High Performance GPU-based Preprocessing for Time-of-Flight Imaging in Medical Applications
|
|
|
- Georgiana O’Neal’
- 10 years ago
- Views:
Transcription
1 High Performance GPU-based Preprocessing for Time-of-Flight Imaging in Medical Applications Jakob Wasza 1, Sebastian Bauer 1, Joachim Hornegger 1,2 1 Pattern Recognition Lab, Friedrich-Alexander University Erlangen-Nuremberg 2 Erlangen Graduate School in Advanced Optical Technologies SAOT) [email protected] Abstract. Time-of-Flight ToF) imaging is a promising technology for real-time metric surface acquisition and has recently been proposed for a variety of medical applications. However, due to limitations of the sensor, range data from ToF cameras are subject to noise and contain invalid outliers. In this paper, we discuss a real-time capable framework for ToF preprocessing in a medical environment. The contribution of this work is threefold. First, we address the restoration of invalid measurements that typically occur with specular reflections on wet organ surfaces. Second, we compare the conventional bilateral filter with the recently introduced concept of guided image filtering for edge preserving denoising. Third, we have implemented the pipeline on the graphics processing unit GPU), enabling high-quality preprocessing in real-time. In experiments, the framework achieved a depth accuracy of 0.8 mm 1.4 mm) on synthetic real) data, at a total runtime of 40 ms. 1 Introduction Recent advances in Time-of-Flight ToF) imaging have opened new perspectives for its use in medical engineering. In particular, the resolution40k points), frame rate 40 Hz) and validity information provided by the camera hold potential for medical applications. ToF imaging has, among others, been proposed for 3D endoscopy [1] and intra-operative organ surface registration [2]. The inherent high degree of accuracy for these tasks requires a preprocessing pipeline to cope with the noisy and corrupted data obtained from the ToF sensor. Even though a proper sensor calibration[3] can be used to eliminate systematic errors, denoising provides the fundamental basis to produce steady and reliable surface data. At this, temporal averaging and edge preserving filters are commonly used [2,3]. One issue that cannot be addressed by conventional filters is the elimination of invalid depth values caused by specular reflections that lead to saturated sensor elements. These effects often occur with ToF surface acquisition of organs due to their shiny and wet surface. In this paper, we propose to use a spectral domain method known from digital radiography to estimate the depth information at invalid pixels. As low filter runtimes are a crucial factor, we investigate the performance and robustness of the bilateral filter and the recently introduced guided image filter for edge preserving denoising. To ultimately achieve real-time capability, we implemented all filters on the graphics processing unit GPU).
2 2 J.Wasza, S.Bauer, J.Hornegger 2 Materials and Methods 2.1 Preprocessing pipeline The preprocessing pipeline in this work consists of three modules that operate on the distance information: i) defect pixel interpolation, ii) temporal averaging, iii) edge preserving denoising. Defect pixel interpolation In order to correct invalid depth measurements, we adopt a spectral domain method that was proposed by Aach and Metzler for defect pixel interpolation in digital radiography [4]. The basic assumption is that the observed corrupted signal g can be expressed as a multiplication of the ideal signal f with a binary defect mask w given by the validity information provided by the camera. This corresponds to a convolution ) in the frequency domain: g = f w G = F W 1) where F,G and W denote the spectra of f, g and w, respectively. The unknown complex coefficients of F are then estimated by an iterative spectral deconvolution scheme and the restored ideal signal is obtained as: f x) = gx)+1 wx)) f x) 2) where f denotes the inverse Fourier transform of the estimated spectrum F. Temporal averaging For a frame at time t we perform temporal denoising by computing the arithmetic mean of N successive frames g i : f t x) = 1 N t i=t N+1 g i x) 3) We note that this filter can be implemented in a recursive manner, i.e.: f t x) = 1 N N f t 1x) g t N x)+g t x)) 4) This formulation provides an effective way to reduce GPU memory usage as not all N frames have to be stored and accessed. As the evaluation of equation 4) per pixel x can be executed in parallel, an implementation on the GPU is straightforward. Edge preserving denoising The bilateral filter proposed by Tomasi and Manduchi [5] is a very popular spatial denoising filter in ToF imaging. The discrete version for the Gaussian case can be expressed as: fx) = 1 K x gy)exp x y 2 σ 2 s ) exp gx) gy) ) σr 2 5)
