Parameter Identification and SIR Epidemic Model.
|
|
|
- Willis O’Neal’
- 9 years ago
- Views:
Transcription
1 Parameter Identification and SIR Epidemic Model. In this lesson we consider the development of an epidemic, which is similar to measles. The population will be partitioned into three disjoint groups of susceptible, infected and recovered. One would like to precisely determine what parameters would control or prevent the epidemic. The populations will be modeled by three differential equations. The Matlab command ode45 can be used to solve such systems of differential equations. Make the following basic assumptions. Assume the population is a disjoint union susceptible infected recovered = S(t), = I(t) and = R(t). So, the total population = S(t) + I(t) + R(t). Assume all infected eventually recover. Assume all recovered are not susceptible. Assume the increase in the infected is proportional to the change in time, the number of infected and the number of susceptible. The change in the infected population will increase from the susceptible group and will decrease into the recovered group. I(t+ t) I(t) = t a S(t) I(t) - t b I(t) where a reflects how contagious or infectious the epidemic is and b reflects the rate of recovery. Now divide by t and let it go to zero to get the differential equation for I, I' = a S I b I. The differential equations for S and R are obtained in a similar way.
2 2 SIR Epidemic Model: S' = -a S I S(0) = S o and a = contagious constant I' = a S I b I I(0) = I o and b = recovery constant R' = b I,R(0) = R 0. Note, (S + I + R)' = S' + I' + R' = 0 so that S + I + R = constant and S(0) + I(0) + R(0) = S o + I o + R 0. Note, I'(0) = (a S(0) b) I(0) > 0 if and only if a S(0) b > 0 and I(0) > 0. The Matlab command ode45 is used to appoximate the solution of our system of differential equation. This command is a robust implementation for systems of differential equations, which uses a variable step size method and the fourth and fifth order Runge-Kutta method. Since there are three unknowns and three differential equations and we wish to use Matlab's ode45 scheme, the file, ypsir.m, must contain the three right sides of the differential equations where y(1) = S, y(2) = I and y(3) = R. The choice of a and b in ypsir.m will determine whether or not the I(t) will increase; if I'(0) = (a S(0) b) I(0) > 0, then I(t) will increase. The sir.m file contains the call to ode45 and the graphs of the three population groups are generated by the Matlab command plot. The initial populations are S(0) = 99, I(0) = 1 and R(0) = 0.
3 3 m-files ypsir.m m-files sir.m. function ypsir =ypsir(t,y) a =.01; b =.1; ypsir(1) =-a*y(1)*y(2); ypsir(2) = a*y(1)*y(2)-b*y(2); ypsir(3) = b*y(2); ypsir = [ypsir(1) ypsir(2) ypsir(3)]'; your name, your student number, lesson number clear; to = 0; tf =50; yo = [99 1 0]; [t y] = ode45('ypsir',[to tf],yo); plot(t,y(:,1),t,y(:,2),t,y(:,3)) title('your name, your student number, lesson number') xlabel('time') ylabel('susceptible, infected, recovered' 100 your name, your student number, lesson number susceptible, infected, recovered time Note, the three populations versus time give the output. Also the steady state populations are indicated by the right side of the graph where the three curves level off, that is, where the derivatives all approach zero.
