Accentuate the Negative: Homework Examples from ACE
|
|
|
- Daisy McDaniel
- 9 years ago
- Views:
Transcription
1 Accentuate the Negative: Homework Examples from ACE Investigation 1: Extending the Number System, ACE #6, 7, 12-15, 47, Investigation 2: Adding and Subtracting Rational Numbers, ACE 18-22, 38(a), 48 (a) (d) and i, 56 Investigation 3: Multiplying and Dividing Rational Numbers, ACE #14, 38 Investigation 4: Properties of Operations, ACE #8-11, 45 (a) (d) Investigation 1: Extending the Number System ACE #6, 7 For Exercises 6 and 7, find each Math Fever team s score. Write a number sentence for each team. Assume that each team starts with 0 points (-150) + (-200) = 200 or = (-200) (-150) + (-50) = -100 or = -100 This game context was used for in-class problems to introduce students to positives and negatives and combining these quantities. Investigation 1: Extending the Number System ACE #12-15 Copy each pair of numbers in Exercises Then insert <, >, or = to make each a true statement ? ? ? ? is greater than 0, or 3 > is less than 23.4, or -23.4< > -79
2 > -90 Investigation 1: Extending the Number System ACE #47 The greatest recorded one-day temperature change occurred in Browning, Montana (bordering Glacier National Park), from January 23-24, The temperature fell from 44 degrees to -56 degrees in less than 24 hours. a. What was the temperature change that day? b. Write a number sentence to represent the change. c. Show the temperature change on a number line. a. There are multiple ways to think about this problem. It takes 44 units to drop from 44 to 0, and then another 56 units to drop from 0 to -56. This is a total change (drop) of = 100 degrees! If students think of this as a direction as well as a change, they are thinking of the difference from 44 to -56, that is, = -100, down 100 degrees. b. Two possible answers: = -100, or = -56. c.
3 Investigation 1: Extending the Number System ACE #49-52 For Exercises 49 52, find the missing part for each chip problem. Write a number sentence for each problem. In the chip board model, the black circles ( Bs ) stand for a black chip with a value of positive 1, and the red circles ( Rs ) stand for a red chip with value negative 1. So, 1B + 1R = 0, 3B + 3R = 0 etc. 49. Start with +3 and add -5. We can think of each pair of B + R as 1 + (-1) = 0. Since there are 2 more red chips we end with two red chips for a value of -2: = Start with and subtract (-3). Since there are not enough reds to subtract three reds, we could alter the original representation from to, for example, by adding two more red chips and two more black chips. Notice that this change does not actually change the value of the board, but it does allow us to take away three reds (subtract -3). So now we have three red chips and 4 black chips, and when we take away three red chips, the end result is four black chips for a value of +4: (-3) = 4. Notice that after the 3R has been subtracted, the net result is the addition of 3B to the board. This helps explain why subtracting -3 is the same as adding Start with -5 and do something so that we end with -2. This could be -5 add 3, or add three blacks chips. Or students might think of this as-5 (-3), which would be take away three reds. The number sentence would be: -5 (-3) = -2 or = -2. Notice that again, we see that adding +3 gives the same result as subtracting There are several possible answers, but here s the general idea: We are starting with some unknown value, then subtracting positive 3 (taking away three black chips) to end with -4. We must have started with = -1 or some combination of chips that makes a value of -1 (such as one red chip, two black chips and 3 reds, four reds and three blacks, and so on). A possible number sentence would be: -1 3 = -4.
