Boolean Logic in MATLAB
|
|
|
- Sara Terry
- 9 years ago
- Views:
Transcription
1 Boolean Logic in MATLAB When programming, there will be times when you want to control the flow of your code based on certain events occurring or certain values being reached. Primarily, this is handled through "if" statements and "while" statement (also known as "while" loops or "do while" loops). The system for evaluating logical operations (that is, to check whether or not some specified condition is met) is known as Boolean Logic. Don't let the name make you wary; this can be boiled down to little more than checking whether or not a given statement is true or false, along with using the operations AND, OR, and NOT. You've probably done this before in other classes. Some programming languages have special Boolean variables "True" and "False" to be used exclusively in these Boolean Logic operations. MATLAB is different: Like many mathematicians, it uses the value 0 for "False" and 1 for "True." MATLAB actually goes one step further and uses any number other than 0 for "True." Basic Logical Comparisons When programming, there will be times when you want to check whether a certain variable has reached a certain value. This is when you will make a logical comparison. All this means is that you will ask the program to evaluate whether a certain statement is true or false. For example; 12 < 5. If you type this into MATLAB, MATLAB will return "0," meaning the statement is false. You will often use inequalities for your logical comparisons. "Less than" and "greater than" are entered simply with < or >, respectively. "Less than or equal to" and "greater than or equal to" are entered in MATLAB by <= or >=, respectively. Some examples (try these in MATLAB if you would like): 4 > 1 12<=12 13>= 3 9 <1e6 3+4<2*3-4 If you enter these into MATLAB, you should notice two things: 1) Adding spaces before or after the inequality signs doesn't make a difference. 2) The determination of "True" or "False" is made after the statements on both sides have been evaluated. In other words, logical comparisons are at the bottom (or end) of the order of operations (PEMDAS). This means that you don't have to throw tons of parentheses into your code! (3+4) < ((2*3)-4) is the same as 3+4 < 2*3-4 (Also, the "e" above is MATLAB's scientific notation. 1e6 is the same as 1*10^6).
2 There are two other basic logical comparisons that you will use in programming: Equals and "Not Equals." Normally, one might say "Inequality" instead of "Not Equals," but I already used "inequality" above talking about comparisons such as < and >=, so I didn't want there to be any confusion. When checking for equality, remember that "=" is used to assign variables in MATLAB. If you were to type 3 = 3 into MATLAB, you would receive an error. To check if two values are equal, you must use "==" (two equal signs). This is very easy to forget when programming, so some programmers recommend replacing an "equals" check with a "not not equal" check. For information on this and on the "Not Equals" check, see the section on NOT below. Basic Logical Operations: AND, OR, and NOT. Just like we can addition, subtraction, multiplication, and division are basic operations on numbers, there are three basic operations that we can use on the values "True" and "False," and they each have their own special symbols. AND The AND operation takes two logical values (Boolean values) and returns "True" if and only if both values are "True." The symbol for AND in MATLAB (and many other programming languages) is &&. Some examples: 1 && 0 0 && 0 1 && 1 There is also an "and" command in MATLAB that does the same thing, but it's not used very often. and(1,0) and(0,0) and(1,1) Remember, however, that MATLAB uses 0 and 1 for "False" and "True," so we can use our basic numerical operations on Boolean values in MATLAB! Specifically, multiplication is logically equivalent to AND. Think about it this way: If we multiply two numbers together and get 0, then at least one of them was 0. If we multiply two numbers together and get something that is not 0, then neither of the numbers was 0. This is the same as AND: We get 1 ("not zero") if and only if neither Boolean value is 0. For this reason, we can freely use * in place of &&. As one final assurance that these two operations are equivalent, compare the following truth tables:
