Cooling and Euler's Method

Size: px
Start display at page:

Download "Cooling and Euler's Method"

Transcription

1 Lesson 2: Cooling and Euler's Method 2.1 Applied Problem. Heat transfer in a mass is very important for a number of objects such as cooling of electronic parts or the fabrication of large beams. Although this process can be very complicated, we can study it for simple cases. Consider a cooling cup of coffee, which is well stirred so that it has a uniform temperature. Here we will introduce an added complication that the surrounding temperature can vary with time. In this case the substitution z = ysur(t) - y(t) will not work as easily as in lesson one. In such cases we often replace the continuous model with a discrete model, which we can solve with the use of computers. The goal is to predict the temperature for any future time. 2.2 Differential Equation Model. We will consider two models for the temperature change: Newton s law of cooling and discrete time, and Newton s law of cooling and continuous time. The discrete model is based on an expression for the change in temperature over a small time interval. If the time interval is large, then one can expect the change in temperature to be large. If there is a large difference of the surrounding temperature, ysur, and the temperature of the coffee, y, then there will also be a big change in the temperature. A third factor will be the material of the coffee cup. If the cup is made from a metal, then the change in the temperature could be large. On the other hand, if the cup is made from

2 2 foam, then the change in the temperature will be less. These observations can be modeled as follows. Discrete Version of Newton s Law of Cooling. Let y(i) be the temperature at time i*dt where dt is a given time interval. y(i+1) - y(i) = c*(ysur y(i))*dt. We can solve for y(i+1) y(i+1) = y(i) + c*(ysur y(i))*dt = (1 c*dt)*y(i) + c*ysur*dt. If the surrounding temperature is ysur = 70 and the coffee is initially y(0) = 200, then the temperature will cool monotonically down to the room temperature. In our model this will happen if a = 1 c*dt > 0, and so, this is a restriction on the time step, dt. In order to estimate c, we must have a second observed temperature. Suppose we choose a time step equal to one minute, dt = 1, and have observed the temperature at time zero and one minute later to be y(0) = 200 and y(1) = 195. Now apply the model with i = 0 to get y(0+1) = (1 c*dt)*y(0) + c*ysur*dt 195 = (1 c *1)*200 + c*70*1. So, solve for c to get c = ( )/(70 200) = 5/130 = 1/26. The continuous version of this application was studied in the previous lesson. One hopes for small enough dt the solutions of the discrete and continuous models will be close.

3 3 Continuous Version of Newton s Law of Cooling. Let y(t) be the temperature at time t. y = c(ysur y) and y(0) = y Method of Solution. The general problem of solving or approximating the solution of the differential equation y' = g(t,y) can be approached by approximating the derivative. Since y'(t) is the derivative of y(t), it can be approximated by y'(t) (y(t + dt) - y(t))/dt where t is any time and dt represents a small change in time. Now let t = i*dt, replace y(t) by Y(i), and replace the differential equation by the following discrete equation (Y(i+1) - Y(i))/dt = g(i*dt, Y(i)). Next we solve for Y(i+1) in terms of the previous Y(i). We hope the error, Y(i) - y(i*dt), will be small, and it will decrease as dt goes to zero. Euler's Numerical Method for Approximating y' = g(t,y) and y(0) given. Y(i+1) = Y(i) + dt*g(i*dt,y(i)).

4 4 Below we have used this method for y' = (1/26)*(70 - y), y(0) = 200 and variable time steps dt = 50/n where n = 4, 8, 16 and 32 time steps. The last number in each column is an approximation of the solution at t = 50, y(50) = e (-50/26) = The error at time t = 50 is y(50) - Y(n+1) where the CAPITAL Y indicates the number computed via the Euler method. Note the error at this time is approximately proportional to dt. n = 4 n =8 n = 16 n = n (dt = 50/n) error Euler Error ~ dt = 50/n n error at t = 50 Series1

5 5 2.4 Matlab Implementation. In this section we use the Euler method for the problem where the surrounding temperature is 70 and the constant c in the right side is.10, which is larger than 1/26. The two line m-file for the function on the right side of the differential equation is stored as feul.m. function feul = feul(t,x) feul =.10*(70. - x); The m-file for the Euler method is as follows and is stored as eulerc.m. The time step, dt, is denoted by h and is defined by the final time, T, divided by the number of time steps, KK. The initial temperature is stored in y(1) and the initial time is stored in t(1). The for loop executes the Euler method, and this creates two row vectors, one for time and one for temperature. The output has the form of a graph, and notice the temperature more rapidly approaches the surrounding temperature. You can look at the numerical values by typing at the Matlab prompt [t' y']. %your name, your student number, lesson number clear; y(1) = 200.; T = 50; KK = 100 h = T/KK; t(1)= 0.; for k = 1:KK y(k+1) = y(k) + h*feul(t(k),y(k)); t(k+1) = t(k) + h; end plot(t,y) title('your name, your student number, lesson number') xlabel('time') ylabel('temperature')