3 GPU-based ToF Preprocessing for Medical Applications 3 where g denotes the input image and ω x denotes a local window centered at coordinate x. K x is a normalization factor, σ s and σ r control the spatial and range similarity, respectively. Due to its translational-variant kernel this filter is computationally expensive. Nevertheless, it can be implemented efficiently on the GPU as the evaluation of equation 5) for all pixels x can be performed concurrently. In order to cope with boundary conditions and potentially uncoalesced GPU memory access patterns the input image g is bound as a texture. Recently, the guided image filter was proposed by He et al. [6]. This filter has a non-approximative linear-time algorithm for edge preserving filtering, thus, being very promising for real-time ToF preprocessing. The filter output for a pixel x can eventually be deduced as: fx) = 1 ω x a y ) Ix)+ 1 ω x b y 6) where ω x denotes a local window centered at x and I denotes the guidance image. The evaluation of the summations in equation 6) and the estimation of the coefficients a y and b y see [6]) can be done by using box filters. In turn, box filtering can be performed efficiently by using integral images which provides the basis for a linear-time algorithm. We employ the parallel-prefix-sum algorithm as described in [7] for the computation of integral images on the GPU. 2.2 Experiments In order to assess the accuracy of the presented methods we evaluate the absolute distance error between a ground truth and a template object on a per-pixel basis. Synthetic data Deciding on a ground truth for the evaluation is a non-trivial task as the ideal metric surface of the observed object is in general not known. Therefore, we conduct experiments on simulated distance values reconstructed from the z-buffer representation of a 3D scene. These values constitute the unbiased ground truth in this experiment. We then approximate the temporal noise on a per-pixel basis by adding an individual offset drawn from a normal distribution with σ = 10 mm and µ = 0 mm. This standard deviation is motivated by observations on real ToF data. In order to simulate the effect of amplitude related noise variance and total reflections we additionally corrupt the distance data by Perlin noise [8]. For this study, we rendered a porcine liver mesh segmented from a CT scan. Real data Thefocusoftherealdataexperimentsisthecomparisonofacommon preprocessing pipeline temporal averaging, edge preserving denoising) with a pipeline that additionally performs defect pixel interpolation. We conducted the experiment using a PMD CamCube 3.0 with a resolution of pixels. For the ground truth generation, we averaged 1000 frames acquired from an uncorrupted liver phantom and applied a bilateral filter with σ s = 50 mm and
4 4 J.Wasza, S.Bauer, J.Hornegger Table 1. Error analysis on synthetic data and filter runtimes. Filter None DPI TA BF GF Mean error [mm] 6.1± ± ± ± ±2.1 Runtime [ms] n/a 34± ± ± ±0.2 σ r = 5 pixels to smooth out systematic artifacts that could not be corrected by sensor calibration. We then placed two pieces of aluminum foil onto the phantom to simulate a reflective surface. Using this corrupted phantom, we assessed the results of the standard preprocessing pipeline as applied for the ground truth and the same pipeline performing a defect pixel interpolation as a first step. 3 Results We have implemented the defect pixel interpolation DPI), temporal averaging TA), bilateral filter BF) and guided image filter GF) on a Quadro FX 2800M GPU using NVidia s CUDA technology. Qualitative results for the defect pixel interpolation on real data are depicted in Fig. 1. Without correction the corrupted regions show a mean error of 68.4±40.2 mm. Using defect pixel interpolation we were able to reduce this error to 1.4±1.1 mm. Qualitative and quantitative results for the filter evaluation on synthetic data are shown in Fig. 2 and Table 1 whereby the error reduction is cumulative across filters while runtimes are not. Using the presented preprocessing pipeline we were able to reduce the mean error across the surface from 6.1±8.2 mm to 0.4±0.6 mm and 0.8±2.1 mm for the bilateral and the guided image filter, respectively. The bilateral filter shows a better accuracy at very strong edges, see Fig. 2. Given a total pipeline runtime of approximately 40 ms, real-time constraints are satisfied. 4 Discussion We have presented a real-time capable preprocessing pipeline for ToF imaging in medical applications. The defect pixel interpolation yielded promising Standard Error map DPI Error map Fig. 1. Defect pixel interpolation on real data.