3 && True False True False * OR The OR operation takes two Boolean values and retuns "True" if and only if at least one value is "True." The symbol for OR in MATLAB (and many other programming languages) is (two vertical lines or "pipes," shift + \). Some examples: There is also an "or" command just like the "and" command, and it is not used very often, Also, since we can use numerical operations on Boolean values in MATLAB, we find that addition is almost logically equivalent to OR. As long as none of our values are negative, then addition is logially equivalent to OR. Think about it this way: If we add two non-negative numbers together and get 0, then both numbers must have been 0. If we add two non-negative numbers together and get something other than 0, then at least one of them had to be greater than 0. This is the same as OR. Thus, if we're careful about what numbers appear, we can use + in place of. Once again, truth tables: True False True False
4 (remember that 2 is also "True" in MATLAB). NOT The final basic Boolean operation is NOT: It takes one Boolean value and returns the opposite value. "NOT True" is "False," and "NOT False" is "True." The symbol for NOT in MATLAB (and some other programming languages) is ~ (tilde). (Just a note: the! (exclamation mark) seems to be used most often for the NOT operator in programming languages). The NOT operator will also stack with itself, which is mostly used when you want to convert a number other than 1 or 0 into 1. Some examples: ~0 ~1 ~4 ~-3 ~~0 ~~1 ~~580 ~~-38.4 ~(3<4) ~(4==10) Not Equals Now that we've introduced the NOT operator, we can more easily introduce the "Not Equals" operator: ~=. Some examples: 1 ~= 1 3 ~= -4 The fact that "=" is used for assigning a value to a variable and "==" is used for logical comparison can cause problems if you're not very careful in your coding. For this reason, many programmers replace an "Equals" check with a "not not equals," that is, ~(a ~= b). Some examples: ~(5~=5) 5==5 ~(3~=4) 3==4
5 Whichever you use, just be careful!
Independent samples t-test. Dr. Tom Pierce Radford University
Independent samples t-test Dr. Tom Pierce Radford University The logic behind drawing causal conclusions from experiments The sampling distribution of the difference between means The standard error of
1.4 Compound Inequalities
Section 1.4 Compound Inequalities 53 1.4 Compound Inequalities This section discusses a technique that is used to solve compound inequalities, which is a phrase that usually refers to a pair of inequalities
Pre-Algebra - Order of Operations
0.3 Pre-Algebra - Order of Operations Objective: Evaluate expressions using the order of operations, including the use of absolute value. When simplifying expressions it is important that we simplify them
MULTIPLICATION AND DIVISION OF REAL NUMBERS In this section we will complete the study of the four basic operations with real numbers.
1.4 Multiplication and (1-25) 25 In this section Multiplication of Real Numbers Division by Zero helpful hint The product of two numbers with like signs is positive, but the product of three numbers with
Training Manual. Pre-Employment Math. Version 1.1
Training Manual Pre-Employment Math Version 1.1 Created April 2012 1 Table of Contents Item # Training Topic Page # 1. Operations with Whole Numbers... 3 2. Operations with Decimal Numbers... 4 3. Operations
Linear Programming Problems
Linear Programming Problems Linear programming problems come up in many applications. In a linear programming problem, we have a function, called the objective function, which depends linearly on a number
Inequalities - Solve and Graph Inequalities
3.1 Inequalities - Solve and Graph Inequalities Objective: Solve, graph, and give interval notation for the solution to linear inequalities. When we have an equation such as x = 4 we have a specific value
Chapter 14: Boolean Expressions Bradley Kjell (Revised 10/08/08)
Chapter 14: Boolean Expressions Bradley Kjell (Revised 10/08/08) The if statements of the previous chapters ask simple questions such as count
2.6 Exponents and Order of Operations
2.6 Exponents and Order of Operations We begin this section with exponents applied to negative numbers. The idea of applying an exponent to a negative number is identical to that of a positive number (repeated
7. Solving Linear Inequalities and Compound Inequalities
7. Solving Linear Inequalities and Compound Inequalities Steps for solving linear inequalities are very similar to the steps for solving linear equations. The big differences are multiplying and dividing
Inequalities - Absolute Value Inequalities
3.3 Inequalities - Absolute Value Inequalities Objective: Solve, graph and give interval notation for the solution to inequalities with absolute values. When an inequality has an absolute value we will
Click on the links below to jump directly to the relevant section
Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is
Exponents. Exponents tell us how many times to multiply a base number by itself.