6 6 200 your name, your student number, lesson number temperature time 2.5 Numerical Experiments. The next numerical experiments are done using Matlab. They illustrate numerical error as a function of the number of steps. This done with the equation for Newton's law of cooling with ysur = 70 and c =.061. Matlab has a number of solvers for ordinary differential equations, and the reader should execute the Matlab demonstration odedemo. In the following calculations the number of time steps was varied from n = KK = 4, 8 to 16. The three plots were put into the same graph, and the reader should observe the convergence as KK increases.

7 7 EDU» eulerc KK = 4 EDU» t4 = t; EDU» y4 = y; EDU» eulerc KK = 8 EDU» t8 = t; EDU» y8 = y; EDU» eulerc KK = 16 EDU» t16 = t; EDU» y16 = y; EDU» whitebg EDU» plot(t4,y4,t8,y8,t16,y16) Figure: Convergence of Numerical Solution

8 8 The next calculation keeps the c =.061 and y(0) = 200, but the surrounding temperature is allowed to increase from 70 by one degree every five minutes. This means ysur(t) = 70 + t/5. In order to incorporate this into the Matlab code, the m-file feul.m must be changed as follows replace the second line of feul.m by feul =.061*(70 + t/5 - x); save this file, and execute the m-file eulerc.m by typing eulerc at the Matlab prompt. In the following calculation we have increased the final time, T, in eulerc.m from 50 to 100. As time increases the temperature still approaches the surrounding temperature. 200 your name, your student number, lesson number temperature time

9 9 2.6 Additional Calculations. Consider the cooling cup of coffee with variable c =.061*(1+.S)*.5,.061*(1+.S)*1.0 and.061*(1+.s)*1.5 where S is your student number. Assume the surrounding temperature is ysur(t) = 70 + t/5 and y(0) = 200. (a). State the differential equation. (b). Modify the feul.m file. (c). Insert your name and student number into the eulerc.m file. Execute the eulerc.m file for each of the three values of c. (d). Print the feul.m and eulerc.m files as well as each of the three graphs.

Solving ODEs in Matlab. BP205 M.Tremont 1.30.2009

Solving ODEs in Matlab. BP205 M.Tremont 1.30.2009 Solving ODEs in Matlab BP205 M.Tremont 1.30.2009 - Outline - I. Defining an ODE function in an M-file II. III. IV. Solving first-order ODEs Solving systems of first-order ODEs Solving higher order ODEs

More information

Euler s Method and Functions

Euler s Method and Functions Chapter 3 Euler s Method and Functions The simplest method for approximately solving a differential equation is Euler s method. One starts with a particular initial value problem of the form dx dt = f(t,

More information

Simple Programming in MATLAB. Plotting a graph using MATLAB involves three steps:

Simple Programming in MATLAB. Plotting a graph using MATLAB involves three steps: Simple Programming in MATLAB Plotting Graphs: We will plot the graph of the function y = f(x) = e 1.5x sin(8πx), 0 x 1 Plotting a graph using MATLAB involves three steps: Create points 0 = x 1 < x 2

More information

The Method of Least Squares. Lectures INF2320 p. 1/80

The Method of Least Squares. Lectures INF2320 p. 1/80 The Method of Least Squares Lectures INF2320 p. 1/80 Lectures INF2320 p. 2/80 The method of least squares We study the following problem: Given n points (t i,y i ) for i = 1,...,n in the (t,y)-plane. How

More information

Parameter Identification and SIR Epidemic Model.

Parameter Identification and SIR Epidemic Model. Parameter Identification and SIR Epidemic Model. In this lesson we consider the development of an epidemic, which is similar to measles. The population will be partitioned into three disjoint groups of

More information

Sample Solutions for Assignment 2.

