussion on fractions that we said multiplying a fraction by another fraction results in a smaller fraction. Raising a number to a power is equivalent to multiplying that number by itself. 5. A negative number raised to an even power results in a positive number. For eample, (-3) = A negative number raised to an odd power results in a negative number. For eample, (-) 3 = -8. Although negative eponents, such as -3, are a very important concept in your algebra class, you will NOT see them on the GRE, so don t worry about them. You should have a feel for the relative size of eponents. Remember that they are just shorthand notation for multiplication. So, 5 is twice as large as 4. And 10 is more than 10 times as large as 10 (Why?).

3 The radical sign indicates the square root of the number under the radical. Similarly, the sign 3 indicates the cube root of the number under the radical. If = 16, then = + 4 and + 4 are called the positive and negative square roots of the number 16. However, 16 = +4. In other words, the radical sign only refers to the positive root of the number under the radical. Hence, if the GRE asks for 5, the answer is +5, not 5. Unlike for an algebra class, there are only two radical rules you need to know for the GRE: 1. y = y For eample, 3 = 6 and 3 = 16 = 4. y = y For eample, = = and = = 16 = The following values should be committed to memory for the GRE in order to be able to work radical problems more quickly: 1 = 1 = = = 5 =. Algebra You are required to know very little real algebra for the GRE. Algebra methods learned in your algebra classes will often mislead you and will usually take up way too much time. For instance, never try to set up an algebraic and work through to an answer. The GRE only cares which space you blacken on the answer sheet, not how you work an algebra problem. In this section, we will discuss the small subset of algebra rules that you actually need to know to do well on the GRE.

4 There are a few more definitions that you will need to know in order to follow this section. However, again, you do not need to know these for the GRE. 1. Binomial: An algebraic epression containing terms.. Trinomial: An algebraic epression containing 3 terms. 3. Polynomial: A binomial, trinomial, or any other algebraic epression containing two or more terms. The following are some helpful hints to remember for the GRE. See Review #1 if you need to review factoring and unfactoring (i.e., the distributive laws). 1. When you encounter a problem containing an epression that can be factored, you should always factor that epression. For eample, if you see an epression such as 4 + 4y, you should immediately factor it into 4( + y).. Similarly, whenever you see an epression that has been factored, you should immediately unfactor it, i.e. multiply it out. For eample, if a problem contains the epression 4( + y), multiply it out, to get 4 + 4y. When multiplying polynomials, remember the distributive law and multiply every term in the first polynomial by every term in the second polynomial (FOIL). For eample, ( + 4)( 1) = () + (-1) + 4() + 4(-1) = + (-) (-4) = There are three epressions that you need to commit to memory for the GRE in both their factored and unfactored forms. They are: 1. y = ( + y)( y) y is the unfactored form; ( + y)( y) is the factored form.. + y + y = ( + y)( + y) = ( + y) + y + y is the unfactored form; ( + y)( + y) and ( + y) are equivalent factored forms. 3. y + y = ( y)( y) = ( y) y + y is the unfactored form; ( y)( y) and ( y) are equivalent factored forms. Here is an eample of a problem in which you need to factor and know one of these epressions. Eample: Simplify the following epression: 4 4

5 1 Your should immediately recognize that you need to factor the numerator which results in the epression 4( 1) for the numerator. Net, you should recognize that 1 is of the form y and therefore can be written in its factored form ( 1)( + 1). Hence, the original fraction can be written as 4( + 1)( 1) ( 1) Now you should recognize that the fraction can be reduced by canceling out the common factor ( 1) in the numerator and the denominator. The final simplified, factored form is 4( + 1). Whenever you see a complicated-looking algebraic epression, simplify it if possible by combining similar terms, i.e. terms with like bases and like eponents. For eample, ( ) + (3 7) (5 3) = = 4 + ( ) + ( + 3 5) = 4 When given two simultaneous equations on the GRE and asked to solve them, don t solve them using the techniques you learned in algebra class. Instead, look for shortcuts which usually involve adding or subtracting the two equations. And you ll never have to worry about solving a system with more than two equations. Let s see an eample. If 5 + 4y = 6 and 4 + 3y = 5, then + y =? Instead of using substitution or elimination like you learned in algebra, just add or subtract the two equations. First, let s add them and see what we get. Remember, we are looking for + y, so we really don t need to know what and y are individually y = y = y = 11 Obviously, that didn t help us much. So let s subtract them y = 6 -(4 + 3y = 5) + y = 1 Since we re looking for the value of the epression + y, the answer would be 1. We never even had to find out the values of and y. Whenever you encounter simultaneous equations, try adding or subtracting them, factoring something out, or multiplying by