Exponents Exponents tell us how many times to multiply a base number by itself. Exponential form: 5 4 exponent base number Expanded form: 5 5 5 5 25 5 5 125 5 625 To use a calculator: put in the base number,
if and if-else: Part 1
if and if-else: Part 1 Objectives Write if statements (including blocks) Write if-else statements (including blocks) Write nested if-else statements We will now talk about writing statements that make
LINEAR INEQUALITIES. less than, < 2x + 5 x 3 less than or equal to, greater than, > 3x 2 x 6 greater than or equal to,
LINEAR INEQUALITIES When we use the equal sign in an equation we are stating that both sides of the equation are equal to each other. In an inequality, we are stating that both sides of the equation are
Adding and Subtracting Positive and Negative Numbers
Adding and Subtracting Positive and Negative Numbers Absolute Value For any real number, the distance from zero on the number line is the absolute value of the number. The absolute value of any real number
5.1 Radical Notation and Rational Exponents
Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots
Example of a Java program
Example of a Java program class SomeNumbers static int square (int x) return x*x; public static void main (String[] args) int n=20; if (args.length > 0) // change default n = Integer.parseInt(args[0]);
Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.
Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole
Solutions of Linear Equations in One Variable
2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools
15 Prime and Composite Numbers
15 Prime and Composite Numbers Divides, Divisors, Factors, Multiples In section 13, we considered the division algorithm: If a and b are whole numbers with b 0 then there exist unique numbers q and r such
Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving
Section 7 Algebraic Manipulations and Solving Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Before launching into the mathematics, let s take a moment to talk about the words
MATH 60 NOTEBOOK CERTIFICATIONS
MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5
8 Primes and Modular Arithmetic
8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.
Binary Adders: Half Adders and Full Adders
Binary Adders: Half Adders and Full Adders In this set of slides, we present the two basic types of adders: 1. Half adders, and 2. Full adders. Each type of adder functions to add two binary bits. In order
Common Beginner C++ Programming Mistakes
Common Beginner C++ Programming Mistakes This documents some common C++ mistakes that beginning programmers make. These errors are two types: Syntax errors these are detected at compile time and you won't
Chapter 5. Selection 5-1
Chapter 5 Selection 5-1 Selection (Decision) The second control logic structure is selection: Selection Choosing between two or more alternative actions. Selection statements alter the sequential flow
Domain of a Composition
Domain of a Composition Definition Given the function f and g, the composition of f with g is a function defined as (f g)() f(g()). The domain of f g is the set of all real numbers in the domain of g such
EE 261 Introduction to Logic Circuits. Module #2 Number Systems
EE 261 Introduction to Logic Circuits Module #2 Number Systems Topics A. Number System Formation B. Base Conversions C. Binary Arithmetic D. Signed Numbers E. Signed Arithmetic F. Binary Codes Textbook
Chapter 6. Linear Programming: The Simplex Method. Introduction to the Big M Method. Section 4 Maximization and Minimization with Problem Constraints
Chapter 6 Linear Programming: The Simplex Method Introduction to the Big M Method In this section, we will present a generalized version of the simplex method that t will solve both maximization i and
Basic Logic Gates Richard E. Haskell
BASIC LOGIC GATES 1 E Basic Logic Gates Richard E. Haskell All digital systems are made from a few basic digital circuits that we call logic gates. These circuits perform the basic logic functions that
Method To Solve Linear, Polynomial, or Absolute Value Inequalities:
Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with
Order of Operations More Essential Practice
Order of Operations More Essential Practice We will be simplifying expressions using the order of operations in this section. Automatic Skill: Order of operations needs to become an automatic skill. Failure
MATH-0910 Review Concepts (Haugen)
Unit 1 Whole Numbers and Fractions MATH-0910 Review Concepts (Haugen) Exam 1 Sections 1.5, 1.6, 1.7, 1.8, 2.1, 2.2, 2.3, 2.4, and 2.5 Dividing Whole Numbers Equivalent ways of expressing division: a b,
Chapter 3. Cartesian Products and Relations. 3.1 Cartesian Products
Chapter 3 Cartesian Products and Relations The material in this chapter is the first real encounter with abstraction. Relations are very general thing they are a special type of subset. After introducing
A positive exponent means repeated multiplication. A negative exponent means the opposite of repeated multiplication, which is repeated
Eponents Dealing with positive and negative eponents and simplifying epressions dealing with them is simply a matter of remembering what the definition of an eponent is. division. A positive eponent means
Common Multiples. List the multiples of 3. The multiples of 3 are 3 1, 3 2, 3 3, 3 4,...