Sample Solutions for Assignment 2. AMath 383, Autumn 01 Sample Solutions for Assignment. Reading: Chs. -3. 1. Exercise 4 of Chapter. Please note that there is a typo in the formula in part c: An exponent of 1 is missing. It should say 4

More information

Department of Chemical Engineering ChE-101: Approaches to Chemical Engineering Problem Solving MATLAB Tutorial VI

Department of Chemical Engineering ChE-101: Approaches to Chemical Engineering Problem Solving MATLAB Tutorial VI Department of Chemical Engineering ChE-101: Approaches to Chemical Engineering Problem Solving MATLAB Tutorial VI Solving a System of Linear Algebraic Equations (last updated 5/19/05 by GGB) Objectives:

More information

Numerical Methods for Differential Equations

Numerical Methods for Differential Equations 1 Numerical Methods for Differential Equations 1 2 NUMERICAL METHODS FOR DIFFERENTIAL EQUATIONS Introduction Differential equations can describe nearly all systems undergoing change. They are ubiquitous

More information

A power series about x = a is the series of the form

A power series about x = a is the series of the form POWER SERIES AND THE USES OF POWER SERIES Elizabeth Wood Now we are finally going to start working with a topic that uses all of the information from the previous topics. The topic that we are going to

More information

AP Calculus BC 2001 Free-Response Questions

AP Calculus BC 2001 Free-Response Questions AP Calculus BC 001 Free-Response Questions The materials included in these files are intended for use by AP teachers for course and exam preparation in the classroom; permission for any other use must

More information

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION

CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August

More information

Math 2400 - Numerical Analysis Homework #2 Solutions

Math 2400 - Numerical Analysis Homework #2 Solutions Math 24 - Numerical Analysis Homework #2 Solutions 1. Implement a bisection root finding method. Your program should accept two points, a tolerance limit and a function for input. It should then output

More information

An Introduction to Applied Mathematics: An Iterative Process

An Introduction to Applied Mathematics: An Iterative Process An Introduction to Applied Mathematics: An Iterative Process Applied mathematics seeks to make predictions about some topic such as weather prediction, future value of an investment, the speed of a falling

More information

Feed a Fever..., or How long should I leave a thermometer in my mouth to take my body temperature accurately?

Feed a Fever..., or How long should I leave a thermometer in my mouth to take my body temperature accurately? Feed a Fever..., or How long should I leave a thermometer in my mouth to take my body temperature accurately? Abstract: The purpose of this project is to apply Newton s Law of Cooling to study the rate

More information

Discrete Convolution and the Discrete Fourier Transform

Discrete Convolution and the Discrete Fourier Transform Discrete Convolution and the Discrete Fourier Transform Discrete Convolution First of all we need to introduce what we might call the wraparound convention Because the complex numbers w j e i πj N have

More information

Numerical Methods for Differential Equations

Numerical Methods for Differential Equations Numerical Methods for Differential Equations Course objectives and preliminaries Gustaf Söderlind and Carmen Arévalo Numerical Analysis, Lund University Textbooks: A First Course in the Numerical Analysis

More information

Beginner s Matlab Tutorial

Beginner s Matlab Tutorial Christopher Lum [email protected] Introduction Beginner s Matlab Tutorial This document is designed to act as a tutorial for an individual who has had no prior experience with Matlab. For any questions

More information

Section 1.4. Difference Equations

Section 1.4. Difference Equations Difference Equations to Differential Equations Section 1.4 Difference Equations At this point almost all of our sequences have had explicit formulas for their terms. That is, we have looked mainly at sequences

More information

Math 132. Population Growth: the World

Math 132. Population Growth: the World Math 132 Population Growth: the World S. R. Lubkin Application If you think growth in Raleigh is a problem, think a little bigger. The population of the world has been growing spectacularly fast in the

More information

Particular Solutions. y = Ae 4x and y = 3 at x = 0 3 = Ae 4 0 3 = A y = 3e 4x

Particular Solutions. y = Ae 4x and y = 3 at x = 0 3 = Ae 4 0 3 = A y = 3e 4x Particular Solutions If the differential equation is actually modeling something (like the cost of milk as a function of time) it is likely that you will know a specific value (like the fact that milk

More information

UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2010 Linear Systems Fundamentals

UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2010 Linear Systems Fundamentals UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2010 Linear Systems Fundamentals FINAL EXAM WITH SOLUTIONS (YOURS!) You are allowed one 2-sided sheet of

More information

System of First Order Differential Equations

System of First Order Differential Equations CHAPTER System of First Order Differential Equations In this chapter, we will discuss system of first order differential equations. There are many applications that involving find several unknown functions