6 something. You will never need to use the methods you learned in your algebra classes to solve simultaneous equations on the GRE. The following is an eample of the type of problem on the GRE that involves factoring and the distributive law. Eample: If y + 3 =, then 3y 6 = (a) 9 (b) 3 (c) 0 (d) 3 (e) 9 Instead of solving for y and plugging 3 + in for y in the second epression, just factor out a three in the second epression: 3(y ). This is just the distributive law working in reverse. Notice that the first equation can be written y = -3 (why?). By substituting 3 in for y, we get 3(-3) = -9, so the answer is (a). Always be on the lookout for chances to factor and use the distributive laws. The GRE loves equations set equal to zero because of the unique properties of 0. One of the most important properties of 0, which was mentioned in Review #1, is the fact that the product of anything and 0 is 0. Hence, if a product is equal to 0, one of the factors in that product must be 0. In other words, if ab = 0, then either a or b must be 0 or both are 0. This fact can be used to solve some equations on the GRE. Here s an eample. What are all the values of y for which y(y + 5) = 0? In order for the product y(y +5) to equal 0, either y must be 0 or y + 5 must be 0 or both of them must be 0. In order for y +5 to be 0, y would have to be 5. Hence, the values of y for which y(y + 5) is 0 are y = 0 and y = -5. In an equation, one epression is equal to another. In an inequality, one epression is not equal to another epression. (See Review #1, page 3, for a list of symbols and their meanings.) However, inequalities are solved just like equations. You can factor, unfactor, simplify, multiply/divide both sides by a constant, add/subtract terms from both sides, etc. The one primary difference is that if you multiply or divide both sides of an inequality by a negative number, you must reverse the direction of the inequality symbol. It s easy to see why. For instance, we know that < 4. Multiplying both sides by results in 4 on the left side and 8 on the right side. Clearly, -4 is greater than 8, so the inequality symbol must be reversed: -4 > -8. From your algebra classes, you probably remember hearing about functions even if didn t you understand them. Usually, the symbol f(), read f of, was used to represent a function. The GRE contains function problems, but instead of using the f(), they are disguised by funny-looking symbols such as #, etc. If you remember how functions work, just think of functions when you work these problems and perform the operations. However, you can still work these problems even if you don t remember functions. Think of a funny-looking symbol as representing a set of operations or instructions. Here s an eample: y = ( y )/, what is the value of 5? To find the answer, just substitute 3 in for and 5 in for y. y = ( y)/, then 5 = (3 5)/ = -1.

7 The GRE also contains your favorite type of problems: word problems. You have to learn how to translate them into mathematical equations. The following is list of words found in word problems and their mathematical translations. These are the same translations that are used in percentage problems (see Review #4). Word Symbol is = of, times, product what (or the unknown value) any variable more, sum + less, difference - ratio, quotient The following formulas frequently appear in GRE word problems, so you should commit them to memory: 1. distance = (rate)(time) This formula can also be epressed as rate = distance/time or time = distance/rate.. total price = (number of items)(cost per item) 3. sale price = (original price) (% discount)(original price)

8 Eercise =?. If = 3, what is ()? 3. If = 4, what is ( ) 3 4. If =, what is? 3? 5. Approimate Simplify: (a) 56 (b) 14 / (3 + 4)(8 3) =? 8. Factor or unfactor the following epressions: (a) 4 9y (b) ( + 3y) (c) 16 4y + 9y (d) (4 + y)(4 y) (e) Simplify the following epression by combining like terms: ( ) (3 y + 3 +) If y = 7 and + y = 3, then y =? 11. If 4ab = 0 and a > 1, then b =? 1. If + 3 < + 4, then >? 13. If & y = + 3y, what is the value of & 3y?