5 GPU-based ToF Preprocessing for Medical Applications 5 Fig. 2. Filter operations on synthetic data. Details Error map ToF data Raw data DPI TA BF GF results with regard to accuracy. Nonetheless, future research has to investigate alternative spectral domain methods as well as spatial domain methods for the restoration of invalid depth values. For edge preserving denoising, guided image filtering turned out to be an alternative to the bilater filter. However, the latter shows a better behavior at sharp edges. Future work has to investigate adaptive variants of edge preserving filters that additionally account for the amplitude related noise variance. Concerning runtime issues, we note that even on a current mid-range GPU real-time constraints can be satisfied. This is a promising result with regard to next-generation and potentially high-resolution ToF sensors. References 1. Penne J, Höller K, Stürmer M, Schrauder T, Schneider A, Engelbrecht R, et al. Time-of-flight 3-D endoscopy. In: Proc MICCAI. vol. 5761; p Seitel A, Santos T, Mersmann S, Penne J, Tetzlaff R, Meinzer HP. Time-of-Flight Kameras für die intraoperative Oberflächenerfassung. In: Proc BVM; p Lindner M, Schiller I, Kolb A, Koch R. Time-of-Flight sensor calibration for accurate range sensing. Comput Vis Image Underst. 2010; p. in press. 4. Aach T, Metzler V. Defect interpolation in digital radiography- how object-oriented transform coding helps. In: Proc SPIE. vol. 4322; p Tomasi C, Manduchi R. Bilateral filtering for gray and color images. In: Proc ICCV; p He K, Sun J, Tang X. Guided image filtering. In: Proc ECCV. vol. 6311; p Harris M, Sengupta S, Owens JD. Parallel Prefix Sum Scan) with CUDA. In: Nguyen H, editor. GPU Gems 3. Addison Wesley; Perlin K. An image synthesizer. SIGGRAPH Comput Graph. 1985;193):
Color Segmentation Based Depth Image Filtering
Color Segmentation Based Depth Image Filtering Michael Schmeing and Xiaoyi Jiang Department of Computer Science, University of Münster Einsteinstraße 62, 48149 Münster, Germany, {m.schmeing xjiang}@uni-muenster.de
High Quality Image Magnification using Cross-Scale Self-Similarity
High Quality Image Magnification using Cross-Scale Self-Similarity André Gooßen 1, Arne Ehlers 1, Thomas Pralow 2, Rolf-Rainer Grigat 1 1 Vision Systems, Hamburg University of Technology, D-21079 Hamburg
Bildverarbeitung und Mustererkennung Image Processing and Pattern Recognition
Bildverarbeitung und Mustererkennung Image Processing and Pattern Recognition 1. Image Pre-Processing - Pixel Brightness Transformation - Geometric Transformation - Image Denoising 1 1. Image Pre-Processing
A Noise-Aware Filter for Real-Time Depth Upsampling
A Noise-Aware Filter for Real-Time Depth Upsampling Derek Chan Hylke Buisman Christian Theobalt Sebastian Thrun Stanford University, USA Abstract. A new generation of active 3D range sensors, such as time-of-flight
Medical Image Processing on the GPU. Past, Present and Future. Anders Eklund, PhD Virginia Tech Carilion Research Institute [email protected].
Medical Image Processing on the GPU Past, Present and Future Anders Eklund, PhD Virginia Tech Carilion Research Institute [email protected] Outline Motivation why do we need GPUs? Past - how was GPU programming
The Scientific Data Mining Process
Chapter 4 The Scientific Data Mining Process When I use a word, Humpty Dumpty said, in rather a scornful tone, it means just what I choose it to mean neither more nor less. Lewis Carroll [87, p. 214] In
Blind Deconvolution of Barcodes via Dictionary Analysis and Wiener Filter of Barcode Subsections
Blind Deconvolution of Barcodes via Dictionary Analysis and Wiener Filter of Barcode Subsections Maximilian Hung, Bohyun B. Kim, Xiling Zhang August 17, 2013 Abstract While current systems already provide
A Prototype For Eye-Gaze Corrected
A Prototype For Eye-Gaze Corrected Video Chat on Graphics Hardware Maarten Dumont, Steven Maesen, Sammy Rogmans and Philippe Bekaert Introduction Traditional webcam video chat: No eye contact. No extensive
How To Fix Out Of Focus And Blur Images With A Dynamic Template Matching Algorithm
IJSTE - International Journal of Science Technology & Engineering Volume 1 Issue 10 April 2015 ISSN (online): 2349-784X Image Estimation Algorithm for Out of Focus and Blur Images to Retrieve the Barcode
A NEW SUPER RESOLUTION TECHNIQUE FOR RANGE DATA. Valeria Garro, Pietro Zanuttigh, Guido M. Cortelazzo. University of Padova, Italy
A NEW SUPER RESOLUTION TECHNIQUE FOR RANGE DATA Valeria Garro, Pietro Zanuttigh, Guido M. Cortelazzo University of Padova, Italy ABSTRACT Current Time-of-Flight matrix sensors allow for the acquisition
Single Depth Image Super Resolution and Denoising Using Coupled Dictionary Learning with Local Constraints and Shock Filtering
Single Depth Image Super Resolution and Denoising Using Coupled Dictionary Learning with Local Constraints and Shock Filtering Jun Xie 1, Cheng-Chuan Chou 2, Rogerio Feris 3, Ming-Ting Sun 1 1 University
Aliasing, Image Sampling and Reconstruction
