Application of Linear Algebra in. Electrical Circuits
|
|
|
- Cora Mosley
- 9 years ago
- Views:
Transcription
1 Application of Linear Algebra in Electrical Circuits Seamleng Taing Math 308 Autumn 2001 December 2, 2001
2 Table of Contents Abstract..3 Applications of Linear Algebra in Electrical Circuits Explanation.. 5 Electrical Circuits Simple Series or Parallel Circuits Nodal Voltage Analysis and Loop Current Analysis Gaussian Elimination Examples.. 8 Loop Current Analysis using Gaussian Elimination Nodal Voltage Analysis using Gaussian Elimination Bibliography....10
3 Linear Algebra in Electrical Circuits Perhaps one of the most apparent uses of linear algebra is that which is used in Electrical Engineering. As most students of mathematics have encountered, when the subject of systems of equations is introduced, math class is temporarily converted into a crash course in electrical components. There, the resistor, voltage source and capacitor take the stage as well as their accompanying language consisting of Kirchoff and Ohm. With the basic concepts down, math class is resumed and students can look forward to playing with n number of equations with n number of unknowns. To solve for the currents and voltages, students can use simplification and substitutions, but with many equations, this task quickly becomes very time consuming and tedious. However, using Gaussian Elimination along with computers, engineers are able to efficiently calculate unknown values of extremely large and complex systems without performing hundreds of calculations and exhaustive bookkeeping of values.
4 Electrical Circuits Today more than ever, electronics are an integral part of our everyday lives. They contribute to every aspect of our way of life from lighting the space around our work environments, to exploring uncharted territories. But behind each and every electrical appliance or device, no matter what task it was designed for, lies a vast system of electrical components that must function as a whole. Each component (resistors, capacitors, inductors, etc.) has specifications of their own, as does the final product that they are a part of, so engineers must design their devices to meet not only their intended purpose, but so that the individual components are within their tolerances. Vital to this is the analysis of currents and voltages throughout the electrical circuit. Simple Series or Parallel Circuits For simple circuits, such as those used in math textbooks to introduce systems of equations, it is often sufficient to use series and parallel relationships to simplify circuits. With this done, Ohm s Law (V=RI) can be used to find voltages or currents. Vs=Vt Vt=Rt*I I=I 1 =I 2 =I 3 =I 4 V=RI 6V=6V 6V=3Ohm*I 2A=2A=2A=2A=2A V 1 =20V I=2A V 2 =30V V 3 =30V V 4 =20V
5 Larger circuits though, are a problem, as this method is no longer efficient. It becomes far too time consuming to analyze and reduce circuits. Instead a new method of determining voltages and currents is used called Nodal Voltage Analysis and Loop Current Analysis. Nodal Voltage Analysis and Loop Current Analysis Using Nodal or Loop Analysis, we end up with systems of equations with unkown variables. By simplifying and manipulating these equations, eventually all the unknowns will be solved assuming there were the same number of equations as there were unknowns. i 1 =(1/76)(25i 2 +50i 3 +10) -> -25((1/76)(25i 2 +50i 3 +10)) + 56 i 2 - i 3 = 0 (-625/76) i 2 (1250/76) i 3 (250/76) + 56i 2 - i 3 = 0 (3631/76) i 2 (663/38) i 3 = (250/76) -> i 2 = (1326/3631) i 3 + (250/76) -50(1/76)(25 [(1326/3631) i 3 + (250/76)] + 50i 3 +10) - (1326/3631) i 3 + (250/76) + 106i 3 = 0 i 3 = 0.117, i 2 = 0.111, i 1 = This method too, has its pitfalls, as circuits with many loops or nodes will require many substitutions, not to mention the large task of keeping track of all the variables.
6 Gaussian Elimination To fix the problem of dealing with all the bookkeeping of variables, a simple change of notation is required. That is, to place the equations into a matrix form. Since the columns are of the same variable, it is easy to see that row operations can be done to solve for the unknowns. This method is known as Gaussian Elimination. Now, for large circuits, this will still be a long process to row reduce to echelon form, but it s a know fact that computers love matrices. With the help of a computer and the right software, ridiculously large circuits consisting of hundreds of thousands of components can be analyzed in a relatively short span of time. Today s computers can perform billions of operations a second, and with the developments in parallel processing, analyses of larger and larger electrical systems in a short time frame are very feasible.