9 EXERCISE 5 SOLUTIONS = = 16 3 = or 5 5. Approimately 5 6. (a) 14 (b) 7 / (a) ( + 3y)( 3y) (b) 4 + 1y + 9y (c) (4 3y)(4 3y) (d) 16 y (e) ( 9)( 1) y = -6 3 y y Compiled by Robyn Wright, 199 Revised by Mosbah Dannaoui, 199; Ziad Diab, 1993; John Everett, 1999 Reference: Robinson, Adam, and John Katzman. The Princeton Review Cracking the System: The GRE 199 Edition. New York: Villard,

9.3 OPERATIONS WITH RADICALS

9.3 OPERATIONS WITH RADICALS 9. Operations with Radicals (9 1) 87 9. OPERATIONS WITH RADICALS In this section Adding and Subtracting Radicals Multiplying Radicals Conjugates In this section we will use the ideas of Section 9.1 in

More information

Answers to Basic Algebra Review

Answers to Basic Algebra Review Answers to Basic Algebra Review 1. -1.1 Follow the sign rules when adding and subtracting: If the numbers have the same sign, add them together and keep the sign. If the numbers have different signs, subtract

More information

Chapter 3 Section 6 Lesson Polynomials

Chapter 3 Section 6 Lesson Polynomials Chapter Section 6 Lesson Polynomials Introduction This lesson introduces polynomials and like terms. As we learned earlier, a monomial is a constant, a variable, or the product of constants and variables.

More information

HFCC Math Lab Beginning Algebra 13 TRANSLATING ENGLISH INTO ALGEBRA: WORDS, PHRASE, SENTENCES

HFCC Math Lab Beginning Algebra 13 TRANSLATING ENGLISH INTO ALGEBRA: WORDS, PHRASE, SENTENCES HFCC Math Lab Beginning Algebra 1 TRANSLATING ENGLISH INTO ALGEBRA: WORDS, PHRASE, SENTENCES Before being able to solve word problems in algebra, you must be able to change words, phrases, and sentences

More information

A positive exponent means repeated multiplication. A negative exponent means the opposite of repeated multiplication, which is repeated

A positive exponent means repeated multiplication. A negative exponent means the opposite of repeated multiplication, which is repeated Eponents Dealing with positive and negative eponents and simplifying epressions dealing with them is simply a matter of remembering what the definition of an eponent is. division. A positive eponent means

More information

SUNY ECC. ACCUPLACER Preparation Workshop. Algebra Skills

SUNY ECC. ACCUPLACER Preparation Workshop. Algebra Skills SUNY ECC ACCUPLACER Preparation Workshop Algebra Skills Gail A. Butler Ph.D. Evaluating Algebraic Epressions Substitute the value (#) in place of the letter (variable). Follow order of operations!!! E)

More information

Simplification Problems to Prepare for Calculus

Simplification Problems to Prepare for Calculus Simplification Problems to Prepare for Calculus In calculus, you will encounter some long epressions that will require strong factoring skills. This section is designed to help you develop those skills.

More information

A Quick Algebra Review

A Quick Algebra Review 1. Simplifying Epressions. Solving Equations 3. Problem Solving 4. Inequalities 5. Absolute Values 6. Linear Equations 7. Systems of Equations 8. Laws of Eponents 9. Quadratics 10. Rationals 11. Radicals

More information

Equations Involving Fractions

Equations Involving Fractions . Equations Involving Fractions. OBJECTIVES. Determine the ecluded values for the variables of an algebraic fraction. Solve a fractional equation. Solve a proportion for an unknown NOTE The resulting equation

More information

5.1 Radical Notation and Rational Exponents

5.1 Radical Notation and Rational Exponents Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots

More information

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.

Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers. Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used

More information

1.3 Algebraic Expressions

1.3 Algebraic Expressions 1.3 Algebraic Expressions A polynomial is an expression of the form: a n x n + a n 1 x n 1 +... + a 2 x 2 + a 1 x + a 0 The numbers a 1, a 2,..., a n are called coefficients. Each of the separate parts,

More information

POLYNOMIAL FUNCTIONS

POLYNOMIAL FUNCTIONS POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a

More information

Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:

Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra: Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than

More information

Algebra Practice Problems for Precalculus and Calculus

Algebra Practice Problems for Precalculus and Calculus Algebra Practice Problems for Precalculus and Calculus Solve the following equations for the unknown x: 1. 5 = 7x 16 2. 2x 3 = 5 x 3. 4. 1 2 (x 3) + x = 17 + 3(4 x) 5 x = 2 x 3 Multiply the indicated polynomials

More information

Section 5.0A Factoring Part 1

Section 5.0A Factoring Part 1 Section 5.0A Factoring Part 1 I. Work Together A. Multiply the following binomials into trinomials. (Write the final result in descending order, i.e., a + b + c ). ( 7)( + 5) ( + 7)( + ) ( + 7)( + 5) (