More information

3.2 Sources, Sinks, Saddles, and Spirals

3.2 Sources, Sinks, Saddles, and Spirals 3.2. Sources, Sinks, Saddles, and Spirals 6 3.2 Sources, Sinks, Saddles, and Spirals The pictures in this section show solutions to Ay 00 C By 0 C Cy D 0. These are linear equations with constant coefficients

More information

An Introduction to Partial Differential Equations

An Introduction to Partial Differential Equations An Introduction to Partial Differential Equations Andrew J. Bernoff LECTURE 2 Cooling of a Hot Bar: The Diffusion Equation 2.1. Outline of Lecture An Introduction to Heat Flow Derivation of the Diffusion

More information

Dynamic Process Modeling. Process Dynamics and Control

Dynamic Process Modeling. Process Dynamics and Control Dynamic Process Modeling Process Dynamics and Control 1 Description of process dynamics Classes of models What do we need for control? Modeling for control Mechanical Systems Modeling Electrical circuits

More information

AP Calculus BC 2013 Free-Response Questions

AP Calculus BC 2013 Free-Response Questions AP Calculus BC 013 Free-Response Questions About the College Board The College Board is a mission-driven not-for-profit organization that connects students to college success and opportunity. Founded in

More information

Heat equation examples

Heat equation examples Heat equation examples The Heat equation is discussed in depth in http://tutorial.math.lamar.edu/classes/de/intropde.aspx, starting on page 6. You may recall Newton s Law of Cooling from Calculus. Just

More information

Numerical Solution of Differential Equations

Numerical Solution of Differential Equations Numerical Solution of Differential Equations Dr. Alvaro Islas Applications of Calculus I Spring 2008 We live in a world in constant change We live in a world in constant change We live in a world in constant

More information

Differential Equations

Differential Equations 40 CHAPTER 15 Differential Equations In many natural conditions the rate at which the amount of an object changes is directly proportional to the amount of the object itself. For example: 1) The marginal

More information

Numerical Methods in MATLAB

Numerical Methods in MATLAB Numerical Methods in MATLAB Center for Interdisciplinary Research and Consulting Department of Mathematics and Statistics University of Maryland, Baltimore County www.umbc.edu/circ Winter 2008 Mission

More information

Section 1.5 Linear Models

Section 1.5 Linear Models Section 1.5 Linear Models Some real-life problems can be modeled using linear equations. Now that we know how to find the slope of a line, the equation of a line, and the point of intersection of two lines,

More information

Matlab Practical: Solving Differential Equations

Matlab Practical: Solving Differential Equations Matlab Practical: Solving Differential Equations Introduction This practical is about solving differential equations numerically, an important skill. Initially you will code Euler s method (to get some

More information

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1

1 2 3 1 1 2 x = + x 2 + x 4 1 0 1 (d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which

More information

4.3 Lagrange Approximation

4.3 Lagrange Approximation 206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average

More information

Circuits 1 M H Miller

Circuits 1 M H Miller Introduction to Graph Theory Introduction These notes are primarily a digression to provide general background remarks. The subject is an efficient procedure for the determination of voltages and currents

More information

Computación I: intro to Matlab. Francesca Maria Marchetti

Computación I: intro to Matlab. Francesca Maria Marchetti Computación I: intro to Matlab Francesca Maria Marchetti UAM, 15 September 2014 Subgroup 5165 Units 1, 2, 3, 5 (control 1) Francesca Maria Marchetti Departamento de Física Teórica de la Materia Condensada

More information

Vector Spaces; the Space R n

Vector Spaces; the Space R n Vector Spaces; the Space R n Vector Spaces A vector space (over the real numbers) is a set V of mathematical entities, called vectors, U, V, W, etc, in which an addition operation + is defined and in which

More information

Fixed Point Theorems

Fixed Point Theorems Fixed Point Theorems Definition: Let X be a set and let T : X X be a function that maps X into itself. (Such a function is often called an operator, a transformation, or a transform on X, and the notation

More information

Math 267 - Practice exam 2 - solutions

Math 267 - Practice exam 2 - solutions C Roettger, Fall 13 Math 267 - Practice exam 2 - solutions Problem 1 A solution of 10% perchlorate in water flows at a rate of 8 L/min into a tank holding 200L pure water. The solution is kept well stirred

More information

Module 1 : Conduction. Lecture 5 : 1D conduction example problems. 2D conduction

Module 1 : Conduction. Lecture 5 : 1D conduction example problems. 2D conduction Module 1 : Conduction Lecture 5 : 1D conduction example problems. 2D conduction Objectives In this class: An example of optimization for insulation thickness is solved. The 1D conduction is considered