Aliasing, Image Sampling and Reconstruction Recall: a pixel is a point It is NOT a box, disc or teeny wee light It has no dimension It occupies no area It can have a coordinate More than a point, it is
High Quality Image Deblurring Panchromatic Pixels
High Quality Image Deblurring Panchromatic Pixels ACM Transaction on Graphics vol. 31, No. 5, 2012 Sen Wang, Tingbo Hou, John Border, Hong Qin, and Rodney Miller Presented by Bong-Seok Choi School of Electrical
High speed 3D capture for Configuration Management DOE SBIR Phase II Paul Banks [email protected]
High speed 3D capture for Configuration Management DOE SBIR Phase II Paul Banks [email protected] Advanced Methods for Manufacturing Workshop September 29, 2015 1 TetraVue does high resolution 3D
Using visible SNR (vsnr) to compare image quality of pixel binning and digital resizing
Using visible SNR (vsnr) to compare image quality of pixel binning and digital resizing Joyce Farrell a, Mike Okincha b, Manu Parmar ac, and Brian Wandell ac a Dept. of Electrical Engineering, Stanford
Real-time Visual Tracker by Stream Processing
Real-time Visual Tracker by Stream Processing Simultaneous and Fast 3D Tracking of Multiple Faces in Video Sequences by Using a Particle Filter Oscar Mateo Lozano & Kuzahiro Otsuka presented by Piotr Rudol
Interactive Level-Set Segmentation on the GPU
Interactive Level-Set Segmentation on the GPU Problem Statement Goal Interactive system for deformable surface manipulation Level-sets Challenges Deformation is slow Deformation is hard to control Solution
EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines
EECS 556 Image Processing W 09 Interpolation Interpolation techniques B splines What is image processing? Image processing is the application of 2D signal processing methods to images Image representation
The Visualization Pipeline
The Visualization Pipeline Conceptual perspective Implementation considerations Algorithms used in the visualization Structure of the visualization applications Contents The focus is on presenting the
Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Sample Exam Questions 2007
Monash University Clayton s School of Information Technology CSE3313 Computer Graphics Questions 2007 INSTRUCTIONS: Answer all questions. Spend approximately 1 minute per mark. Question 1 30 Marks Total
Canny Edge Detection
Canny Edge Detection 09gr820 March 23, 2009 1 Introduction The purpose of edge detection in general is to significantly reduce the amount of data in an image, while preserving the structural properties
Assessment. Presenter: Yupu Zhang, Guoliang Jin, Tuo Wang Computer Vision 2008 Fall
Automatic Photo Quality Assessment Presenter: Yupu Zhang, Guoliang Jin, Tuo Wang Computer Vision 2008 Fall Estimating i the photorealism of images: Distinguishing i i paintings from photographs h Florin
Enhanced LIC Pencil Filter
Enhanced LIC Pencil Filter Shigefumi Yamamoto, Xiaoyang Mao, Kenji Tanii, Atsumi Imamiya University of Yamanashi {[email protected], [email protected], [email protected]}
Copyright 2007 Casa Software Ltd. www.casaxps.com. ToF Mass Calibration
ToF Mass Calibration Essentially, the relationship between the mass m of an ion and the time taken for the ion of a given charge to travel a fixed distance is quadratic in the flight time t. For an ideal
The Big Data methodology in computer vision systems
The Big Data methodology in computer vision systems Popov S.B. Samara State Aerospace University, Image Processing Systems Institute, Russian Academy of Sciences Abstract. I consider the advantages of
Resolution Enhancement of Photogrammetric Digital Images
DICTA2002: Digital Image Computing Techniques and Applications, 21--22 January 2002, Melbourne, Australia 1 Resolution Enhancement of Photogrammetric Digital Images John G. FRYER and Gabriele SCARMANA
Synthetic Sensing: Proximity / Distance Sensors
Synthetic Sensing: Proximity / Distance Sensors MediaRobotics Lab, February 2010 Proximity detection is dependent on the object of interest. One size does not fit all For non-contact distance measurement,
Automatic Labeling of Lane Markings for Autonomous Vehicles
Automatic Labeling of Lane Markings for Autonomous Vehicles Jeffrey Kiske Stanford University 450 Serra Mall, Stanford, CA 94305 [email protected] 1. Introduction As autonomous vehicles become more popular,
Vision based Vehicle Tracking using a high angle camera
Vision based Vehicle Tracking using a high angle camera Raúl Ignacio Ramos García Dule Shu [email protected] [email protected] Abstract A vehicle tracking and grouping algorithm is presented in this work
MODULATION TRANSFER FUNCTION MEASUREMENT METHOD AND RESULTS FOR THE ORBVIEW-3 HIGH RESOLUTION IMAGING SATELLITE
MODULATION TRANSFER FUNCTION MEASUREMENT METHOD AND RESULTS FOR THE ORBVIEW-3 HIGH RESOLUTION IMAGING SATELLITE K. Kohm ORBIMAGE, 1835 Lackland Hill Parkway, St. Louis, MO 63146, USA [email protected]
Personal Identity Verification (PIV) IMAGE QUALITY SPECIFICATIONS FOR SINGLE FINGER CAPTURE DEVICES
Personal Identity Verification (PIV) IMAGE QUALITY SPECIFICATIONS FOR SINGLE FINGER CAPTURE DEVICES 1.0 SCOPE AND PURPOSE These specifications apply to fingerprint capture devices which scan and capture