4 Investigation 2: Adding and Subtracting Rational Numbers ACE #18-22 Use your algorithms to find each difference without using a calculator. Show your work (-40) An algorithm is an efficient and logical procedure to solve a problem. Some students algorithm may involve using the chip model or a number line. For some students, the algorithm for subtraction is a rule that they have observed always works. For example, for these problems, to subtract an integer we can add the opposite. See notes above for Investigation 1 for more on subtracting integers. 18. Students can think of this as a chip board model (12 black chips take away 4 blacks) or as a number line model ( what is the difference from 4 to 12? Or, start at 12 on the line and come down 4 units). Or they may rewrite this as an addition: +12 (+4) = (-4) = Students can think of this as a chip board model (12 blacks take away 12 blacks) or as a number line model ( what is the difference from 12 to 12 on the line? Or, start at 12 on the line and go down 12 units ). Or they may rewrite this as an addition: = 12 + (-12) = Again, students can think of this as a chip board model (12 red chips take away 12 black chips, which requires us to add 12 of each kind of chip so we maintain the value of the board but have enough black chips to remove) or as a number line model ( what is the difference from -12 to 12 on the line? Or, start at -12 on the line and go down 12 units ). Or they may rewrite this as an addition: = (-12) = = -7 + (-8) = (-40) = = 85 Investigation 2: Adding and Subtracting Rational Numbers ACE #38(a) Without doing any calculations, decide which expression is greater. Explain your reasoning. a. 5,280 + (-768) OR 5,280 (-768) Both expressions start with +5280, but one adds a negative and the other subtracts a negative. The first expression will be less than If we think in terms of the chip board model then the second computation, which involves subtracting a negative, would require a re-representation of the initial value by adding the 768 positives and 768 negatives, before taking away the negatives. This ends with a larger result than So the second expression is greater than the first.
5 Investigation 2: Adding and Subtracting Rational Numbers ACE #48 (a) (d), i Compute each of the following. a b c d i. What can you conclude about the relationship between subtracting a positive number and adding a negative number with the same absolute value? In other words, what is the relationship between a ( + ) situation and a (+ - ) situation? a. 3 + (-3) + (-7) = 0 + (-7) = -7 b. 3 (+3) (+7) = 0 (+7) = -7 c (-7) + (-28) = (-17) + (-28) = -45 d. -10 (+7) (+28) = -10 (35) = -45 i. Based on parts (a) and (b), It seems that add (-3) gives the same result as subtract (+3). In general, this suggests that add -A gives the same result as subtract +A. Note: This rule generalizes to be Adding any integer gives the same result as subtracting its opposite, or subtracting any integer gives the same result as adding its opposite. Investigation 2: Adding and Subtracting Rational Numbers ACE #56 For each of the following, write a related equation. Then find the value of n. a. n 7 = 10 b. - + n = - c. - n = - a. n = So n = 17. b. n = - +. So n = -. c. n = +. So n = Note: In elementary school, most students learned fact families for any addition or subtraction. The idea is that for addition and subtraction facts, there are multiple ways to represent the same relationship. For example, = 7 shows the same relationship as 7 4 = 3 and 7 3 = 4.
6 Investigation 3: Multiplying and Dividing Rational Numbers ACE #14 You have located fractions such as - on a number line. You have also used fractions to show division: = -5 7 and = 5 (-7). Tell whether each statement is true or false. Explain. a. = b. - = a. True. You can either distribute the negative sign (that is out in front of the fraction think of this as - ) to the numerator OR the denominator. In either of the forms, it will still be a negative number. b. False. You can think of it as - = -0.5, but - = 0.5. In, both numbers are negative, and a negative divided by a negative equals a positive. Investigation 3: Multiplying and Dividing Rational Numbers ACE #38 The Extraterrestrials have a score of They answer four 50-point questions incorrectly. What is their new score? The answer is -500 points; (-50) = (-200) = -500, or -300 (4 50) = Investigation 4: Properties of Operations ACE #8-11 For Exercises 8-11, rewrite each expression in an equivalent form to show a simpler way to do the arithmetic. Explain how you know the two results are equal without doing any calculations. 8. ( ) (43 120) + [43 (-20)] (-75) (-23) (-75) 11. [0.8 (-23)] + [0.8 (-7)] 8. Since all the operations are addition, we can change the grouping (Associative Property of addition) and order (Commutative Property) of the numbers. So one possible answer is ( ) + 30 = ( ). This has the advantage of putting the positive numbers together and also of creating a friendly pair of numbers to add, since = 300. This gives (300) = 150.