7 Example 1- Loop Current Analysis Using Gaussian Elimination Loop Equations: 1i (i 1 -i 2 ) + 50(i 1 -i 3 ) = 10 25(i 2 - i 1 ) + 30(i 2 - i 4 ) + 1(i 2 - i 3 ) = 0 50(i 3 - i 1 ) + 1(i 3 - i 2 ) + 55(i 3 -i 4 ) = 0 55(i 4 - i 3 ) + 30(i 4 - i 2 ) + 25(i 4 -i 5 ) + 50(i 4 - i 6 ) = 0 25(i 5 - i 4 ) + 30 i 5 + 1(i 5 -i6) = 0 50(i 6 - i 4 ) + 1(i 6 - i 5 ) + 55 i 6 = 0 Collect terms: 76i 1-25i 2 50i i 4 + 0i i 6 = 10-25i i 2 1 i 3 30 i 4 + 0i i 6 = 0-50i 1 1 i i 3 55 i i i 6 = 0 0i 1 30 i 2 55 i i 4 25i 5 50 i 6 = 0 0i i i 3 25 i i 5 1i 6 = 0 0i 1 + 0i 2 + 0i 3 50 i 4 1i i 6 = 0 Write as Augmented Matrix: Row reduce using calculator or program: i 1 =.478 A, i 2 =.348 A, i 3 =.353 A, i 4 =.239 A, i 5 =.109 A, i 6 =.114 A
8 Example 2- Nodal Voltage Analysis Using Gaussian Elimination N2 is the reference node as so the voltage is 0V. Node Equations: (V 1 /30) + (V 1-100)/5 + (V 1 -V 3 )/10 = 0 (V 3 - V 1 )/10 + V 3 /10 + (V 3-100)/20 = 0 Collect terms: [(1/30) + (1/5) + (1/10)] V 1 (1/10) V 3 = 20 (-1/10) V 1 + [(1/10) + (1/10) + (1/20)] V 3 = 5 (1/3) V 1 (1/10) V 3 = 20 (-1/10) V 1 + (1/4) V 3 = 5 Write as Augmented Matrix: 1/3-1/ /10 1/4 5 Row Reduce to Echelon Form: V 1 = 75 V, V 3 = 50 V
9 Bibliography Dorf, Richard C. and Svoboda, James A. Introduction to Electric Circuits. New York: John Wiley & Sons, Inc Hiob, Eric. Applications of Linear Algebra and Matrices to Electronics (31 Dec. 1996) Paij, Edwin. ampli Mosfet 200 W (2 Dec. 2001)
Nodal and Loop Analysis
Nodal and Loop Analysis The process of analyzing circuits can sometimes be a difficult task to do. Examining a circuit with the node or loop methods can reduce the amount of time required to get important
Series and Parallel Resistive Circuits
Series and Parallel Resistive Circuits The configuration of circuit elements clearly affects the behaviour of a circuit. Resistors connected in series or in parallel are very common in a circuit and act
Circuit Analysis using the Node and Mesh Methods
Circuit Analysis using the Node and Mesh Methods We have seen that using Kirchhoff s laws and Ohm s law we can analyze any circuit to determine the operating conditions (the currents and voltages). The
Solving Systems of Linear Equations Using Matrices
Solving Systems of Linear Equations Using Matrices What is a Matrix? A matrix is a compact grid or array of numbers. It can be created from a system of equations and used to solve the system of equations.