A Novel Method to Improve Resolution of Satellite Images Using DWT and Interpolation
A Novel Method to Improve Resolution of Satellite Images Using DWT and Interpolation S.VENKATA RAMANA ¹, S. NARAYANA REDDY ² M.Tech student, Department of ECE, SVU college of Engineering, Tirupati, 517502,
Numerical Methods For Image Restoration
Numerical Methods For Image Restoration CIRAM Alessandro Lanza University of Bologna, Italy Faculty of Engineering CIRAM Outline 1. Image Restoration as an inverse problem 2. Image degradation models:
Lecture 14. Point Spread Function (PSF)
Lecture 14 Point Spread Function (PSF), Modulation Transfer Function (MTF), Signal-to-noise Ratio (SNR), Contrast-to-noise Ratio (CNR), and Receiver Operating Curves (ROC) Point Spread Function (PSF) Recollect
RIEGL VZ-400 NEW. Laser Scanners. Latest News March 2009
Latest News March 2009 NEW RIEGL VZ-400 Laser Scanners The following document details some of the excellent results acquired with the new RIEGL VZ-400 scanners, including: Time-optimised fine-scans The
CMOS Image Sensor Noise Reduction Method for Image Signal Processor in Digital Cameras and Camera Phones
CMOS Image Sensor Noise Reduction Method for Image Signal Processor in Digital Cameras and Camera Phones Youngjin Yoo, SeongDeok Lee, Wonhee Choe and Chang-Yong Kim Display and Image Processing Laboratory,
Optical Flow. Shenlong Wang CSC2541 Course Presentation Feb 2, 2016
Optical Flow Shenlong Wang CSC2541 Course Presentation Feb 2, 2016 Outline Introduction Variation Models Feature Matching Methods End-to-end Learning based Methods Discussion Optical Flow Goal: Pixel motion
3. Interpolation. Closing the Gaps of Discretization... Beyond Polynomials
3. Interpolation Closing the Gaps of Discretization... Beyond Polynomials Closing the Gaps of Discretization... Beyond Polynomials, December 19, 2012 1 3.3. Polynomial Splines Idea of Polynomial Splines
A Short Introduction to Computer Graphics
A Short Introduction to Computer Graphics Frédo Durand MIT Laboratory for Computer Science 1 Introduction Chapter I: Basics Although computer graphics is a vast field that encompasses almost any graphical
Function Guide for the Fourier Transformation Package SPIRE-UOL-DOC-002496
Function Guide for the Fourier Transformation Package SPIRE-UOL-DOC-002496 Prepared by: Peter Davis (University of Lethbridge) [email protected] Andres Rebolledo (University of Lethbridge) [email protected]
Assessment of Camera Phone Distortion and Implications for Watermarking
Assessment of Camera Phone Distortion and Implications for Watermarking Aparna Gurijala, Alastair Reed and Eric Evans Digimarc Corporation, 9405 SW Gemini Drive, Beaverton, OR 97008, USA 1. INTRODUCTION
Palmprint Recognition. By Sree Rama Murthy kora Praveen Verma Yashwant Kashyap
Palmprint Recognition By Sree Rama Murthy kora Praveen Verma Yashwant Kashyap Palm print Palm Patterns are utilized in many applications: 1. To correlate palm patterns with medical disorders, e.g. genetic
REAL TIME TRAFFIC LIGHT CONTROL USING IMAGE PROCESSING
REAL TIME TRAFFIC LIGHT CONTROL USING IMAGE PROCESSING Ms.PALLAVI CHOUDEKAR Ajay Kumar Garg Engineering College, Department of electrical and electronics Ms.SAYANTI BANERJEE Ajay Kumar Garg Engineering
Face Model Fitting on Low Resolution Images
Face Model Fitting on Low Resolution Images Xiaoming Liu Peter H. Tu Frederick W. Wheeler Visualization and Computer Vision Lab General Electric Global Research Center Niskayuna, NY, 1239, USA {liux,tu,wheeler}@research.ge.com
PIXEL-LEVEL IMAGE FUSION USING BROVEY TRANSFORME AND WAVELET TRANSFORM
PIXEL-LEVEL IMAGE FUSION USING BROVEY TRANSFORME AND WAVELET TRANSFORM Rohan Ashok Mandhare 1, Pragati Upadhyay 2,Sudha Gupta 3 ME Student, K.J.SOMIYA College of Engineering, Vidyavihar, Mumbai, Maharashtra,
Computational Optical Imaging - Optique Numerique. -- Deconvolution --
Computational Optical Imaging - Optique Numerique -- Deconvolution -- Winter 2014 Ivo Ihrke Deconvolution Ivo Ihrke Outline Deconvolution Theory example 1D deconvolution Fourier method Algebraic method
Accurate and robust image superresolution by neural processing of local image representations
Accurate and robust image superresolution by neural processing of local image representations Carlos Miravet 1,2 and Francisco B. Rodríguez 1 1 Grupo de Neurocomputación Biológica (GNB), Escuela Politécnica
PCL - SURFACE RECONSTRUCTION
PCL - SURFACE RECONSTRUCTION TOYOTA CODE SPRINT Alexandru-Eugen Ichim Computer Graphics and Geometry Laboratory PROBLEM DESCRIPTION 1/2 3D revolution due to cheap RGB-D cameras (Asus Xtion & Microsoft
How To Analyze Ball Blur On A Ball Image
Single Image 3D Reconstruction of Ball Motion and Spin From Motion Blur An Experiment in Motion from Blur Giacomo Boracchi, Vincenzo Caglioti, Alessandro Giusti Objective From a single image, reconstruct:
Advanced Signal Processing and Digital Noise Reduction
Advanced Signal Processing and Digital Noise Reduction Saeed V. Vaseghi Queen's University of Belfast UK WILEY HTEUBNER A Partnership between John Wiley & Sons and B. G. Teubner Publishers Chichester New