More information

Simplifying Exponential Expressions

Simplifying Exponential Expressions Simplifying Eponential Epressions Eponential Notation Base Eponent Base raised to an eponent Eample: What is the base and eponent of the following epression? 7 is the base 7 is the eponent Goal To write

More information

SECTION P.5 Factoring Polynomials

SECTION P.5 Factoring Polynomials BLITMCPB.QXP.0599_48-74 /0/0 0:4 AM Page 48 48 Chapter P Prerequisites: Fundamental Concepts of Algebra Technology Eercises Critical Thinking Eercises 98. The common cold is caused by a rhinovirus. The

More information

CAHSEE on Target UC Davis, School and University Partnerships

CAHSEE on Target UC Davis, School and University Partnerships UC Davis, School and University Partnerships CAHSEE on Target Mathematics Curriculum Published by The University of California, Davis, School/University Partnerships Program 006 Director Sarah R. Martinez,

More information

Solutions of Linear Equations in One Variable

Solutions of Linear Equations in One Variable 2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools

More information

LINEAR INEQUALITIES. less than, < 2x + 5 x 3 less than or equal to, greater than, > 3x 2 x 6 greater than or equal to,

LINEAR INEQUALITIES. less than, < 2x + 5 x 3 less than or equal to, greater than, > 3x 2 x 6 greater than or equal to, LINEAR INEQUALITIES When we use the equal sign in an equation we are stating that both sides of the equation are equal to each other. In an inequality, we are stating that both sides of the equation are

More information

Algebra 1 Course Title

Algebra 1 Course Title Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept

More information

Five 5. Rational Expressions and Equations C H A P T E R

Five 5. Rational Expressions and Equations C H A P T E R Five C H A P T E R Rational Epressions and Equations. Rational Epressions and Functions. Multiplication and Division of Rational Epressions. Addition and Subtraction of Rational Epressions.4 Comple Fractions.

More information

Polynomials and Factoring

Polynomials and Factoring 7.6 Polynomials and Factoring Basic Terminology A term, or monomial, is defined to be a number, a variable, or a product of numbers and variables. A polynomial is a term or a finite sum or difference of

More information

Core Maths C1. Revision Notes

Core Maths C1. Revision Notes Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the

More information

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.

Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality. 8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent

More information

The majority of college students hold credit cards. According to the Nellie May

The majority of college students hold credit cards. According to the Nellie May CHAPTER 6 Factoring Polynomials 6.1 The Greatest Common Factor and Factoring by Grouping 6. Factoring Trinomials of the Form b c 6.3 Factoring Trinomials of the Form a b c and Perfect Square Trinomials

More information

Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123

Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123 Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from

More information

1.6 The Order of Operations

1.6 The Order of Operations 1.6 The Order of Operations Contents: Operations Grouping Symbols The Order of Operations Exponents and Negative Numbers Negative Square Roots Square Root of a Negative Number Order of Operations and Negative

More information

COLLEGE ALGEBRA. Paul Dawkins

COLLEGE ALGEBRA. Paul Dawkins COLLEGE ALGEBRA Paul Dawkins Table of Contents Preface... iii Outline... iv Preliminaries... Introduction... Integer Exponents... Rational Exponents... 9 Real Exponents...5 Radicals...6 Polynomials...5

More information

Review of Intermediate Algebra Content

Review of Intermediate Algebra Content Review of Intermediate Algebra Content Table of Contents Page Factoring GCF and Trinomials of the Form + b + c... Factoring Trinomials of the Form a + b + c... Factoring Perfect Square Trinomials... 6

More information

Chapter 7 - Roots, Radicals, and Complex Numbers

Chapter 7 - Roots, Radicals, and Complex Numbers Math 233 - Spring 2009 Chapter 7 - Roots, Radicals, and Complex Numbers 7.1 Roots and Radicals 7.1.1 Notation and Terminology In the expression x the is called the radical sign. The expression under the

More information

This is a square root. The number under the radical is 9. (An asterisk * means multiply.)

This is a square root. The number under the radical is 9. (An asterisk * means multiply.) Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize

More information

Negative Integral Exponents. If x is nonzero, the reciprocal of x is written as 1 x. For example, the reciprocal of 23 is written as 2

Negative Integral Exponents. If x is nonzero, the reciprocal of x is written as 1 x. For example, the reciprocal of 23 is written as 2 4 (4-) Chapter 4 Polynomials and Eponents P( r) 0 ( r) dollars. Which law of eponents can be used to simplify the last epression? Simplify it. P( r) 7. CD rollover. Ronnie invested P dollars in a -year

More information

1.3 Polynomials and Factoring

1.3 Polynomials and Factoring 1.3 Polynomials and Factoring Polynomials Constant: a number, such as 5 or 27 Variable: a letter or symbol that represents a value. Term: a constant, variable, or the product or a constant and variable.