W03 Analysis of DC Circuits. Yrd. Doç. Dr. Aytaç Gören
W03 Analysis of DC Circuits Yrd. Doç. Dr. Aytaç Gören ELK 2018 - Contents W01 Basic Concepts in Electronics W02 AC to DC Conversion W03 Analysis of DC Circuits (self and condenser) W04 Transistors and
Thevenin Equivalent Circuits
hevenin Equivalent Circuits Introduction In each of these problems, we are shown a circuit and its hevenin or Norton equivalent circuit. he hevenin and Norton equivalent circuits are described using three
5.5. Solving linear systems by the elimination method
55 Solving linear systems by the elimination method Equivalent systems The major technique of solving systems of equations is changing the original problem into another one which is of an easier to solve
Mesh-Current Method (Loop Analysis)
Mesh-Current Method (Loop Analysis) Nodal analysis was developed by applying KCL at each non-reference node. Mesh-Current method is developed by applying KVL around meshes in the circuit. A mesh is a loop
EXAMPLE 8: An Electrical System (Mechanical-Electrical Analogy)
EXAMPLE 8: An Electrical System (Mechanical-Electrical Analogy) A completely analogous procedure can be used to find the state equations of electrical systems (and, ultimately, electro-mechanical systems
120 CHAPTER 3 NODAL AND LOOP ANALYSIS TECHNIQUES SUMMARY PROBLEMS SECTION 3.1
IRWI03_082132v3 8/26/04 9:41 AM Page 120 120 CHAPTER 3 NODAL AND LOOP ANALYSIS TECHNIQUES SUMMARY Nodal analysis for an Nnode circuit Select one node in the Nnode circuit as the reference node. Assume
DOKUZ EYLUL UNIVERSITY FACULTY OF ENGINEERING OFFICE OF THE DEAN COURSE / MODULE / BLOCK DETAILS ACADEMIC YEAR / SEMESTER. Course Code: EEE 2073
Offered by: Elektrik-Elektronik Mühendisliği Course Title: FUNDAMENTALS OF ELECTRIC AND ELECTRONICS Course Org. Title: FUNDAMENTALS OF ELECTRIC AND ELECTRONICS Course Level: Lisans Course Code: EEE 07
Row Echelon Form and Reduced Row Echelon Form
These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for in-class presentation
Linearly Independent Sets and Linearly Dependent Sets
These notes closely follow the presentation of the material given in David C. Lay s textbook Linear Algebra and its Applications (3rd edition). These notes are intended primarily for in-class presentation
Reduced echelon form: Add the following conditions to conditions 1, 2, and 3 above:
Section 1.2: Row Reduction and Echelon Forms Echelon form (or row echelon form): 1. All nonzero rows are above any rows of all zeros. 2. Each leading entry (i.e. left most nonzero entry) of a row is in
Preamble. Kirchoff Voltage Law (KVL) Series Resistors. In this section of my lectures we will be. resistor arrangements; series and
Preamble Series and Parallel Circuits Physics, 8th Edition Custom Edition Cutnell & Johnson Chapter 0.6-0.8, 0.0 Pages 60-68, 69-6 n this section of my lectures we will be developing the two common types
MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.
MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column
Lecture 1: Systems of Linear Equations
MTH Elementary Matrix Algebra Professor Chao Huang Department of Mathematics and Statistics Wright State University Lecture 1 Systems of Linear Equations ² Systems of two linear equations with two variables
2x + y = 3. Since the second equation is precisely the same as the first equation, it is enough to find x and y satisfying the system
1. Systems of linear equations We are interested in the solutions to systems of linear equations. A linear equation is of the form 3x 5y + 2z + w = 3. The key thing is that we don t multiply the variables
8.2. Solution by Inverse Matrix Method. Introduction. Prerequisites. Learning Outcomes
Solution by Inverse Matrix Method 8.2 Introduction The power of matrix algebra is seen in the representation of a system of simultaneous linear equations as a matrix equation. Matrix algebra allows us
1.2 Solving a System of Linear Equations
1.. SOLVING A SYSTEM OF LINEAR EQUATIONS 1. Solving a System of Linear Equations 1..1 Simple Systems - Basic De nitions As noticed above, the general form of a linear system of m equations in n variables
Example: Determine the power supplied by each of the sources, independent and dependent, in this circuit:
Example: Determine the power supplied by each of the sources, independent and dependent, in this circuit: Solution: We ll begin by choosing the bottom node to be the reference node. Next we ll label the
1. Introduction and Chapter Objectives
Real Analog Circuits 1 Chapter 1: Circuit Analysis Fundamentals 1. Introduction and Chapter Objectives In this chapter, we introduce all fundamental concepts associated with circuit analysis. Electrical
MATH2210 Notebook 1 Fall Semester 2016/2017. 1 MATH2210 Notebook 1 3. 1.1 Solving Systems of Linear Equations... 3
MATH0 Notebook Fall Semester 06/07 prepared by Professor Jenny Baglivo c Copyright 009 07 by Jenny A. Baglivo. All Rights Reserved. Contents MATH0 Notebook 3. Solving Systems of Linear Equations........................