More information

Project 1.3.4 Renewable Insulation Example Teacher Notes

Project 1.3.4 Renewable Insulation Example Teacher Notes Project 1.3.4 Renewable Insulation Example Teacher Notes Sample Data and Teacher Notes This guide is designed to provide sample calculations, background, and tips for the teachers performing this project

More information

Appendix H: Control System Computational Aids

Appendix H: Control System Computational Aids E1BAPP08 11/02/2010 11:56:59 Page 1 Appendix H: Control System Computational Aids H.1 Step Response of a System Represented in State Space In this section we will discuss how to obtain the step response

More information

To get started, type one of these: helpwin, helpdesk, or demo. For product information, type tour or visit www.mathworks.com.

To get started, type one of these: helpwin, helpdesk, or demo. For product information, type tour or visit www.mathworks.com. To get started, type one of these: helpwin, helpdesk, or demo. For product information, type tour or visit www.mathworks.com.» help ode45 version 5 wording ODE45 Solve non-stiff differential equations,

More information

MatLab - Systems of Differential Equations

MatLab - Systems of Differential Equations Fall 2015 Math 337 MatLab - Systems of Differential Equations This section examines systems of differential equations. It goes through the key steps of solving systems of differential equations through

More information

F B = ilbsin(f), L x B because we take current i to be a positive quantity. The force FB. L and. B as shown in the Figure below.

F B = ilbsin(f), L x B because we take current i to be a positive quantity. The force FB. L and. B as shown in the Figure below. PHYSICS 176 UNIVERSITY PHYSICS LAB II Experiment 9 Magnetic Force on a Current Carrying Wire Equipment: Supplies: Unit. Electronic balance, Power supply, Ammeter, Lab stand Current Loop PC Boards, Magnet

More information

MATH 31B: MIDTERM 1 REVIEW. 1. Inverses. yx 3y = 1. x = 1 + 3y y 4( 1) + 32 = 1

MATH 31B: MIDTERM 1 REVIEW. 1. Inverses. yx 3y = 1. x = 1 + 3y y 4( 1) + 32 = 1 MATH 3B: MIDTERM REVIEW JOE HUGHES. Inverses. Let f() = 3. Find the inverse g() for f. Solution: Setting y = ( 3) and solving for gives and g() = +3. y 3y = = + 3y y. Let f() = 4 + 3. Find a domain on

More information

8. Time Series and Prediction

8. Time Series and Prediction 8. Time Series and Prediction Definition: A time series is given by a sequence of the values of a variable observed at sequential points in time. e.g. daily maximum temperature, end of day share prices,

More information

G(s) = Y (s)/u(s) In this representation, the output is always the Transfer function times the input. Y (s) = G(s)U(s).

G(s) = Y (s)/u(s) In this representation, the output is always the Transfer function times the input. Y (s) = G(s)U(s). Transfer Functions The transfer function of a linear system is the ratio of the Laplace Transform of the output to the Laplace Transform of the input, i.e., Y (s)/u(s). Denoting this ratio by G(s), i.e.,

More information

1 Error in Euler s Method

1 Error in Euler s Method 1 Error in Euler s Method Experience with Euler s 1 method raises some interesting questions about numerical approximations for the solutions of differential equations. 1. What determines the amount of

More information

Data representation and analysis in Excel

Data representation and analysis in Excel Page 1 Data representation and analysis in Excel Let s Get Started! This course will teach you how to analyze data and make charts in Excel so that the data may be represented in a visual way that reflects

More information

PSTricks. pst-ode. A PSTricks package for solving initial value problems for sets of Ordinary Differential Equations (ODE), v0.7.

PSTricks. pst-ode. A PSTricks package for solving initial value problems for sets of Ordinary Differential Equations (ODE), v0.7. PSTricks pst-ode A PSTricks package for solving initial value problems for sets of Ordinary Differential Equations (ODE), v0.7 27th March 2014 Package author(s): Alexander Grahn Contents 2 Contents 1 Introduction

More information

7-2 Solving Exponential Equations and Inequalities. Solve each equation. 1. 3 5x = 27 2x 4 SOLUTION:

7-2 Solving Exponential Equations and Inequalities. Solve each equation. 1. 3 5x = 27 2x 4 SOLUTION: 7-2 Solving Exponential Equations and Inequalities Solve each equation. 1. 3 5x = 27 2x 4 3. 2 6x = 32 x 2 12 2. 16 2y 3 = 4 y + 1 10 4. 49 x + 5 = 7 8x 6 3. 2 6x = 32 x 2 5. SCIENCE Mitosis is a process