4 4 The following code identifies the contagious and recovery parameters, a and b, from several observations of the percentage of infected and recovered in the populations. The system of differential equations is discretized to form an over-determined algebraic system. The least squares method is used to approximate the two parameters. The Matlab code sir_parid.m is as follows and lists the two subroutines sirid() and ypsirid(): Matlab code sir_parid.m: This code uses least squares to identify two parameters in the SIR model: S_t = -asi; I_t = asi - bi; R_t = bi where a = "contagious" coefficient and b = "recovery" coefficient. The data is given in the vectors Sd, Id and Rd, and they are adjusted by a random variable. The data is used in the finite difference approximation of the above: (S_i+1 - S_i-1)/(2 dt) = -a S_i I_i (I_i+1 - I_i-1)/(2 dt) = a S_i I_i - b I_i and (R_i+1 - R_i-1)/(2 dt) = b I_i. Least squares is used to compute the linear polynomial coefficients. The first six data points are used. function [t y] = sirid global olda oldb yo = [99 1 0]; to = 0; tf = 50; [t y] = ode45('ypsirid',[to tf],yo); function ypsirid = ypsirid(t,y) global olda oldb ypsirid(1) = -olda*y(1)*y(2); ypsirid(2) = olda*y(1)*y(2) - oldb*y(2); ypsirid(3) = oldb*y(2); ypsirid = [ypsirid(1) ypsirid(2) ypsirid(3)]'; clear; clf(figure(1)) global olda oldb olda = 0.010; oldb = 0.100; td = [ ]; Sd = [ ]; Id = [ ]; Rd = [ ]; numdata = 13; rvec = rand(1,numdata); Id(2:numdata) = Id(2:numdata) +.1*rvec(1,2:numdata) -.05;
5 rvec = rand(1,numdata); Rd(2:numdata) = Rd(2:numdata) +.1*rvec(1,2:numdata) -.05; Sd = Id - Rd; for i = 2:1:numdata-1 ii = (i-1)*3; d(ii) = (Sd(i+1) - Sd(i-1))/(td(i+1) - td(i-1)); d(ii+1) = (Id(i+1) - Id(i-1))/(td(i+1) - td(i-1)); d(ii+2) = (Rd(i+1) - Rd(i-1))/(td(i+1) - td(i-1)); A(ii,1) = -Sd(i)*Id(i); A(ii,2) = 0; A(ii+1,1)= Sd(i)*Id(i); A(ii+1,2) = -Id(i); A(ii+2,1)= 0.0; A(ii+2,2) = Id(i); end meas = 6; m = 3*meas + 1; x = A(2:m,:)\d(2:m)'; [olda oldb] [x(1) x(2)] plot(td(1:1:meas+1),sd(1:1:meas+1),'*',td(1:1:meas+1),id(1:1:meas+1),'o',... td(1:1:meas+1),rd(1:1:meas+1),'s',td,sd,'x',td,id,'x',td,rd,'x') olda = x(1); oldb = x(2); [t y] = sirid; hold on plot(t, y(:,1), 'b',t, y(:,2), 'g',t,y(:,3), 'r') 5
6 6 Use five measured data points: >> sir_parid
7 7 Use six measured data points: >> sir_parid
Cooling and Euler's Method
Lesson 2: Cooling and Euler's Method 2.1 Applied Problem. Heat transfer in a mass is very important for a number of objects such as cooling of electronic parts or the fabrication of large beams. Although
System of First Order Differential Equations
CHAPTER System of First Order Differential Equations In this chapter, we will discuss system of first order differential equations. There are many applications that involving find several unknown functions
Simple epidemic models
Simple epidemic models Construct ODE (Ordinary Differential Equation) models Relationship between the diagram and the equations Alter models to include other factors. Simple epidemics SIS model Diagram
1 2 3 1 1 2 x = + x 2 + x 4 1 0 1
(d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which
2.3. Finding polynomial functions. An Introduction:
2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned
Method To Solve Linear, Polynomial, or Absolute Value Inequalities:
Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with
March 29, 2011. 171S4.4 Theorems about Zeros of Polynomial Functions
MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 4: Polynomial and Rational Functions 4.1 Polynomial Functions and Models 4.2 Graphing Polynomial Functions 4.3 Polynomial
1 Review of Least Squares Solutions to Overdetermined Systems
cs4: introduction to numerical analysis /9/0 Lecture 7: Rectangular Systems and Numerical Integration Instructor: Professor Amos Ron Scribes: Mark Cowlishaw, Nathanael Fillmore Review of Least Squares
Linearly Independent Sets and Linearly Dependent Sets
These notes closely follow the presentation of the material given in David C. Lay s textbook Linear Algebra and its Applications (3rd edition). These notes are intended primarily for in-class presentation
Zeros of Polynomial Functions
Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction
Machine Learning and Data Mining. Regression Problem. (adapted from) Prof. Alexander Ihler
Machine Learning and Data Mining Regression Problem (adapted from) Prof. Alexander Ihler Overview Regression Problem Definition and define parameters ϴ. Prediction using ϴ as parameters Measure the error
Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0.
Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients We will now turn our attention to nonhomogeneous second order linear equations, equations with the standard
Using Real Data in an SIR Model
Using Real Data in an SIR Model D. Sulsky June 21, 2012 In most epidemics it is difficult to determine how many new infectives there are each day since only those that are removed, for medical aid or other
Confidence Intervals for One Standard Deviation Using Standard Deviation
Chapter 640 Confidence Intervals for One Standard Deviation Using Standard Deviation Introduction This routine calculates the sample size necessary to achieve a specified interval width or distance from
The Method of Least Squares. Lectures INF2320 p. 1/80
The Method of Least Squares Lectures INF2320 p. 1/80 Lectures INF2320 p. 2/80 The method of least squares We study the following problem: Given n points (t i,y i ) for i = 1,...,n in the (t,y)-plane. How
Scicos is a Scilab toolbox included in the Scilab package. The Scicos editor can be opened by the scicos command
7 Getting Started 7.1 Construction of a Simple Diagram Scicos contains a graphical editor that can be used to construct block diagram models of dynamical systems. The blocks can come from various palettes
f(x) = g(x), if x A h(x), if x B.
1. Piecewise Functions By Bryan Carrillo, University of California, Riverside We can create more complicated functions by considering Piece-wise functions. Definition: Piecewise-function. A piecewise-function
This means there are two equilibrium solutions 0 and K. dx = rx(1 x). x(1 x) dt = r
Verhulst Model For Population Growth The first model (t) = r is not that realistic as it either led to a population eplosion or to etinction. This simple model was improved on by building into this differential
Department of Chemical Engineering ChE-101: Approaches to Chemical Engineering Problem Solving MATLAB Tutorial VI
Department of Chemical Engineering ChE-101: Approaches to Chemical Engineering Problem Solving MATLAB Tutorial VI Solving a System of Linear Algebraic Equations (last updated 5/19/05 by GGB) Objectives:
Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.
8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent
Matlab Practical: Solving Differential Equations
Matlab Practical: Solving Differential Equations Introduction This practical is about solving differential equations numerically, an important skill. Initially you will code Euler s method (to get some
3.1 Solving Systems Using Tables and Graphs
Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system
NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS
NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS TEST DESIGN AND FRAMEWORK September 2014 Authorized for Distribution by the New York State Education Department This test design and framework document
Zeros of a Polynomial Function
Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we
Zeros of Polynomial Functions
Zeros of Polynomial Functions Objectives: 1.Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions 2.Find rational zeros of polynomial functions 3.Find conjugate
Math 132. Population Growth: the World
Math 132 Population Growth: the World S. R. Lubkin Application If you think growth in Raleigh is a problem, think a little bigger. The population of the world has been growing spectacularly fast in the
3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes
Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general
Pre-Algebra 2008. Academic Content Standards Grade Eight Ohio. Number, Number Sense and Operations Standard. Number and Number Systems
Academic Content Standards Grade Eight Ohio Pre-Algebra 2008 STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express large numbers and small
Student Performance Q&A:
Student Performance Q&A: 2008 AP Calculus AB and Calculus BC Free-Response Questions The following comments on the 2008 free-response questions for AP Calculus AB and Calculus BC were written by the Chief
Algebra 1 2008. Academic Content Standards Grade Eight and Grade Nine Ohio. Grade Eight. Number, Number Sense and Operations Standard
Academic Content Standards Grade Eight and Grade Nine Ohio Algebra 1 2008 Grade Eight STANDARDS Number, Number Sense and Operations Standard Number and Number Systems 1. Use scientific notation to express
Chapter 2: Linear Equations and Inequalities Lecture notes Math 1010
Section 2.1: Linear Equations Definition of equation An equation is a statement that equates two algebraic expressions. Solving an equation involving a variable means finding all values of the variable
Curve Fitting, Loglog Plots, and Semilog Plots 1
Curve Fitting, Loglog Plots, and Semilog Plots 1 In this MATLAB exercise, you will learn how to plot data and how to fit lines to your data. Suppose you are measuring the height h of a seedling as it grows.
Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 10
Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Chapter 10 Boundary Value Problems for Ordinary Differential Equations Copyright c 2001. Reproduction
CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA
We Can Early Learning Curriculum PreK Grades 8 12 INSIDE ALGEBRA, GRADES 8 12 CORRELATED TO THE SOUTH CAROLINA COLLEGE AND CAREER-READY FOUNDATIONS IN ALGEBRA April 2016 www.voyagersopris.com Mathematical
NUMERICAL METHODS TOPICS FOR RESEARCH PAPERS
Faculty of Civil Engineering Belgrade Master Study COMPUTATIONAL ENGINEERING Fall semester 2004/2005 NUMERICAL METHODS TOPICS FOR RESEARCH PAPERS 1. NUMERICAL METHODS IN FINITE ELEMENT ANALYSIS - Matrices
Calculator Notes for the TI-Nspire and TI-Nspire CAS
CHAPTER 11 Calculator Notes for the Note 11A: Entering e In any application, press u to display the value e. Press. after you press u to display the value of e without an exponent. Note 11B: Normal Graphs
GINI-Coefficient and GOZINTO-Graph (Workshop) (Two economic applications of secondary school mathematics)
GINI-Coefficient and GOZINTO-Graph (Workshop) (Two economic applications of secondary school mathematics) Josef Böhm, ACDCA & DERIVE User Group, [email protected] Abstract: GINI-Coefficient together with
Numerical Methods for Differential Equations
1 Numerical Methods for Differential Equations 1 2 NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS Introduction Differential equations can describe nearly all systems undergoing change. They are ubiquitous
Operation Count; Numerical Linear Algebra
10 Operation Count; Numerical Linear Algebra 10.1 Introduction Many computations are limited simply by the sheer number of required additions, multiplications, or function evaluations. If floating-point
3.2 Sources, Sinks, Saddles, and Spirals
3.2. Sources, Sinks, Saddles, and Spirals 6 3.2 Sources, Sinks, Saddles, and Spirals The pictures in this section show solutions to Ay 00 C By 0 C Cy D 0. These are linear equations with constant coefficients
Algebra 1 Course Title
Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept
Curve Fitting and Parameter Estimation
Curve Fitting and Parameter Estimation Glenn Lahodny Jr. Spring 2015 1 Least Squares Regression The first step of the modeling process often consists of simply looking at data graphically and trying to
This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.
Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course
8. Linear least-squares
8. Linear least-squares EE13 (Fall 211-12) definition examples and applications solution of a least-squares problem, normal equations 8-1 Definition overdetermined linear equations if b range(a), cannot
Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.
This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra
Trend and Seasonal Components
Chapter 2 Trend and Seasonal Components If the plot of a TS reveals an increase of the seasonal and noise fluctuations with the level of the process then some transformation may be necessary before doing
Lecture 3: DC Analysis of Diode Circuits.