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B. KITCHENS
December 4, 2013 MATH 171 BASIC LINEAR ALGEBRA B KITCHENS The equation 1 Lines in two-dimensional space (1) 2x y = 3 describes a line in two-dimensional space The coefficients of x and y in the equation
Arithmetic and Algebra of Matrices
Arithmetic and Algebra of Matrices Math 572: Algebra for Middle School Teachers The University of Montana 1 The Real Numbers 2 Classroom Connection: Systems of Linear Equations 3 Rational Numbers 4 Irrational
Solving Systems of Linear Equations
LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how
4.3-4.4 Systems of Equations
4.3-4.4 Systems of Equations A linear equation in 2 variables is an equation of the form ax + by = c. A linear equation in 3 variables is an equation of the form ax + by + cz = d. To solve a system of
2.1 Introduction. 2.2 Terms and definitions
.1 Introduction An important step in the procedure for solving any circuit problem consists first in selecting a number of independent branch currents as (known as loop currents or mesh currents) variables,
MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix.
MATH 304 Linear Algebra Lecture 18: Rank and nullity of a matrix. Nullspace Let A = (a ij ) be an m n matrix. Definition. The nullspace of the matrix A, denoted N(A), is the set of all n-dimensional column
Energy, Work, and Power
Energy, Work, and Power This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
V out. Figure 1: A voltage divider on the left, and potentiometer on the right.
Living with the Lab Fall 202 Voltage Dividers and Potentiometers Gerald Recktenwald v: November 26, 202 [email protected] Introduction Voltage dividers and potentiometers are passive circuit components
AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules
Name Period AP Physics Electricity and Magnetism #4 Electrical Circuits, Kirchoff s Rules Dr. Campbell 1. Four 240 Ω light bulbs are connected in series. What is the total resistance of the circuit? What
Tristan s Guide to: Solving Series Circuits. Version: 1.0 Written in 2006. Written By: Tristan Miller [email protected]
Tristan s Guide to: Solving Series Circuits. Version: 1.0 Written in 2006 Written By: Tristan Miller [email protected] Series Circuits. A Series circuit, in my opinion, is the simplest circuit
Section 8.2 Solving a System of Equations Using Matrices (Guassian Elimination)
Section 8. Solving a System of Equations Using Matrices (Guassian Elimination) x + y + z = x y + 4z = x 4y + z = System of Equations x 4 y = 4 z A System in matrix form x A x = b b 4 4 Augmented Matrix
Department of Electrical and Electronic Engineering, California State University, Sacramento
Department of Electrical and Electronic Engineering, California State University, Sacramento Engr 17 Introductory Circuit Analysis, graded, 3 units Instructor: Tatro - Spring 2016 Section 2, Call No. 30289,
13.10: How Series and Parallel Circuits Differ pg. 571
13.10: How Series and Parallel Circuits Differ pg. 571 Key Concepts: 5. Connecting loads in series and parallel affects the current, potential difference, and total resistance. - Using your knowledge of
1 2 3 1 1 2 x = + x 2 + x 4 1 0 1
(d) If the vector b is the sum of the four columns of A, write down the complete solution to Ax = b. 1 2 3 1 1 2 x = + x 2 + x 4 1 0 0 1 0 1 2. (11 points) This problem finds the curve y = C + D 2 t which
Lecture 7 Circuit analysis via Laplace transform
S. Boyd EE12 Lecture 7 Circuit analysis via Laplace transform analysis of general LRC circuits impedance and admittance descriptions natural and forced response circuit analysis with impedances natural
Student Exploration: Circuits
Name: Date: Student Exploration: Circuits Vocabulary: ammeter, circuit, current, ohmmeter, Ohm s law, parallel circuit, resistance, resistor, series circuit, voltage Prior Knowledge Questions (Do these
2.2/2.3 - Solving Systems of Linear Equations
c Kathryn Bollinger, August 28, 2011 1 2.2/2.3 - Solving Systems of Linear Equations A Brief Introduction to Matrices Matrices are used to organize data efficiently and will help us to solve systems of
Solving Systems of Linear Equations
LECTURE 5 Solving Systems of Linear Equations Recall that we introduced the notion of matrices as a way of standardizing the expression of systems of linear equations In today s lecture I shall show how
Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving
Section 7 Algebraic Manipulations and Solving Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Before launching into the mathematics, let s take a moment to talk about the words
= (0.400 A) (4.80 V) = 1.92 W = (0.400 A) (7.20 V) = 2.88 W
Physics 2220 Module 06 Homework 0. What are the magnitude and direction of the current in the 8 Ω resister in the figure? Assume the current is moving clockwise. Then use Kirchhoff's second rule: 3.00
II. Linear Systems of Equations
II. Linear Systems of Equations II. The Definition We are shortly going to develop a systematic procedure which is guaranteed to find every solution to every system of linear equations. The fact that such
30. Bode Plots. Introduction
0. Bode Plots Introduction Each of the circuits in this problem set is represented by a magnitude Bode plot. The network function provides a connection between the Bode plot and the circuit. To solve these
12.4 UNDRIVEN, PARALLEL RLC CIRCUIT*
+ v C C R L - v i L FIGURE 12.24 The parallel second-order RLC circuit shown in Figure 2.14a. 12.4 UNDRIVEN, PARALLEL RLC CIRCUIT* We will now analyze the undriven parallel RLC circuit shown in Figure
a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2.