More information

WEEK #3, Lecture 1: Sparse Systems, MATLAB Graphics

WEEK #3, Lecture 1: Sparse Systems, MATLAB Graphics WEEK #3, Lecture 1: Sparse Systems, MATLAB Graphics Visualization of Matrices Good visuals anchor any presentation. MATLAB has a wide variety of ways to display data and calculation results that can be

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics. W03D1-2 Group Problem: Tension in a Suspended Rope Solution

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics. W03D1-2 Group Problem: Tension in a Suspended Rope Solution MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.01 W03D1-2 Group Problem: Tension in a Suspended Rope Solution Suppose a uniform rope of mass M and length L is suspended from a ceiling. The

More information

Foundation of Quantitative Data Analysis

Foundation of Quantitative Data Analysis Foundation of Quantitative Data Analysis Part 1: Data manipulation and descriptive statistics with SPSS/Excel HSRS #10 - October 17, 2013 Reference : A. Aczel, Complete Business Statistics. Chapters 1

More information

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 10

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 10 Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Chapter 10 Boundary Value Problems for Ordinary Differential Equations Copyright c 2001. Reproduction

More information

ENERGY TRANSFER SYSTEMS AND THEIR DYNAMIC ANALYSIS

ENERGY TRANSFER SYSTEMS AND THEIR DYNAMIC ANALYSIS ENERGY TRANSFER SYSTEMS AND THEIR DYNAMIC ANALYSIS Many mechanical energy systems are devoted to transfer of energy between two points: the source or prime mover (input) and the load (output). For chemical

More information

An Introduction to Calculus. Jackie Nicholas

An Introduction to Calculus. Jackie Nicholas Mathematics Learning Centre An Introduction to Calculus Jackie Nicholas c 2004 University of Sydney Mathematics Learning Centre, University of Sydney 1 Some rules of differentiation and how to use them

More information

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER

CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER International Journal of Advancements in Research & Technology, Volume 1, Issue2, July-2012 1 CFD SIMULATION OF SDHW STORAGE TANK WITH AND WITHOUT HEATER ABSTRACT (1) Mr. Mainak Bhaumik M.E. (Thermal Engg.)

More information

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96

1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96 1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years

More information

4.1 Modelling with Differential Equations

4.1 Modelling with Differential Equations Chapter 4 Differential Equations The rate equations with which we began our study of calculus are called differential equations when we identify the rates of change that appear within them as derivatives

More information

The PageRank Citation Ranking: Bring Order to the Web

The PageRank Citation Ranking: Bring Order to the Web The PageRank Citation Ranking: Bring Order to the Web presented by: Xiaoxi Pang 25.Nov 2010 1 / 20 Outline Introduction A ranking for every page on the Web Implementation Convergence Properties Personalized

More information

HW 3 Due Sep 12, Wed

HW 3 Due Sep 12, Wed HW 3 Due Sep, Wed 1. Consider a tank used in certain hydrodynamic experiments. After one experiment the tank contains 200 L of a dye solution with a concentration of 1 g/l. To prepare for the next experiment,

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Math 541: Statistical Theory II Lecturer: Songfeng Zheng Maximum Likelihood Estimation 1 Maximum Likelihood Estimation Maximum likelihood is a relatively simple method of constructing an estimator for

More information

SOLVING LINEAR SYSTEMS

SOLVING LINEAR SYSTEMS SOLVING LINEAR SYSTEMS Linear systems Ax = b occur widely in applied mathematics They occur as direct formulations of real world problems; but more often, they occur as a part of the numerical analysis

More information

Joule Equivalent of Electrical Energy

Joule Equivalent of Electrical Energy by Dr. James E. Parks Department of Physics and Astronomy 401 Nielsen Physics Building The University of Tennessee Knoxville, Tennessee 37996-1200 Copyright October, 2013 by James Edgar Parks* *All rights

More information

Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations

Section 3.7. Rolle s Theorem and the Mean Value Theorem. Difference Equations to Differential Equations Difference Equations to Differential Equations Section.7 Rolle s Theorem and the Mean Value Theorem The two theorems which are at the heart of this section draw connections between the instantaneous rate

More information

During the analysis of cash flows we assume that if time is discrete when:

During the analysis of cash flows we assume that if time is discrete when: Chapter 5. EVALUATION OF THE RETURN ON INVESTMENT Objectives: To evaluate the yield of cash flows using various methods. To simulate mathematical and real content situations related to the cash flow management