Development and Evaluation of Point Cloud Compression for the Point Cloud Library
Development and Evaluation of Point Cloud Compression for the Institute for Media Technology, TUM, Germany May 12, 2011 Motivation Point Cloud Stream Compression Network Point Cloud Stream Decompression
Computed Tomography Resolution Enhancement by Integrating High-Resolution 2D X-Ray Images into the CT reconstruction
Digital Industrial Radiology and Computed Tomography (DIR 2015) 22-25 June 2015, Belgium, Ghent - www.ndt.net/app.dir2015 More Info at Open Access Database www.ndt.net/?id=18046 Computed Tomography Resolution
COMPUTING CLOUD MOTION USING A CORRELATION RELAXATION ALGORITHM Improving Estimation by Exploiting Problem Knowledge Q. X. WU
COMPUTING CLOUD MOTION USING A CORRELATION RELAXATION ALGORITHM Improving Estimation by Exploiting Problem Knowledge Q. X. WU Image Processing Group, Landcare Research New Zealand P.O. Box 38491, Wellington
ROBUST COLOR JOINT MULTI-FRAME DEMOSAICING AND SUPER- RESOLUTION ALGORITHM
ROBUST COLOR JOINT MULTI-FRAME DEMOSAICING AND SUPER- RESOLUTION ALGORITHM Theodor Heinze Hasso-Plattner-Institute for Software Systems Engineering Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany [email protected]
Lighting Estimation in Indoor Environments from Low-Quality Images
Lighting Estimation in Indoor Environments from Low-Quality Images Natalia Neverova, Damien Muselet, Alain Trémeau Laboratoire Hubert Curien UMR CNRS 5516, University Jean Monnet, Rue du Professeur Benoît
Water Flow in. Alex Vlachos, Valve July 28, 2010
Water Flow in Alex Vlachos, Valve July 28, 2010 Outline Goals & Technical Constraints How Artists Create Flow Maps Flowing Normal Maps in Left 4 Dead 2 Flowing Color Maps in Portal 2 Left 4 Dead 2 Goals
Lecture 6: CNNs for Detection, Tracking, and Segmentation Object Detection
CSED703R: Deep Learning for Visual Recognition (206S) Lecture 6: CNNs for Detection, Tracking, and Segmentation Object Detection Bohyung Han Computer Vision Lab. [email protected] 2 3 Object detection
Optical Design for Automatic Identification
s for Automatic Identification s design tutors: Prof. Paolo Bassi, eng. Federico Canini cotutors: eng. Gnan, eng. Bassam Hallal Outline s 1 2 3 design 4 design Outline s 1 2 3 design 4 design s : new Techniques
SOFTWARE FOR GENERATION OF SPECTRUM COMPATIBLE TIME HISTORY
3 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 24 Paper No. 296 SOFTWARE FOR GENERATION OF SPECTRUM COMPATIBLE TIME HISTORY ASHOK KUMAR SUMMARY One of the important
Performance Verification of Super-Resolution Image Reconstruction
Performance Verification of Super-Resolution Image Reconstruction Masaki Sugie Department of Information Science, Kogakuin University Tokyo, Japan Email: [email protected] Seiichi Gohshi Department
L9: Cepstral analysis
L9: Cepstral analysis The cepstrum Homomorphic filtering The cepstrum and voicing/pitch detection Linear prediction cepstral coefficients Mel frequency cepstral coefficients This lecture is based on [Taylor,
Agilent Creating Multi-tone Signals With the N7509A Waveform Generation Toolbox. Application Note
Agilent Creating Multi-tone Signals With the N7509A Waveform Generation Toolbox Application Note Introduction Of all the signal engines in the N7509A, the most complex is the multi-tone engine. This application
A Learning Based Method for Super-Resolution of Low Resolution Images
A Learning Based Method for Super-Resolution of Low Resolution Images Emre Ugur June 1, 2004 [email protected] Abstract The main objective of this project is the study of a learning based method
Template-based Eye and Mouth Detection for 3D Video Conferencing
Template-based Eye and Mouth Detection for 3D Video Conferencing Jürgen Rurainsky and Peter Eisert Fraunhofer Institute for Telecommunications - Heinrich-Hertz-Institute, Image Processing Department, Einsteinufer
Spatio-Temporally Coherent 3D Animation Reconstruction from Multi-view RGB-D Images using Landmark Sampling
, March 13-15, 2013, Hong Kong Spatio-Temporally Coherent 3D Animation Reconstruction from Multi-view RGB-D Images using Landmark Sampling Naveed Ahmed Abstract We present a system for spatio-temporally
Environmental Remote Sensing GEOG 2021
Environmental Remote Sensing GEOG 2021 Lecture 4 Image classification 2 Purpose categorising data data abstraction / simplification data interpretation mapping for land cover mapping use land cover class
Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT)
Page 1 Electronic Communications Committee (ECC) within the European Conference of Postal and Telecommunications Administrations (CEPT) ECC RECOMMENDATION (06)01 Bandwidth measurements using FFT techniques
DYNAMIC RANGE IMPROVEMENT THROUGH MULTIPLE EXPOSURES. Mark A. Robertson, Sean Borman, and Robert L. Stevenson
c 1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or
3D/4D acquisition. 3D acquisition taxonomy 22.10.2014. Computer Vision. Computer Vision. 3D acquisition methods. passive. active.