Chapter 1 LINEAR EQUATIONS 1.1 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,..., a n, b are given
Linear Equations and Inequalities
Linear Equations and Inequalities Section 1.1 Prof. Wodarz Math 109 - Fall 2008 Contents 1 Linear Equations 2 1.1 Standard Form of a Linear Equation................ 2 1.2 Solving Linear Equations......................
Cornerstone Electronics Technology and Robotics I Week 15 Combination Circuits (Series-Parallel Circuits)
Cornerstone Electronics Technology and Robotics I Week 15 Combination Circuits (Series-Parallel Circuits) Administration: o Prayer o Turn in quiz Electricity and Electronics, Chapter 8, Introduction: o
Question 2: How do you solve a matrix equation using the matrix inverse?
Question : How do you solve a matrix equation using the matrix inverse? In the previous question, we wrote systems of equations as a matrix equation AX B. In this format, the matrix A contains the coefficients
1 Solving LPs: The Simplex Algorithm of George Dantzig
Solving LPs: The Simplex Algorithm of George Dantzig. Simplex Pivoting: Dictionary Format We illustrate a general solution procedure, called the simplex algorithm, by implementing it on a very simple example.
Grade Level Year Total Points Core Points % At Standard 9 2003 10 5 7 %
Performance Assessment Task Number Towers Grade 9 The task challenges a student to demonstrate understanding of the concepts of algebraic properties and representations. A student must make sense of the
Using row reduction to calculate the inverse and the determinant of a square matrix
Using row reduction to calculate the inverse and the determinant of a square matrix Notes for MATH 0290 Honors by Prof. Anna Vainchtein 1 Inverse of a square matrix An n n square matrix A is called invertible
Linear Equations ! 25 30 35$ & " 350 150% & " 11,750 12,750 13,750% MATHEMATICS LEARNING SERVICE Centre for Learning and Professional Development
MathsTrack (NOTE Feb 2013: This is the old version of MathsTrack. New books will be created during 2013 and 2014) Topic 4 Module 9 Introduction Systems of to Matrices Linear Equations Income = Tickets!
Algebra I Credit Recovery
Algebra I Credit Recovery COURSE DESCRIPTION: The purpose of this course is to allow the student to gain mastery in working with and evaluating mathematical expressions, equations, graphs, and other topics,
Systems of Linear Equations
Chapter 1 Systems of Linear Equations 1.1 Intro. to systems of linear equations Homework: [Textbook, Ex. 13, 15, 41, 47, 49, 51, 65, 73; page 11-]. Main points in this section: 1. Definition of Linear
DC mesh current analysis
DC mesh current analysis This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,
LAB 11: MATRICES, SYSTEMS OF EQUATIONS and POLYNOMIAL MODELING
LAB 11: MATRICS, SYSTMS OF QUATIONS and POLYNOMIAL MODLING Objectives: 1. Solve systems of linear equations using augmented matrices. 2. Solve systems of linear equations using matrix equations and inverse
Solutions to Math 51 First Exam January 29, 2015
Solutions to Math 5 First Exam January 29, 25. ( points) (a) Complete the following sentence: A set of vectors {v,..., v k } is defined to be linearly dependent if (2 points) there exist c,... c k R, not
Module 2. DC Circuit. Version 2 EE IIT, Kharagpur
Module DC Circuit Lesson 4 Loop Analysis of resistive circuit in the context of dc voltages and currents Objectives Meaning of circuit analysis; distinguish between the terms mesh and loop. To provide
THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT
THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT YOUR NAME LAB MEETING TIME Reference: C.W. Alexander and M.N.O Sadiku, Fundamentals
Solving Mass Balances using Matrix Algebra
Page: 1 Alex Doll, P.Eng, Alex G Doll Consulting Ltd. http://www.agdconsulting.ca Abstract Matrix Algebra, also known as linear algebra, is well suited to solving material balance problems encountered
Operation Count; Numerical Linear Algebra
10 Operation Count; Numerical Linear Algebra 10.1 Introduction Many computations are limited simply by the sheer number of required additions, multiplications, or function evaluations. If floating-point
Basic Laws Circuit Theorems Methods of Network Analysis Non-Linear Devices and Simulation Models