.2 Common Multiples.2 OBJECTIVES 1. Find the least common multiple (LCM) of two numbers 2. Find the least common multiple (LCM) of a group of numbers. Compare the size of two fractions In this chapter,
Accentuate the Negative: Homework Examples from ACE
Accentuate the Negative: Homework Examples from ACE Investigation 1: Extending the Number System, ACE #6, 7, 12-15, 47, 49-52 Investigation 2: Adding and Subtracting Rational Numbers, ACE 18-22, 38(a),
Linear Programming Notes V Problem Transformations
Linear Programming Notes V Problem Transformations 1 Introduction Any linear programming problem can be rewritten in either of two standard forms. In the first form, the objective is to maximize, the material
This explains why the mixed number equivalent to 7/3 is 2 + 1/3, also written 2
Chapter 28: Proper and Improper Fractions A fraction is called improper if the numerator is greater than the denominator For example, 7/ is improper because the numerator 7 is greater than the denominator
Notes for EER #4 Graph transformations (vertical & horizontal shifts, vertical stretching & compression, and reflections) of basic functions.
Notes for EER #4 Graph transformations (vertical & horizontal shifts, vertical stretching & compression, and reflections) of basic functions. Basic Functions In several sections you will be applying shifts
Very simple: the phrase 'can I' followed by the verb. But what verb form comes after the phrase 'can I'? Listen to these two examples of asking.
BBC Learning English How to Asking permission Hello this is BBC Learning English dot com, with me, Jackie Dalton. This programme is about asking permission which means asking someone if you're allowed
Section 1. Inequalities -5-4 -3-2 -1 0 1 2 3 4 5
Worksheet 2.4 Introduction to Inequalities Section 1 Inequalities The sign < stands for less than. It was introduced so that we could write in shorthand things like 3 is less than 5. This becomes 3 < 5.
Learning Objectives for Section 1.1 Linear Equations and Inequalities
Learning Objectives for Section 1.1 Linear Equations and Inequalities After this lecture and the assigned homework, you should be able to solve linear equations. solve linear inequalities. use interval
Using Casio Graphics Calculators
Using Casio Graphics Calculators (Some of this document is based on papers prepared by Donald Stover in January 2004.) This document summarizes calculation and programming operations with many contemporary
26 Integers: Multiplication, Division, and Order
26 Integers: Multiplication, Division, and Order Integer multiplication and division are extensions of whole number multiplication and division. In multiplying and dividing integers, the one new issue
Exponents, Radicals, and Scientific Notation
General Exponent Rules: Exponents, Radicals, and Scientific Notation x m x n = x m+n Example 1: x 5 x = x 5+ = x 7 (x m ) n = x mn Example : (x 5 ) = x 5 = x 10 (x m y n ) p = x mp y np Example : (x) =
This is a square root. The number under the radical is 9. (An asterisk * means multiply.)
Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize
Algebra Cheat Sheets
Sheets Algebra Cheat Sheets provide you with a tool for teaching your students note-taking, problem-solving, and organizational skills in the context of algebra lessons. These sheets teach the concepts
Linear Equations and Inequalities
Linear Equations and Inequalities Section 1.1 Prof. Wodarz Math 109 - Fall 2008 Contents 1 Linear Equations 2 1.1 Standard Form of a Linear Equation................ 2 1.2 Solving Linear Equations......................
Object Oriented Software Design
Object Oriented Software Design Introduction to Java - II Giuseppe Lipari http://retis.sssup.it/~lipari Scuola Superiore Sant Anna Pisa September 14, 2011 G. Lipari (Scuola Superiore Sant Anna) Introduction
SIMPLIFYING ALGEBRAIC FRACTIONS
Tallahassee Community College 5 SIMPLIFYING ALGEBRAIC FRACTIONS In arithmetic, you learned that a fraction is in simplest form if the Greatest Common Factor (GCF) of the numerator and the denominator is
UNIT 3 VOCABULARY: INTEGERS
1º ESO Bilingüe Page 1 UNIT 3 VOCABULARY: INTEGERS 3.1. Some uses of negative numbers There are many situations in which you need to use negative numbers. POSITIONS A submarine which is sailing 700 m below
A.2. Exponents and Radicals. Integer Exponents. What you should learn. Exponential Notation. Why you should learn it. Properties of Exponents
Appendix A. Exponents and Radicals A11 A. Exponents and Radicals What you should learn Use properties of exponents. Use scientific notation to represent real numbers. Use properties of radicals. Simplify
Mathematical Induction
Mathematical Induction In logic, we often want to prove that every member of an infinite set has some feature. E.g., we would like to show: N 1 : is a number 1 : has the feature Φ ( x)(n 1 x! 1 x) How
DDBA 8438: Introduction to Hypothesis Testing Video Podcast Transcript
DDBA 8438: Introduction to Hypothesis Testing Video Podcast Transcript JENNIFER ANN MORROW: Welcome to "Introduction to Hypothesis Testing." My name is Dr. Jennifer Ann Morrow. In today's demonstration,
Scientific Notation. Section 7-1 Part 2
Scientific Notation Section 7-1 Part 2 Goals Goal To write numbers in scientific notation and standard form. To compare and order numbers using scientific notation. Vocabulary Scientific Notation Powers
1.6 The Order of Operations
1.6 The Order of Operations Contents: Operations Grouping Symbols The Order of Operations Exponents and Negative Numbers Negative Square Roots Square Root of a Negative Number Order of Operations and Negative
Pre-Algebra - Integers
0.1 Pre-Algebra - Integers Objective: Add, Subtract, Multiply and Divide Positive and Negative Numbers. The ability to work comfortably with negative numbers is essential to success in algebra. For this
Welcome to Basic Math Skills!
Basic Math Skills Welcome to Basic Math Skills! Most students find the math sections to be the most difficult. Basic Math Skills was designed to give you a refresher on the basics of math. There are lots
Math Workshop October 2010 Fractions and Repeating Decimals
Math Workshop October 2010 Fractions and Repeating Decimals This evening we will investigate the patterns that arise when converting fractions to decimals. As an example of what we will be looking at,
SAT Math Facts & Formulas Review Quiz
Test your knowledge of SAT math facts, formulas, and vocabulary with the following quiz. Some questions are more challenging, just like a few of the questions that you ll encounter on the SAT; these questions
So far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs.
equential Logic o far we have investigated combinational logic for which the output of the logic devices/circuits depends only on the present state of the inputs. In sequential logic the output of the
Radicals - Rational Exponents
8. Radicals - Rational Exponents Objective: Convert between radical notation and exponential notation and simplify expressions with rational exponents using the properties of exponents. When we simplify
So let us begin our quest to find the holy grail of real analysis.