More information

Nonlinear Algebraic Equations. Lectures INF2320 p. 1/88

Nonlinear Algebraic Equations. Lectures INF2320 p. 1/88 Nonlinear Algebraic Equations Lectures INF2320 p. 1/88 Lectures INF2320 p. 2/88 Nonlinear algebraic equations When solving the system u (t) = g(u), u(0) = u 0, (1) with an implicit Euler scheme we have

More information

Mario Guarracino. Regression

Mario Guarracino. Regression Regression Introduction In the last lesson, we saw how to aggregate data from different sources, identify measures and dimensions, to build data marts for business analysis. Some techniques were introduced

More information

General Framework for an Iterative Solution of Ax b. Jacobi s Method

General Framework for an Iterative Solution of Ax b. Jacobi s Method 2.6 Iterative Solutions of Linear Systems 143 2.6 Iterative Solutions of Linear Systems Consistent linear systems in real life are solved in one of two ways: by direct calculation (using a matrix factorization,

More information

The Fourth International DERIVE-TI92/89 Conference Liverpool, U.K., 12-15 July 2000. Derive 5: The Easiest... Just Got Better!

The Fourth International DERIVE-TI92/89 Conference Liverpool, U.K., 12-15 July 2000. Derive 5: The Easiest... Just Got Better! The Fourth International DERIVE-TI9/89 Conference Liverpool, U.K., -5 July 000 Derive 5: The Easiest... Just Got Better! Michel Beaudin École de technologie supérieure 00, rue Notre-Dame Ouest Montréal

More information

Payment streams and variable interest rates

Payment streams and variable interest rates Chapter 4 Payment streams and variable interest rates In this chapter we consider two extensions of the theory Firstly, we look at payment streams A payment stream is a payment that occurs continuously,

More information

Experiment #8: Magnetic Forces

Experiment #8: Magnetic Forces Experiment #8: Magnetic Forces Purpose: To study the nature of magnetic forces exerted on currents. Equipment: Magnet Assembly and Stand Set of Current Loop PC oards Triple-Arm Pan alance 0 15 V dc Variable

More information

Bedford, Fowler: Statics. Chapter 4: System of Forces and Moments, Examples via TK Solver

Bedford, Fowler: Statics. Chapter 4: System of Forces and Moments, Examples via TK Solver System of Forces and Moments Introduction The moment vector of a force vector,, with respect to a point has a magnitude equal to the product of the force magnitude, F, and the perpendicular distance from

More information

FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL

FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL STATIsTICs 4 IV. RANDOm VECTORs 1. JOINTLY DIsTRIBUTED RANDOm VARIABLEs If are two rom variables defined on the same sample space we define the joint

More information

State Newton's second law of motion for a particle, defining carefully each term used.

State Newton's second law of motion for a particle, defining carefully each term used. 5 Question 1. [Marks 20] An unmarked police car P is, travelling at the legal speed limit, v P, on a straight section of highway. At time t = 0, the police car is overtaken by a car C, which is speeding

More information

Tutorial Program. 1. Basics

Tutorial Program. 1. Basics 1. Basics Working environment Dealing with matrices Useful functions Logical operators Saving and loading Data management Exercises 2. Programming Basics graphics settings - ex Functions & scripts Vectorization

More information

first complete "prior knowlegde" -- to refresh knowledge of Simple and Compound Interest.

first complete prior knowlegde -- to refresh knowledge of Simple and Compound Interest. ORDINARY SIMPLE ANNUITIES first complete "prior knowlegde" -- to refresh knowledge of Simple and Compound Interest. LESSON OBJECTIVES: students will learn how to determine the Accumulated Value of Regular

More information

Introduction to Matlab

Introduction to Matlab Introduction to Matlab Social Science Research Lab American University, Washington, D.C. Web. www.american.edu/provost/ctrl/pclabs.cfm Tel. x3862 Email. [email protected] Course Objective This course provides

More information

Critical points of once continuously differentiable functions are important because they are the only points that can be local maxima or minima.