EE Modul 1: Electric Circuits Theory Basic Laws Circuit Theorems Methods of Network Analysis Non-Linear Devices and Simulation Models EE Modul 1: Electric Circuits Theory Current, Voltage, Impedance Ohm
EQUATIONS and INEQUALITIES
EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line
Circuits 1 M H Miller
Introduction to Graph Theory Introduction These notes are primarily a digression to provide general background remarks. The subject is an efficient procedure for the determination of voltages and currents
How To Find The Current Of A Circuit
The node voltage method Equivalent resistance Voltage / current dividers Source transformations Node voltages Mesh currents Superposition Not every circuit lends itself to short-cut methods. Sometimes
Using the Impedance Method
Using the Impedance Method The impedance method allows us to completely eliminate the differential equation approach for the determination of the response of circuits. In fact the impedance method even
Tristan s Guide to: Solving Parallel Circuits. Version: 1.0 Written in 2006. Written By: Tristan Miller [email protected]
Tristan s Guide to: Solving Parallel Circuits. Version: 1.0 Written in 2006 Written By: Tristan Miller [email protected] Parallel Circuits. Parallel Circuits are a little bit more complicated
Lesson Plan. Parallel Resistive Circuits Part 1 Electronics
Parallel Resistive Circuits Part 1 Electronics Lesson Plan Performance Objective At the end of the lesson, students will demonstrate the ability to apply problem solving and analytical techniques to calculate
What is Linear Programming?
Chapter 1 What is Linear Programming? An optimization problem usually has three essential ingredients: a variable vector x consisting of a set of unknowns to be determined, an objective function of x to
Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix multiplication).
MAT 2 (Badger, Spring 202) LU Factorization Selected Notes September 2, 202 Abstract: We describe the beautiful LU factorization of a square matrix (or how to write Gaussian elimination in terms of matrix
Name: Section Registered In:
Name: Section Registered In: Math 125 Exam 3 Version 1 April 24, 2006 60 total points possible 1. (5pts) Use Cramer s Rule to solve 3x + 4y = 30 x 2y = 8. Be sure to show enough detail that shows you are
Mathematical finance and linear programming (optimization)
Mathematical finance and linear programming (optimization) Geir Dahl September 15, 2009 1 Introduction The purpose of this short note is to explain how linear programming (LP) (=linear optimization) may
Linear Programming. March 14, 2014
Linear Programming March 1, 01 Parts of this introduction to linear programming were adapted from Chapter 9 of Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest and Stein [1]. 1
LAB2 Resistors, Simple Resistive Circuits in Series and Parallel Objective:
LAB2 Resistors, Simple Resistive Circuits in Series and Parallel Objective: In this lab, you will become familiar with resistors and potentiometers and will learn how to measure resistance. You will also
II. Linear Systems of Equations
II. Linear Systems of Equations II. The Definition We are shortly going to develop a systematic procedure which is guaranteed to find every solution to every system of linear equations. The fact that such
1.5 SOLUTION SETS OF LINEAR SYSTEMS
1-2 CHAPTER 1 Linear Equations in Linear Algebra 1.5 SOLUTION SETS OF LINEAR SYSTEMS Many of the concepts and computations in linear algebra involve sets of vectors which are visualized geometrically as
SOLVING LINEAR SYSTEMS
SOLVING LINEAR SYSTEMS Linear systems Ax = b occur widely in applied mathematics They occur as direct formulations of real world problems; but more often, they occur as a part of the numerical analysis
How To Understand And Solve Algebraic Equations
College Algebra Course Text Barnett, Raymond A., Michael R. Ziegler, and Karl E. Byleen. College Algebra, 8th edition, McGraw-Hill, 2008, ISBN: 978-0-07-286738-1 Course Description This course provides
BJT AC Analysis. by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008
by Kenneth A. Kuhn Oct. 20, 2001, rev Aug. 31, 2008 Introduction This note will discuss AC analysis using the beta, re transistor model shown in Figure 1 for the three types of amplifiers: common-emitter,
5 Homogeneous systems