1 Section 5.2 The Complete Ordered Field: Purpose of Section We present an axiomatic description of the real numbers as a complete ordered field. The axioms which describe the arithmetic of the real numbers
NUMBER SYSTEMS. William Stallings
NUMBER SYSTEMS William Stallings The Decimal System... The Binary System...3 Converting between Binary and Decimal...3 Integers...4 Fractions...5 Hexadecimal Notation...6 This document available at WilliamStallings.com/StudentSupport.html
Solving Rational Equations
Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,
Chapter 4 -- Decimals
Chapter 4 -- Decimals $34.99 decimal notation ex. The cost of an object. ex. The balance of your bank account ex The amount owed ex. The tax on a purchase. Just like Whole Numbers Place Value - 1.23456789
ChE-1800 H-2: Flowchart Diagrams (last updated January 13, 2013)
ChE-1800 H-2: Flowchart Diagrams (last updated January 13, 2013) This handout contains important information for the development of flowchart diagrams Common Symbols for Algorithms The first step before
Determine If An Equation Represents a Function
Question : What is a linear function? The term linear function consists of two parts: linear and function. To understand what these terms mean together, we must first understand what a function is. The
3.1 Solving Systems Using Tables and Graphs
Algebra 2 Chapter 3 3.1 Solve Systems Using Tables & Graphs 3.1 Solving Systems Using Tables and Graphs A solution to a system of linear equations is an that makes all of the equations. To solve a system
FRACTIONS COMMON MISTAKES
FRACTIONS COMMON MISTAKES 0/0/009 Fractions Changing Fractions to Decimals How to Change Fractions to Decimals To change fractions to decimals, you need to divide the numerator (top number) by the denominator
Exponents and Radicals
Exponents and Radicals (a + b) 10 Exponents are a very important part of algebra. An exponent is just a convenient way of writing repeated multiplications of the same number. Radicals involve the use of
Indices and Surds. The Laws on Indices. 1. Multiplication: Mgr. ubomíra Tomková
Indices and Surds The term indices refers to the power to which a number is raised. Thus x is a number with an index of. People prefer the phrase "x to the power of ". Term surds is not often used, instead
Unit 1 Number Sense. In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions.
Unit 1 Number Sense In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions. BLM Three Types of Percent Problems (p L-34) is a summary BLM for the material
MATH 13150: Freshman Seminar Unit 10
MATH 13150: Freshman Seminar Unit 10 1. Relatively prime numbers and Euler s function In this chapter, we are going to discuss when two numbers are relatively prime, and learn how to count the numbers
Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.
Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear
Introduction to Macros and Visual Basic in Excel
Introduction to Macros and Visual Basic in Excel 3 S. Malpezzi, Real Estate 631 Draft, November 8, 2007. Subject to Revision. 1998, 2001, 2007 Stephen Malpezzi Recording box is checked. Also notice that
CAHSEE on Target UC Davis, School and University Partnerships
UC Davis, School and University Partnerships CAHSEE on Target Mathematics Curriculum Published by The University of California, Davis, School/University Partnerships Program 006 Director Sarah R. Martinez,
The Order of Operations Redesigned. Rachel McCloskey Dr. Valerie Faulkner
+ The Order of Operations Redesigned Rachel McCloskey Dr. Valerie Faulkner + Please simplify and answer the following: n 23 2 + 12 8 = n 4 + 3 x 7 - (5 + 2) 3 = n Why do we have the order of operations?
Lesson 4. Factors and Multiples. Objectives
Student Name: Date: Contact Person Name: Phone Number: Lesson 4 Factors and Multiples Objectives Understand what factors and multiples are Write a number as a product of its prime factors Find the greatest
Operations with positive and negative numbers - see first chapter below. Rules related to working with fractions - see second chapter below
INTRODUCTION If you are uncomfortable with the math required to solve the word problems in this class, we strongly encourage you to take a day to look through the following links and notes. Some of them
Computer Science 281 Binary and Hexadecimal Review
Computer Science 281 Binary and Hexadecimal Review 1 The Binary Number System Computers store everything, both instructions and data, by using many, many transistors, each of which can be in one of two
Square Roots and Other Radicals
Radicals - Definition Radicals, or roots, are the opposite operation of applying exponents. A power can be undone with a radical and a radical can be undone with a power. For example, if you square 2,
Functions and their Graphs
Functions and their Graphs Functions All of the functions you will see in this course will be real-valued functions in a single variable. A function is real-valued if the input and output are real numbers
The Function Game: Can You Guess the Secret?