Critical points of once continuously differentiable functions are important because they are the only points that can be local maxima or minima. Lecture 0: Convexity and Optimization We say that if f is a once continuously differentiable function on an interval I, and x is a point in the interior of I that x is a critical point of f if f (x) =

More information

INJECTION MOLDING COOLING TIME REDUCTION AND THERMAL STRESS ANALYSIS

INJECTION MOLDING COOLING TIME REDUCTION AND THERMAL STRESS ANALYSIS INJECTION MOLDING COOLING TIME REDUCTION AND THERMAL STRESS ANALYSIS Tom Kimerling University of Massachusetts, Amherst MIE 605 Finite Element Analysis Spring 2002 ABSTRACT A FEA transient thermal structural

More information

Matlab and Simulink. Matlab and Simulink for Control

Matlab and Simulink. Matlab and Simulink for Control Matlab and Simulink for Control Automatica I (Laboratorio) 1/78 Matlab and Simulink CACSD 2/78 Matlab and Simulink for Control Matlab introduction Simulink introduction Control Issues Recall Matlab design

More information

3 Signals and Systems: Part II

3 Signals and Systems: Part II 3 Signals and Systems: Part II Recommended Problems P3.1 Sketch each of the following signals. (a) x[n] = b[n] + 3[n - 3] (b) x[n] = u[n] - u[n - 5] (c) x[n] = 6[n] + 1n + (i)2 [n - 2] + (i)ag[n - 3] (d)

More information

Experiment 4: Sensor Bridge Circuits (tbc 1/11/2007, revised 2/20/2007, 2/28/2007) I. Introduction. From Voltage Dividers to Wheatstone Bridges

Experiment 4: Sensor Bridge Circuits (tbc 1/11/2007, revised 2/20/2007, 2/28/2007) I. Introduction. From Voltage Dividers to Wheatstone Bridges Experiment 4: Sensor Bridge Circuits (tbc //2007, revised 2/20/2007, 2/28/2007) Objective: To implement Wheatstone bridge circuits for temperature measurements using thermistors. I. Introduction. From

More information

UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2009 Linear Systems Fundamentals

UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2009 Linear Systems Fundamentals UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrical & Computer Engineering Department ECE 101 - Fall 2009 Linear Systems Fundamentals MIDTERM EXAM You are allowed one 2-sided sheet of notes. No books, no other

More information

19.7. Applications of Differential Equations. Introduction. Prerequisites. Learning Outcomes. Learning Style

19.7. Applications of Differential Equations. Introduction. Prerequisites. Learning Outcomes. Learning Style Applications of Differential Equations 19.7 Introduction Blocks 19.2 to 19.6 have introduced several techniques for solving commonly-occurring firstorder and second-order ordinary differential equations.

More information

10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS. The Jacobi Method

10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS. The Jacobi Method 578 CHAPTER 1 NUMERICAL METHODS 1. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS As a numerical technique, Gaussian elimination is rather unusual because it is direct. That is, a solution is obtained after

More information

Derive 5: The Easiest... Just Got Better!

Derive 5: The Easiest... Just Got Better! Liverpool John Moores University, 1-15 July 000 Derive 5: The Easiest... Just Got Better! Michel Beaudin École de Technologie Supérieure, Canada Email; [email protected] 1. Introduction Engineering

More information

Some Lecture Notes and In-Class Examples for Pre-Calculus:

Some Lecture Notes and In-Class Examples for Pre-Calculus: Some Lecture Notes and In-Class Examples for Pre-Calculus: Section.7 Definition of a Quadratic Inequality A quadratic inequality is any inequality that can be put in one of the forms ax + bx + c < 0 ax

More information

Scientific Programming

Scientific Programming 1 The wave equation Scientific Programming Wave Equation The wave equation describes how waves propagate: light waves, sound waves, oscillating strings, wave in a pond,... Suppose that the function h(x,t)

More information

Chapter 10 Temperature and Heat

Chapter 10 Temperature and Heat Chapter 10 Temperature and Heat What are temperature and heat? Are they the same? What causes heat? What Is Temperature? How do we measure temperature? What are we actually measuring? Temperature and Its

More information

Nonlinear Algebraic Equations Example

Nonlinear Algebraic Equations Example Nonlinear Algebraic Equations Example Continuous Stirred Tank Reactor (CSTR). Look for steady state concentrations & temperature. s r (in) p,i (in) i In: N spieces with concentrations c, heat capacities

More information

Project: OUTFIELD FENCES

Project: OUTFIELD FENCES 1 Project: OUTFIELD FENCES DESCRIPTION: In this project you will work with the equations of projectile motion and use mathematical models to analyze a design problem. Two softball fields in Rolla, Missouri

More information

Finite Difference Approach to Option Pricing

Finite Difference Approach to Option Pricing Finite Difference Approach to Option Pricing February 998 CS5 Lab Note. Ordinary differential equation An ordinary differential equation, or ODE, is an equation of the form du = fut ( (), t) (.) dt where

More information