5 Homogeneous systems Definition: A homogeneous (ho-mo-jeen -i-us) system of linear algebraic equations is one in which all the numbers on the right hand side are equal to : a x +... + a n x n =.. a m
Parallel and Series Resistors, Kirchoff s Law
Experiment 2 31 Kuwait University Physics 107 Physics Department Parallel and Series Resistors, Kirchoff s Law Introduction In this experiment the relations among voltages, currents and resistances for
Chapter 5. Parallel Circuits ISU EE. C.Y. Lee
Chapter 5 Parallel Circuits Objectives Identify a parallel circuit Determine the voltage across each parallel branch Apply Kirchhoff s current law Determine total parallel resistance Apply Ohm s law in
School of Engineering Department of Electrical and Computer Engineering
1 School of Engineering Department of Electrical and Computer Engineering 332:223 Principles of Electrical Engineering I Laboratory Experiment #4 Title: Operational Amplifiers 1 Introduction Objectives
Curcuits and Differential Equaitons
Objective: Curcuits and Differential Equaitons Given a circuit, find the differential equation which describes that circuit. Solve that differential equation numerically (with SPICE, MATAB, or ISSIM) Ciruits
8 Square matrices continued: Determinants
8 Square matrices continued: Determinants 8. Introduction Determinants give us important information about square matrices, and, as we ll soon see, are essential for the computation of eigenvalues. You
The Gamma Match. 1 Equal Size Elements
The Gamma Match The gamma match was originally invented as a means of feeding vertical monopole antennas for medium wave broadcasts, which were earthed at the base for lightning protection (see Figure
Lecture Notes: ECS 203 Basic Electrical Engineering Semester 1/2010. Dr.Prapun Suksompong 1 June 16, 2010
Sirindhorn International Institute of Technology Thammasat University School of Information, Computer and Communication Technology Lecture Notes: ECS 203 Basic Electrical Engineering Semester 1/2010 Dr.Prapun
LU Factorization Method to Solve Linear Programming Problem
Website: wwwijetaecom (ISSN 2250-2459 ISO 9001:2008 Certified Journal Volume 4 Issue 4 April 2014) LU Factorization Method to Solve Linear Programming Problem S M Chinchole 1 A P Bhadane 2 12 Assistant
Solving simultaneous equations using the inverse matrix
Solving simultaneous equations using the inverse matrix 8.2 Introduction The power of matrix algebra is seen in the representation of a system of simultaneous linear equations as a matrix equation. Matrix
DC Circuits (Combination of resistances)
Name: Partner: Partner: Partner: DC Circuits (Combination of resistances) EQUIPMENT NEEDED: Circuits Experiment Board One Dcell Battery Wire leads Multimeter 100, 330, 1k resistors Purpose The purpose
MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).
MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0
Introduction to the Finite Element Method (FEM)
Introduction to the Finite Element Method (FEM) ecture First and Second Order One Dimensional Shape Functions Dr. J. Dean Discretisation Consider the temperature distribution along the one-dimensional
Linear Equations in One Variable
Linear Equations in One Variable MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this section we will learn how to: Recognize and combine like terms. Solve
Lecture 5 Principal Minors and the Hessian
Lecture 5 Principal Minors and the Hessian Eivind Eriksen BI Norwegian School of Management Department of Economics October 01, 2010 Eivind Eriksen (BI Dept of Economics) Lecture 5 Principal Minors and
Kirchhoff's Current Law (KCL)
Kirchhoff's Current Law (KCL) I. Charge (current flow) conservation law (the Kirchhoff s Current law) Pipe Pipe Pipe 3 Total volume of water per second flowing through pipe = total volume of water per
Math 202-0 Quizzes Winter 2009
Quiz : Basic Probability Ten Scrabble tiles are placed in a bag Four of the tiles have the letter printed on them, and there are two tiles each with the letters B, C and D on them (a) Suppose one tile
How To Understand And Solve A Linear Programming Problem
At the end of the lesson, you should be able to: Chapter 2: Systems of Linear Equations and Matrices: 2.1: Solutions of Linear Systems by the Echelon Method Define linear systems, unique solution, inconsistent,