More information

Exponents and Radicals

Exponents and Radicals Exponents and Radicals (a + b) 10 Exponents are a very important part of algebra. An exponent is just a convenient way of writing repeated multiplications of the same number. Radicals involve the use of

More information

A.3. Polynomials and Factoring. Polynomials. What you should learn. Definition of a Polynomial in x. Why you should learn it

A.3. Polynomials and Factoring. Polynomials. What you should learn. Definition of a Polynomial in x. Why you should learn it Appendi A.3 Polynomials and Factoring A23 A.3 Polynomials and Factoring What you should learn Write polynomials in standard form. Add,subtract,and multiply polynomials. Use special products to multiply

More information

MATH 60 NOTEBOOK CERTIFICATIONS

MATH 60 NOTEBOOK CERTIFICATIONS MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5

More information

Basic numerical skills: EQUATIONS AND HOW TO SOLVE THEM. x + 5 = 7 2 + 5-2 = 7-2 5 + (2-2) = 7-2 5 = 5. x + 5-5 = 7-5. x + 0 = 20.

Basic numerical skills: EQUATIONS AND HOW TO SOLVE THEM. x + 5 = 7 2 + 5-2 = 7-2 5 + (2-2) = 7-2 5 = 5. x + 5-5 = 7-5. x + 0 = 20. Basic numerical skills: EQUATIONS AND HOW TO SOLVE THEM 1. Introduction (really easy) An equation represents the equivalence between two quantities. The two sides of the equation are in balance, and solving

More information

Direct Translation is the process of translating English words and phrases into numbers, mathematical symbols, expressions, and equations.

Direct Translation is the process of translating English words and phrases into numbers, mathematical symbols, expressions, and equations. Section 1 Mathematics has a language all its own. In order to be able to solve many types of word problems, we need to be able to translate the English Language into Math Language. is the process of translating

More information

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test

Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important

More information

Systems of Equations Involving Circles and Lines

Systems of Equations Involving Circles and Lines Name: Systems of Equations Involving Circles and Lines Date: In this lesson, we will be solving two new types of Systems of Equations. Systems of Equations Involving a Circle and a Line Solving a system

More information

Pre-Calculus II Factoring and Operations on Polynomials

Pre-Calculus II Factoring and Operations on Polynomials Factoring... 1 Polynomials...1 Addition of Polynomials... 1 Subtraction of Polynomials...1 Multiplication of Polynomials... Multiplying a monomial by a monomial... Multiplying a monomial by a polynomial...

More information

Tool 1. Greatest Common Factor (GCF)

Tool 1. Greatest Common Factor (GCF) Chapter 4: Factoring Review Tool 1 Greatest Common Factor (GCF) This is a very important tool. You must try to factor out the GCF first in every problem. Some problems do not have a GCF but many do. When

More information

is the degree of the polynomial and is the leading coefficient.

is the degree of the polynomial and is the leading coefficient. Property: T. Hrubik-Vulanovic e-mail: thrubik@kent.edu Content (in order sections were covered from the book): Chapter 6 Higher-Degree Polynomial Functions... 1 Section 6.1 Higher-Degree Polynomial Functions...

More information

Solving Rational Equations

Solving Rational Equations Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,

More information

MATH 90 CHAPTER 1 Name:.

MATH 90 CHAPTER 1 Name:. MATH 90 CHAPTER 1 Name:. 1.1 Introduction to Algebra Need To Know What are Algebraic Expressions? Translating Expressions Equations What is Algebra? They say the only thing that stays the same is change.

More information

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED

10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations

More information

Polynomial Expression

Polynomial Expression DETAILED SOLUTIONS AND CONCEPTS - POLYNOMIAL EXPRESSIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! PLEASE NOTE

More information

HIBBING COMMUNITY COLLEGE COURSE OUTLINE

HIBBING COMMUNITY COLLEGE COURSE OUTLINE HIBBING COMMUNITY COLLEGE COURSE OUTLINE COURSE NUMBER & TITLE: - Beginning Algebra CREDITS: 4 (Lec 4 / Lab 0) PREREQUISITES: MATH 0920: Fundamental Mathematics with a grade of C or better, Placement Exam,