7 9. There are two expressions added here, and each has a common factor of 43. So we can use the Distributive Property to rewrite this as 43( ), which is 43(100) = This expression has addition and subtraction, and can be rewritten in terms of additions only. Thus, (-75) = , and then the order can be changed (since addition is commutative) to Then, taking advantage of opposites, we have a final result of The Distributive Property can be used to factor 0.8 out of both expressions. Then, we have 0.8( ) = 0.8( -30) = -24. Investigation 4: Properties of Operations ACE #45 (a)-(d) Insert parentheses (or brackets) in each expression if needed to make the equation true. a. 1 + (-3) (-4) = 8 b. 1 + (-3) (-4) = 13 c. -6 (-2) + (-4) = 1 d. -6 (-2) + (-4) = -1 This problem asks students to apply the parentheses so that the correct order of operations will give the required result. The order of operations is: Operations in parentheses (or brackets) first, then exponents, then multiplication or division from the left, then addition or subtraction from the left. a. ( ) -4 = (-2) (-4) = 8 b. 1 + (-3-4) = = 13 c. -6 ( ) = -6-6 = 1 d. (-6-2) + -4 = = -1
Click on the links below to jump directly to the relevant section
Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is
2.6 Exponents and Order of Operations
2.6 Exponents and Order of Operations We begin this section with exponents applied to negative numbers. The idea of applying an exponent to a negative number is identical to that of a positive number (repeated
Exponents. Exponents tell us how many times to multiply a base number by itself.
Exponents Exponents tell us how many times to multiply a base number by itself. Exponential form: 5 4 exponent base number Expanded form: 5 5 5 5 25 5 5 125 5 625 To use a calculator: put in the base number,
Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.
Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used
MULTIPLICATION AND DIVISION OF REAL NUMBERS In this section we will complete the study of the four basic operations with real numbers.
1.4 Multiplication and (1-25) 25 In this section Multiplication of Real Numbers Division by Zero helpful hint The product of two numbers with like signs is positive, but the product of three numbers with
Method To Solve Linear, Polynomial, or Absolute Value Inequalities:
Solving Inequalities An inequality is the result of replacing the = sign in an equation with ,, or. For example, 3x 2 < 7 is a linear inequality. We call it linear because if the < were replaced with
3.1. RATIONAL EXPRESSIONS
3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers
Chapter 7 - Roots, Radicals, and Complex Numbers
Math 233 - Spring 2009 Chapter 7 - Roots, Radicals, and Complex Numbers 7.1 Roots and Radicals 7.1.1 Notation and Terminology In the expression x the is called the radical sign. The expression under the
Test 4 Sample Problem Solutions, 27.58 = 27 47 100, 7 5, 1 6. 5 = 14 10 = 1.4. Moving the decimal two spots to the left gives
Test 4 Sample Problem Solutions Convert from a decimal to a fraction: 0.023, 27.58, 0.777... For the first two we have 0.023 = 23 58, 27.58 = 27 1000 100. For the last, if we set x = 0.777..., then 10x
Definition 8.1 Two inequalities are equivalent if they have the same solution set. Add or Subtract the same value on both sides of the inequality.