Das Bild kann zurzeit nicht angezeigt werden. 22.10.2014 3D/4D acquisition 3D acquisition taxonomy 3D acquisition methods passive active uni-directional multi-directional uni-directional multi-directional
A BRIEF STUDY OF VARIOUS NOISE MODEL AND FILTERING TECHNIQUES
Volume 4, No. 4, April 2013 Journal of Global Research in Computer Science REVIEW ARTICLE Available Online at www.jgrcs.info A BRIEF STUDY OF VARIOUS NOISE MODEL AND FILTERING TECHNIQUES Priyanka Kamboj
Consolidated Visualization of Enormous 3D Scan Point Clouds with Scanopy
Consolidated Visualization of Enormous 3D Scan Point Clouds with Scanopy Claus SCHEIBLAUER 1 / Michael PREGESBAUER 2 1 Institute of Computer Graphics and Algorithms, Vienna University of Technology, Austria
Point Cloud Simulation & Applications Maurice Fallon
Point Cloud & Applications Maurice Fallon Contributors: MIT: Hordur Johannsson and John Leonard U. of Salzburg: Michael Gschwandtner and Roland Kwitt Overview : Dense disparity information Efficient Image
NVIDIA IndeX Enabling Interactive and Scalable Visualization for Large Data Marc Nienhaus, NVIDIA IndeX Engineering Manager and Chief Architect
SIGGRAPH 2013 Shaping the Future of Visual Computing NVIDIA IndeX Enabling Interactive and Scalable Visualization for Large Data Marc Nienhaus, NVIDIA IndeX Engineering Manager and Chief Architect NVIDIA
Applications to Data Smoothing and Image Processing I
Applications to Data Smoothing and Image Processing I MA 348 Kurt Bryan Signals and Images Let t denote time and consider a signal a(t) on some time interval, say t. We ll assume that the signal a(t) is
DINAMIC AND STATIC CENTRE OF PRESSURE MEASUREMENT ON THE FORCEPLATE. F. R. Soha, I. A. Szabó, M. Budai. Abstract
ACTA PHYSICA DEBRECINA XLVI, 143 (2012) DINAMIC AND STATIC CENTRE OF PRESSURE MEASUREMENT ON THE FORCEPLATE F. R. Soha, I. A. Szabó, M. Budai University of Debrecen, Department of Solid State Physics Abstract
WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS
WATER BODY EXTRACTION FROM MULTI SPECTRAL IMAGE BY SPECTRAL PATTERN ANALYSIS Nguyen Dinh Duong Department of Environmental Information Study and Analysis, Institute of Geography, 18 Hoang Quoc Viet Rd.,
Segmentation of building models from dense 3D point-clouds
Segmentation of building models from dense 3D point-clouds Joachim Bauer, Konrad Karner, Konrad Schindler, Andreas Klaus, Christopher Zach VRVis Research Center for Virtual Reality and Visualization, Institute
DIGITAL IMAGE PROCESSING AND ANALYSIS
DIGITAL IMAGE PROCESSING AND ANALYSIS Human and Computer Vision Applications with CVIPtools SECOND EDITION SCOTT E UMBAUGH Uffi\ CRC Press Taylor &. Francis Group Boca Raton London New York CRC Press is
Dynamic Resolution Rendering
Dynamic Resolution Rendering Doug Binks Introduction The resolution selection screen has been one of the defining aspects of PC gaming since the birth of games. In this whitepaper and the accompanying
Two-Frame Motion Estimation Based on Polynomial Expansion
Two-Frame Motion Estimation Based on Polynomial Expansion Gunnar Farnebäck Computer Vision Laboratory, Linköping University, SE-581 83 Linköping, Sweden [email protected] http://www.isy.liu.se/cvl/ Abstract.