The Function Game: Can You Guess the Secret? Copy the input and output numbers for each secret given by your teacher. Write your guess for what is happening to the input number to create the output number
PROG0101 Fundamentals of Programming PROG0101 FUNDAMENTALS OF PROGRAMMING. Chapter 3 Algorithms
PROG0101 FUNDAMENTALS OF PROGRAMMING Chapter 3 1 Introduction to A sequence of instructions. A procedure or formula for solving a problem. It was created mathematician, Mohammed ibn-musa al-khwarizmi.
What Fun! It's Practice with Scientific Notation!
What Fun! It's Practice with Scientific Notation! Review of Scientific Notation Scientific notation provides a place to hold the zeroes that come after a whole number or before a fraction. The number 100,000,000
Decimals and other fractions
Chapter 2 Decimals and other fractions How to deal with the bits and pieces When drugs come from the manufacturer they are in doses to suit most adult patients. However, many of your patients will be very
Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.
Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used
6.4 Normal Distribution
Contents 6.4 Normal Distribution....................... 381 6.4.1 Characteristics of the Normal Distribution....... 381 6.4.2 The Standardized Normal Distribution......... 385 6.4.3 Meaning of Areas under
UIL Computer Science for Dummies by Jake Warren and works from Mr. Fleming
UIL Computer Science for Dummies by Jake Warren and works from Mr. Fleming 1 2 Foreword First of all, this book isn t really for dummies. I wrote it for myself and other kids who are on the team. Everything
Toothpick Squares: An Introduction to Formulas
Unit IX Activity 1 Toothpick Squares: An Introduction to Formulas O V E R V I E W Rows of squares are formed with toothpicks. The relationship between the number of squares in a row and the number of toothpicks
Core Maths C1. Revision Notes
Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the
Solving Linear Equations - General Equations
1.3 Solving Linear Equations - General Equations Objective: Solve general linear equations with variables on both sides. Often as we are solving linear equations we will need to do some work to set them
Oct: 50 8 = 6 (r = 2) 6 8 = 0 (r = 6) Writing the remainders in reverse order we get: (50) 10 = (62) 8
ECE Department Summer LECTURE #5: Number Systems EEL : Digital Logic and Computer Systems Based on lecture notes by Dr. Eric M. Schwartz Decimal Number System: -Our standard number system is base, also
Mathematics. What to expect Resources Study Strategies Helpful Preparation Tips Problem Solving Strategies and Hints Test taking strategies
Mathematics Before reading this section, make sure you have read the appropriate description of the mathematics section test (computerized or paper) to understand what is expected of you in the mathematics
Visual Basic Programming. An Introduction
Visual Basic Programming An Introduction Why Visual Basic? Programming for the Windows User Interface is extremely complicated. Other Graphical User Interfaces (GUI) are no better. Visual Basic provides
Beginning Algebra Math 100B. Math Study Center BYU-Idaho
Beginning Algebra Math 100B Math Study Center BYU-Idaho Preface This math book has been created by the BYU-Idaho Math Study Center for the college student who needs an introduction to Algebra. This book
**Unedited Draft** Arithmetic Revisited Lesson 5: Decimal Fractions or Place Value Extended Part 3: Multiplying Decimals
1. Multiplying Decimals **Unedited Draft** Arithmetic Revisited Lesson 5: Decimal Fractions or Place Value Extended Part 3: Multiplying Decimals Multiplying two (or more) decimals is very similar to how