Whites, EE 320 Lecture 3 Page 1 of 10 Lecture 3: DC Analysis of Diode Circuits. We ll now move on to the DC analysis of diode circuits. Applications will be covered in following lectures. Let s consider
Introduction to Engineering System Dynamics
CHAPTER 0 Introduction to Engineering System Dynamics 0.1 INTRODUCTION The objective of an engineering analysis of a dynamic system is prediction of its behaviour or performance. Real dynamic systems are
South Carolina College- and Career-Ready (SCCCR) Algebra 1
South Carolina College- and Career-Ready (SCCCR) Algebra 1 South Carolina College- and Career-Ready Mathematical Process Standards The South Carolina College- and Career-Ready (SCCCR) Mathematical Process
What are the place values to the left of the decimal point and their associated powers of ten?
The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything
Numerical Methods in MATLAB
Numerical Methods in MATLAB Center for Interdisciplinary Research and Consulting Department of Mathematics and Statistics University of Maryland, Baltimore County www.umbc.edu/circ Winter 2008 Mission
Modeling and Simulation of a Three Degree of Freedom Longitudinal Aero plane System. Figure 1: Boeing 777 and example of a two engine business jet
Modeling and Simulation of a Three Degree of Freedom Longitudinal Aero plane System Figure 1: Boeing 777 and example of a two engine business jet Nonlinear dynamic equations of motion for the longitudinal
Higher Order Equations
Higher Order Equations We briefly consider how what we have done with order two equations generalizes to higher order linear equations. Fortunately, the generalization is very straightforward: 1. Theory.
The degree of a polynomial function is equal to the highest exponent found on the independent variables.
DETAILED SOLUTIONS AND CONCEPTS - POLYNOMIAL FUNCTIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to [email protected]. Thank you! PLEASE NOTE
Algebra I Credit Recovery
Algebra I Credit Recovery COURSE DESCRIPTION: The purpose of this course is to allow the student to gain mastery in working with and evaluating mathematical expressions, equations, graphs, and other topics,
1 Finite difference example: 1D implicit heat equation
1 Finite difference example: 1D implicit heat equation 1.1 Boundary conditions Neumann and Dirichlet We solve the transient heat equation ρc p t = ( k ) (1) on the domain L/2 x L/2 subject to the following
Confidence Intervals for the Difference Between Two Means
Chapter 47 Confidence Intervals for the Difference Between Two Means Introduction This procedure calculates the sample size necessary to achieve a specified distance from the difference in sample means
Introduction to Finite Difference Methods
Introduction to Finite Difference Methods Since most physical systems are described by one or more differential equations, the solution of differential equations is an integral part of many engineering
First, we show how to use known design specifications to determine filter order and 3dB cut-off
Butterworth Low-Pass Filters In this article, we describe the commonly-used, n th -order Butterworth low-pass filter. First, we show how to use known design specifications to determine filter order and
Introduction to MATLAB IAP 2008
MIT OpenCourseWare http://ocw.mit.edu Introduction to MATLAB IAP 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Introduction to Matlab Ideas for
Solving ODEs in Matlab. BP205 M.Tremont 1.30.2009
Solving ODEs in Matlab BP205 M.Tremont 1.30.2009 - Outline - I. Defining an ODE function in an M-file II. III. IV. Solving first-order ODEs Solving systems of first-order ODEs Solving higher order ODEs
SOLVING LINEAR SYSTEMS
SOLVING LINEAR SYSTEMS Linear systems Ax = b occur widely in applied mathematics They occur as direct formulations of real world problems; but more often, they occur as a part of the numerical analysis
Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.
Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGraw-Hill/Irwin, 2008, ISBN: 978-0-07-331988-9. Required Computing
Mesh Discretization Error and Criteria for Accuracy of Finite Element Solutions
Mesh Discretization Error and Criteria for Accuracy of Finite Element Solutions Chandresh Shah Cummins, Inc. Abstract Any finite element analysis performed by an engineer is subject to several types of
Statistics in Retail Finance. Chapter 6: Behavioural models
Statistics in Retail Finance 1 Overview > So far we have focussed mainly on application scorecards. In this chapter we shall look at behavioural models. We shall cover the following topics:- Behavioural
Spline Toolbox Release Notes
Spline Toolbox Release Notes Note The Spline Toolbox 3.1 was released in Web-downloadable form after Release 12.1 was released, but before Release 13. The Spline Toolbox 3.1.1 that is part of Release 13
Introduction to time series analysis
Introduction to time series analysis Margherita Gerolimetto November 3, 2010 1 What is a time series? A time series is a collection of observations ordered following a parameter that for us is time. Examples
Manufacturing Equipment Modeling
QUESTION 1 For a linear axis actuated by an electric motor complete the following: a. Derive a differential equation for the linear axis velocity assuming viscous friction acts on the DC motor shaft, leadscrew,
A three point formula for finding roots of equations by the method of least squares
A three point formula for finding roots of equations by the method of least squares Ababu Teklemariam Tiruneh 1 ; William N. Ndlela 1 ; Stanley J. Nkambule 1 1 Lecturer, Department of Environmental Health
The Time Constant of an RC Circuit
The Time Constant of an RC Circuit 1 Objectives 1. To determine the time constant of an RC Circuit, and 2. To determine the capacitance of an unknown capacitor. 2 Introduction What the heck is a capacitor?
Fairfield Public Schools
Mathematics Fairfield Public Schools AP Statistics AP Statistics BOE Approved 04/08/2014 1 AP STATISTICS Critical Areas of Focus AP Statistics is a rigorous course that offers advanced students an opportunity
Indiana State Core Curriculum Standards updated 2009 Algebra I
Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and
the points are called control points approximating curve
Chapter 4 Spline Curves A spline curve is a mathematical representation for which it is easy to build an interface that will allow a user to design and control the shape of complex curves and surfaces.
Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay
Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 17 Shannon-Fano-Elias Coding and Introduction to Arithmetic Coding
Module 1, Lesson 3 Temperature vs. resistance characteristics of a thermistor. Teacher. 45 minutes
Module 1, Lesson 3 Temperature vs. resistance characteristics of a thermistor 45 minutes Teacher Purpose of this lesson How thermistors are used to measure temperature. Using a multimeter to measure the
VIRAL MARKETING. Teacher s Guide Getting Started. Benjamin Dickman Brookline, MA
Teacher s Guide Getting Started Benjamin Dickman Brookline, MA Purpose In this two-day lesson, students will model viral marketing. Viral marketing refers to a marketing strategy in which people pass on
is the degree of the polynomial and is the leading coefficient.
Property: T. Hrubik-Vulanovic e-mail: [email protected] Content (in order sections were covered from the book): Chapter 6 Higher-Degree Polynomial Functions... 1 Section 6.1 Higher-Degree Polynomial Functions...
MATLAB Functions. function [Out_1,Out_2,,Out_N] = function_name(in_1,in_2,,in_m)
MATLAB Functions What is a MATLAB function? A MATLAB function is a MATLAB program that performs a sequence of operations specified in a text file (called an m-file because it must be saved with a file
4.3 Lagrange Approximation
206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average
The Method of Partial Fractions Math 121 Calculus II Spring 2015
Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method
Chapter 4 One Dimensional Kinematics
Chapter 4 One Dimensional Kinematics 41 Introduction 1 4 Position, Time Interval, Displacement 41 Position 4 Time Interval 43 Displacement 43 Velocity 3 431 Average Velocity 3 433 Instantaneous Velocity