High-accuracy ultrasound target localization for hand-eye calibration between optical tracking systems and three-dimensional ultrasound
High-accuracy ultrasound target localization for hand-eye calibration between optical tracking systems and three-dimensional ultrasound Ralf Bruder 1, Florian Griese 2, Floris Ernst 1, Achim Schweikard
Modelling 3D Avatar for Virtual Try on
Modelling 3D Avatar for Virtual Try on NADIA MAGNENAT THALMANN DIRECTOR MIRALAB UNIVERSITY OF GENEVA DIRECTOR INSTITUTE FOR MEDIA INNOVATION, NTU, SINGAPORE WWW.MIRALAB.CH/ Creating Digital Humans Vertex
CHAPTER 6 TEXTURE ANIMATION
CHAPTER 6 TEXTURE ANIMATION 6.1. INTRODUCTION Animation is the creating of a timed sequence or series of graphic images or frames together to give the appearance of continuous movement. A collection of
Final Year Project Progress Report. Frequency-Domain Adaptive Filtering. Myles Friel. Supervisor: Dr.Edward Jones
Final Year Project Progress Report Frequency-Domain Adaptive Filtering Myles Friel 01510401 Supervisor: Dr.Edward Jones Abstract The Final Year Project is an important part of the final year of the Electronic
2.2 Creaseness operator
2.2. Creaseness operator 31 2.2 Creaseness operator Antonio López, a member of our group, has studied for his PhD dissertation the differential operators described in this section [72]. He has compared
A bachelor of science degree in electrical engineering with a cumulative undergraduate GPA of at least 3.0 on a 4.0 scale
What is the University of Florida EDGE Program? EDGE enables engineering professional, military members, and students worldwide to participate in courses, certificates, and degree programs from the UF
CHAPTER 3: DIGITAL IMAGING IN DIAGNOSTIC RADIOLOGY. 3.1 Basic Concepts of Digital Imaging
Physics of Medical X-Ray Imaging (1) Chapter 3 CHAPTER 3: DIGITAL IMAGING IN DIAGNOSTIC RADIOLOGY 3.1 Basic Concepts of Digital Imaging Unlike conventional radiography that generates images on film through
The Design and Implementation of a C++ Toolkit for Integrated Medical Image Processing and Analyzing
The Design and Implementation of a C++ Toolkit for Integrated Medical Image Processing and Analyzing Mingchang Zhao, Jie Tian 1, Xun Zhu, Jian Xue, Zhanglin Cheng, Hua Zhao Medical Image Processing Group,
MeshLab and Arc3D: Photo-Reconstruction and Processing of 3D meshes
MeshLab and Arc3D: Photo-Reconstruction and Processing of 3D meshes P. Cignoni, M Corsini, M. Dellepiane, G. Ranzuglia, (Visual Computing Lab, ISTI - CNR, Italy) M. Vergauven, L. Van Gool (K.U.Leuven ESAT-PSI
Combining an Alternating Sequential Filter (ASF) and Curvelet for Denoising Coronal MRI Images
Contemporary Engineering Sciences, Vol. 5, 2012, no. 2, 85-90 Combining an Alternating Sequential Filter (ASF) and Curvelet for Denoising Coronal MRI Images Mohamed Ali HAMDI Ecole Nationale d Ingénieur
The continuous and discrete Fourier transforms
FYSA21 Mathematical Tools in Science The continuous and discrete Fourier transforms Lennart Lindegren Lund Observatory (Department of Astronomy, Lund University) 1 The continuous Fourier transform 1.1
Robotics. Lecture 3: Sensors. See course website http://www.doc.ic.ac.uk/~ajd/robotics/ for up to date information.
Robotics Lecture 3: Sensors See course website http://www.doc.ic.ac.uk/~ajd/robotics/ for up to date information. Andrew Davison Department of Computing Imperial College London Review: Locomotion Practical
Automatic Restoration Algorithms for 35mm film
P. Schallauer, A. Pinz, W. Haas. Automatic Restoration Algorithms for 35mm film. To be published in Videre, Journal of Computer Vision Research, web: http://mitpress.mit.edu/videre.html, 1999. Automatic
Redundant Wavelet Transform Based Image Super Resolution
Redundant Wavelet Transform Based Image Super Resolution Arti Sharma, Prof. Preety D Swami Department of Electronics &Telecommunication Samrat Ashok Technological Institute Vidisha Department of Electronics
WAKING up without the sound of an alarm clock is a
EINDHOVEN UNIVERSITY OF TECHNOLOGY, MARCH 00 Adaptive Alarm Clock Using Movement Detection to Differentiate Sleep Phases Jasper Kuijsten Eindhoven University of Technology P.O. Box 53, 5600MB, Eindhoven,