More information

PowerScore Test Preparation (800) 545-1750

PowerScore Test Preparation (800) 545-1750 Question 1 Test 1, Second QR Section (version 1) List A: 0, 5,, 15, 20... QA: Standard deviation of list A QB: Standard deviation of list B Statistics: Standard Deviation Answer: The two quantities are

More information

Factoring Polynomials and Solving Quadratic Equations

Factoring Polynomials and Solving Quadratic Equations Factoring Polynomials and Solving Quadratic Equations Math Tutorial Lab Special Topic Factoring Factoring Binomials Remember that a binomial is just a polynomial with two terms. Some examples include 2x+3

More information

EAP/GWL Rev. 1/2011 Page 1 of 5. Factoring a polynomial is the process of writing it as the product of two or more polynomial factors.

EAP/GWL Rev. 1/2011 Page 1 of 5. Factoring a polynomial is the process of writing it as the product of two or more polynomial factors. EAP/GWL Rev. 1/2011 Page 1 of 5 Factoring a polynomial is the process of writing it as the product of two or more polynomial factors. Example: Set the factors of a polynomial equation (as opposed to an

More information

Exponents. Learning Objectives 4-1

Exponents. Learning Objectives 4-1 Eponents -1 to - Learning Objectives -1 The product rule for eponents The quotient rule for eponents The power rule for eponents Power rules for products and quotient We can simplify by combining the like

More information

Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper

Florida Math 0028. Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Florida Math 0028 Correlation of the ALEKS course Florida Math 0028 to the Florida Mathematics Competencies - Upper Exponents & Polynomials MDECU1: Applies the order of operations to evaluate algebraic

More information

Substitute 4 for x in the function, Simplify.

Substitute 4 for x in the function, Simplify. Page 1 of 19 Review of Eponential and Logarithmic Functions An eponential function is a function in the form of f ( ) = for a fied ase, where > 0 and 1. is called the ase of the eponential function. The

More information

The numerical values that you find are called the solutions of the equation.

The numerical values that you find are called the solutions of the equation. Appendi F: Solving Equations The goal of solving equations When you are trying to solve an equation like: = 4, you are trying to determine all of the numerical values of that you could plug into that equation.

More information

Mathematics Placement

Mathematics Placement Mathematics Placement The ACT COMPASS math test is a self-adaptive test, which potentially tests students within four different levels of math including pre-algebra, algebra, college algebra, and trigonometry.

More information

Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III

Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial

More information

Big Bend Community College. Beginning Algebra MPC 095. Lab Notebook

Big Bend Community College. Beginning Algebra MPC 095. Lab Notebook Big Bend Community College Beginning Algebra MPC 095 Lab Notebook Beginning Algebra Lab Notebook by Tyler Wallace is licensed under a Creative Commons Attribution 3.0 Unported License. Permissions beyond

More information

3.1. RATIONAL EXPRESSIONS

3.1. RATIONAL EXPRESSIONS 3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers

More information

Algebra Cheat Sheets

Algebra Cheat Sheets Sheets Algebra Cheat Sheets provide you with a tool for teaching your students note-taking, problem-solving, and organizational skills in the context of algebra lessons. These sheets teach the concepts

More information

No Solution Equations Let s look at the following equation: 2 +3=2 +7

No Solution Equations Let s look at the following equation: 2 +3=2 +7 5.4 Solving Equations with Infinite or No Solutions So far we have looked at equations where there is exactly one solution. It is possible to have more than solution in other types of equations that are

More information

Method To Solve Linear, Polynomial, or Absolute Value Inequalities:

Method To Solve Linear, Polynomial, or Absolute Value Inequalities: Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with

More information

Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving

Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Section 7 Algebraic Manipulations and Solving Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Before launching into the mathematics, let s take a moment to talk about the words

More information

expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method.

expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method. A polynomial of degree n (in one variable, with real coefficients) is an expression of the form: a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 2 x 2 + a 1 x + a 0 where a n, a n 1, a n 2, a 2, a 1, a 0 are

More information

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.

Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P. MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called

More information

SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS

SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS (Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic

More information

NSM100 Introduction to Algebra Chapter 5 Notes Factoring

NSM100 Introduction to Algebra Chapter 5 Notes Factoring Section 5.1 Greatest Common Factor (GCF) and Factoring by Grouping Greatest Common Factor for a polynomial is the largest monomial that divides (is a factor of) each term of the polynomial. GCF is the

More information

7 Literal Equations and

7 Literal Equations and CHAPTER 7 Literal Equations and Inequalities Chapter Outline 7.1 LITERAL EQUATIONS 7.2 INEQUALITIES 7.3 INEQUALITIES USING MULTIPLICATION AND DIVISION 7.4 MULTI-STEP INEQUALITIES 113 7.1. Literal Equations

More information

Rational Expressions - Complex Fractions

Rational Expressions - Complex Fractions 7. Rational Epressions - Comple Fractions Objective: Simplify comple fractions by multiplying each term by the least common denominator. Comple fractions have fractions in either the numerator, or denominator,

More information

Greatest Common Factor (GCF) Factoring

Greatest Common Factor (GCF) Factoring Section 4 4: Greatest Common Factor (GCF) Factoring The last chapter introduced the distributive process. The distributive process takes a product of a monomial and a polynomial and changes the multiplication

More information

Vieta s Formulas and the Identity Theorem

Vieta s Formulas and the Identity Theorem Vieta s Formulas and the Identity Theorem This worksheet will work through the material from our class on 3/21/2013 with some examples that should help you with the homework The topic of our discussion

More information

Year 9 set 1 Mathematics notes, to accompany the 9H book.

Year 9 set 1 Mathematics notes, to accompany the 9H book. Part 1: Year 9 set 1 Mathematics notes, to accompany the 9H book. equations 1. (p.1), 1.6 (p. 44), 4.6 (p.196) sequences 3. (p.115) Pupils use the Elmwood Press Essential Maths book by David Raymer (9H

More information

A.2. Exponents and Radicals. Integer Exponents. What you should learn. Exponential Notation. Why you should learn it. Properties of Exponents

A.2. Exponents and Radicals. Integer Exponents. What you should learn. Exponential Notation. Why you should learn it. Properties of Exponents Appendix A. Exponents and Radicals A11 A. Exponents and Radicals What you should learn Use properties of exponents. Use scientific notation to represent real numbers. Use properties of radicals. Simplify

More information

Domain of a Composition

Domain of a Composition Domain of a Composition Definition Given the function f and g, the composition of f with g is a function defined as (f g)() f(g()). The domain of f g is the set of all real numbers in the domain of g such

More information

Section 1. Inequalities -5-4 -3-2 -1 0 1 2 3 4 5

Section 1. Inequalities -5-4 -3-2 -1 0 1 2 3 4 5 Worksheet 2.4 Introduction to Inequalities Section 1 Inequalities The sign < stands for less than. It was introduced so that we could write in shorthand things like 3 is less than 5. This becomes 3 < 5.

More information

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.

Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}

More information

6.3. section. Building Up the Denominator. To convert the fraction 2 3 factor 21 as 21 3 7. Because 2 3

6.3. section. Building Up the Denominator. To convert the fraction 2 3 factor 21 as 21 3 7. Because 2 3 0 (6-18) Chapter 6 Rational Epressions GETTING MORE INVOLVED 7. Discussion. Evaluate each epression. a) One-half of 1 b) One-third of c) One-half of d) One-half of 1 a) b) c) d) 8 7. Eploration. Let R

More information

0.8 Rational Expressions and Equations

0.8 Rational Expressions and Equations 96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to

More information

Simplifying Square-Root Radicals Containing Perfect Square Factors

Simplifying Square-Root Radicals Containing Perfect Square Factors DETAILED SOLUTIONS AND CONCEPTS - OPERATIONS ON IRRATIONAL NUMBERS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you!

More information

Calculate Highest Common Factors(HCFs) & Least Common Multiples(LCMs) NA1

Calculate Highest Common Factors(HCFs) & Least Common Multiples(LCMs) NA1 Calculate Highest Common Factors(HCFs) & Least Common Multiples(LCMs) NA1 What are the multiples of 5? The multiples are in the five times table What are the factors of 90? Each of these is a pair of factors.