OPTIMAl PREMIUM CONTROl IN A NON-liFE INSURANCE BUSINESS
ONDERZOEKSRAPPORT NR 8904 OPTIMAl PREMIUM CONTROl IN A NON-liFE INSURANCE BUSINESS BY M. VANDEBROEK & J. DHAENE D/1989/2376/5 1 IN A OPTIMAl PREMIUM CONTROl NON-liFE INSURANCE BUSINESS By Martina Vandebroek
Mathematics Online Instructional Materials Correlation to the 2009 Algebra I Standards of Learning and Curriculum Framework
Provider York County School Division Course Syllabus URL http://yorkcountyschools.org/virtuallearning/coursecatalog.aspx Course Title Algebra I AB Last Updated 2010 - A.1 The student will represent verbal
Algebra Cheat Sheets
Sheets Algebra Cheat Sheets provide you with a tool for teaching your students note-taking, problem-solving, and organizational skills in the context of algebra lessons. These sheets teach the concepts
by the matrix A results in a vector which is a reflection of the given
Eigenvalues & Eigenvectors Example Suppose Then So, geometrically, multiplying a vector in by the matrix A results in a vector which is a reflection of the given vector about the y-axis We observe that
Partial Fractions: Undetermined Coefficients
1. Introduction Partial Fractions: Undetermined Coefficients Not every F(s) we encounter is in the Laplace table. Partial fractions is a method for re-writing F(s) in a form suitable for the use of the
Chapter 3 Section 6 Lesson Polynomials
Chapter Section 6 Lesson Polynomials Introduction This lesson introduces polynomials and like terms. As we learned earlier, a monomial is a constant, a variable, or the product of constants and variables.
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 5 9/17/2008 RANDOM VARIABLES Contents 1. Random variables and measurable functions 2. Cumulative distribution functions 3. Discrete
Unit 3: Day 2: Factoring Polynomial Expressions
Unit 3: Day : Factoring Polynomial Expressions Minds On: 0 Action: 45 Consolidate:10 Total =75 min Learning Goals: Extend knowledge of factoring to factor cubic and quartic expressions that can be factored
ANALYSIS OF TREND CHAPTER 5
ANALYSIS OF TREND CHAPTER 5 ERSH 8310 Lecture 7 September 13, 2007 Today s Class Analysis of trends Using contrasts to do something a bit more practical. Linear trends. Quadratic trends. Trends in SPSS.
Course Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics
Course Text Business Statistics Lind, Douglas A., Marchal, William A. and Samuel A. Wathen. Basic Statistics for Business and Economics, 7th edition, McGraw-Hill/Irwin, 2010, ISBN: 9780077384470 [This
Improved Differential Fault Attack on MICKEY 2.0
Noname manuscript No. (will be inserted by the editor) Improved Differential Fault Attack on MICKEY 2.0 Subhadeep Banik Subhamoy Maitra Santanu Sarkar Received: date / Accepted: date Abstract In this paper
ORTHOGONAL POLYNOMIAL CONTRASTS INDIVIDUAL DF COMPARISONS: EQUALLY SPACED TREATMENTS
ORTHOGONAL POLYNOMIAL CONTRASTS INDIVIDUAL DF COMPARISONS: EQUALLY SPACED TREATMENTS Many treatments are equally spaced (incremented). This provides us with the opportunity to look at the response curve
Computer Graphics. Geometric Modeling. Page 1. Copyright Gotsman, Elber, Barequet, Karni, Sheffer Computer Science - Technion. An Example.
An Example 2 3 4 Outline Objective: Develop methods and algorithms to mathematically model shape of real world objects Categories: Wire-Frame Representation Object is represented as as a set of points
Trigonometric Functions and Equations
Contents Trigonometric Functions and Equations Lesson 1 Reasoning with Trigonometric Functions Investigations 1 Proving Trigonometric Identities... 271 2 Sum and Difference Identities... 276 3 Extending
Assessment Schedule 2013
NCEA Level Mathematics (9161) 013 page 1 of 5 Assessment Schedule 013 Mathematics with Statistics: Apply algebraic methods in solving problems (9161) Evidence Statement ONE Expected Coverage Merit Excellence
Lecture Notes on Polynomials
Lecture Notes on Polynomials Arne Jensen Department of Mathematical Sciences Aalborg University c 008 Introduction These lecture notes give a very short introduction to polynomials with real and complex