More information

PERT Computerized Placement Test

PERT Computerized Placement Test PERT Computerized Placement Test REVIEW BOOKLET FOR MATHEMATICS Valencia College Orlando, Florida Prepared by Valencia College Math Department Revised April 0 of 0 // : AM Contents of this PERT Review

More information

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)

MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,

More information

Factoring Trinomials of the Form x 2 bx c

Factoring Trinomials of the Form x 2 bx c 4.2 Factoring Trinomials of the Form x 2 bx c 4.2 OBJECTIVES 1. Factor a trinomial of the form x 2 bx c 2. Factor a trinomial containing a common factor NOTE The process used to factor here is frequently

More information

SOLVING EQUATIONS WITH RADICALS AND EXPONENTS 9.5. section ( 3 5 3 2 )( 3 25 3 10 3 4 ). The Odd-Root Property

SOLVING EQUATIONS WITH RADICALS AND EXPONENTS 9.5. section ( 3 5 3 2 )( 3 25 3 10 3 4 ). The Odd-Root Property 498 (9 3) Chapter 9 Radicals and Rational Exponents Replace the question mark by an expression that makes the equation correct. Equations involving variables are to be identities. 75. 6 76. 3?? 1 77. 1

More information

Section 1.1 Linear Equations: Slope and Equations of Lines

Section 1.1 Linear Equations: Slope and Equations of Lines Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of

More information

6.4 Special Factoring Rules

6.4 Special Factoring Rules 6.4 Special Factoring Rules OBJECTIVES 1 Factor a difference of squares. 2 Factor a perfect square trinomial. 3 Factor a difference of cubes. 4 Factor a sum of cubes. By reversing the rules for multiplication

More information

Vocabulary Words and Definitions for Algebra

Vocabulary Words and Definitions for Algebra Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms

More information

1.4 Compound Inequalities

1.4 Compound Inequalities Section 1.4 Compound Inequalities 53 1.4 Compound Inequalities This section discusses a technique that is used to solve compound inequalities, which is a phrase that usually refers to a pair of inequalities

More information

Unit 6: Polynomials. 1 Polynomial Functions and End Behavior. 2 Polynomials and Linear Factors. 3 Dividing Polynomials

Unit 6: Polynomials. 1 Polynomial Functions and End Behavior. 2 Polynomials and Linear Factors. 3 Dividing Polynomials Date Period Unit 6: Polynomials DAY TOPIC 1 Polynomial Functions and End Behavior Polynomials and Linear Factors 3 Dividing Polynomials 4 Synthetic Division and the Remainder Theorem 5 Solving Polynomial

More information

Multiplying and Dividing Algebraic Fractions

Multiplying and Dividing Algebraic Fractions . Multiplying and Dividing Algebraic Fractions. OBJECTIVES. Write the product of two algebraic fractions in simplest form. Write the quotient of two algebraic fractions in simplest form. Simplify a comple

More information

CHAPTER 7: FACTORING POLYNOMIALS

CHAPTER 7: FACTORING POLYNOMIALS CHAPTER 7: FACTORING POLYNOMIALS FACTOR (noun) An of two or more quantities which form a product when multiplied together. 1 can be rewritten as 3*, where 3 and are FACTORS of 1. FACTOR (verb) - To factor

More information

( ) FACTORING. x In this polynomial the only variable in common to all is x.

( ) FACTORING. x In this polynomial the only variable in common to all is x. FACTORING Factoring is similar to breaking up a number into its multiples. For example, 10=5*. The multiples are 5 and. In a polynomial it is the same way, however, the procedure is somewhat more complicated

More information

Determinants can be used to solve a linear system of equations using Cramer s Rule.

Determinants can be used to solve a linear system of equations using Cramer s Rule. 2.6.2 Cramer s Rule Determinants can be used to solve a linear system of equations using Cramer s Rule. Cramer s Rule for Two Equations in Two Variables Given the system This system has the unique solution

More information

Order of Operations More Essential Practice

Order of Operations More Essential Practice Order of Operations More Essential Practice We will be simplifying expressions using the order of operations in this section. Automatic Skill: Order of operations needs to become an automatic skill. Failure

More information

MATH 10034 Fundamental Mathematics IV

MATH 10034 Fundamental Mathematics IV MATH 0034 Fundamental Mathematics IV http://www.math.kent.edu/ebooks/0034/funmath4.pdf Department of Mathematical Sciences Kent State University January 2, 2009 ii Contents To the Instructor v Polynomials.

More information

Homework 2 Solutions

Homework 2 Solutions Homework Solutions 1. (a) Find the area of a regular heagon inscribed in a circle of radius 1. Then, find the area of a regular heagon circumscribed about a circle of radius 1. Use these calculations to

More information

UNIT 5 VOCABULARY: POLYNOMIALS

UNIT 5 VOCABULARY: POLYNOMIALS 2º ESO Bilingüe Page 1 UNIT 5 VOCABULARY: POLYNOMIALS 1.1. Algebraic Language Algebra is a part of mathematics in which symbols, usually letters of the alphabet, represent numbers. Letters are used to

More information