8 Inequalities Concepts: Equivalent Inequalities Linear and Nonlinear Inequalities Absolute Value Inequalities (Sections 4.6 and 1.1) 8.1 Equivalent Inequalities Definition 8.1 Two inequalities are equivalent
Unit 7 The Number System: Multiplying and Dividing Integers
Unit 7 The Number System: Multiplying and Dividing Integers Introduction In this unit, students will multiply and divide integers, and multiply positive and negative fractions by integers. Students will
5.1 Radical Notation and Rational Exponents
Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots
Properties of Real Numbers
16 Chapter P Prerequisites P.2 Properties of Real Numbers What you should learn: Identify and use the basic properties of real numbers Develop and use additional properties of real numbers Why you should
Chapter 8 Integers 8.1 Addition and Subtraction
Chapter 8 Integers 8.1 Addition and Subtraction Negative numbers Negative numbers are helpful in: Describing temperature below zero Elevation below sea level Losses in the stock market Overdrawn checking
Vocabulary Words and Definitions for Algebra
Name: Period: Vocabulary Words and s for Algebra Absolute Value Additive Inverse Algebraic Expression Ascending Order Associative Property Axis of Symmetry Base Binomial Coefficient Combine Like Terms
25 Integers: Addition and Subtraction
25 Integers: Addition and Subtraction Whole numbers and their operations were developed as a direct result of people s need to count. But nowadays many quantitative needs aside from counting require numbers
MATH 60 NOTEBOOK CERTIFICATIONS
MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5
Mathematics Task Arcs
Overview of Mathematics Task Arcs: Mathematics Task Arcs A task arc is a set of related lessons which consists of eight tasks and their associated lesson guides. The lessons are focused on a small number
Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Section 9 Order of Operations
Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Please watch Section 9 of this DVD before working these problems. The DVD is located at: http://www.mathtutordvd.com/products/item66.cfm
Clifton High School Mathematics Summer Workbook Algebra 1
1 Clifton High School Mathematics Summer Workbook Algebra 1 Completion of this summer work is required on the first day of the school year. Date Received: Date Completed: Student Signature: Parent Signature:
Adding and Subtracting Positive and Negative Numbers
Adding and Subtracting Positive and Negative Numbers Absolute Value For any real number, the distance from zero on the number line is the absolute value of the number. The absolute value of any real number
Opposites are all around us. If you move forward two spaces in a board game
Two-Color Counters Adding Integers, Part II Learning Goals In this lesson, you will: Key Term additive inverses Model the addition of integers using two-color counters. Develop a rule for adding integers.
Curriculum Alignment Project
Curriculum Alignment Project Math Unit Date: Unit Details Title: Solving Linear Equations Level: Developmental Algebra Team Members: Michael Guy Mathematics, Queensborough Community College, CUNY Jonathan
Order of Operations More Essential Practice
Order of Operations More Essential Practice We will be simplifying expressions using the order of operations in this section. Automatic Skill: Order of operations needs to become an automatic skill. Failure
Activity 1: Using base ten blocks to model operations on decimals
Rational Numbers 9: Decimal Form of Rational Numbers Objectives To use base ten blocks to model operations on decimal numbers To review the algorithms for addition, subtraction, multiplication and division
Multiplication and Division with Rational Numbers
Multiplication and Division with Rational Numbers Kitty Hawk, North Carolina, is famous for being the place where the first airplane flight took place. The brothers who flew these first flights grew up
SIMPLIFYING ALGEBRAIC FRACTIONS
Tallahassee Community College 5 SIMPLIFYING ALGEBRAIC FRACTIONS In arithmetic, you learned that a fraction is in simplest form if the Greatest Common Factor (GCF) of the numerator and the denominator is
Progress Check 6. Objective To assess students progress on mathematical content through the end of Unit 6. Looking Back: Cumulative Assessment
Progress Check 6 Objective To assess students progress on mathematical content through the end of Unit 6. Looking Back: Cumulative Assessment The Mid-Year Assessment in the Assessment Handbook is a written
Section 4.1 Rules of Exponents
Section 4.1 Rules of Exponents THE MEANING OF THE EXPONENT The exponent is an abbreviation for repeated multiplication. The repeated number is called a factor. x n means n factors of x. The exponent tells
1.6 The Order of Operations
1.6 The Order of Operations Contents: Operations Grouping Symbols The Order of Operations Exponents and Negative Numbers Negative Square Roots Square Root of a Negative Number Order of Operations and Negative
Solutions of Linear Equations in One Variable
2. Solutions of Linear Equations in One Variable 2. OBJECTIVES. Identify a linear equation 2. Combine like terms to solve an equation We begin this chapter by considering one of the most important tools
Lesson 4: Efficiently Adding Integers and Other Rational Numbers
Classwork Example 1: Rule for Adding Integers with Same Signs a. Represent the sum of 3 + 5 using arrows on the number line. i. How long is the arrow that represents 3? ii. iii. How long is the arrow that
This is a square root. The number under the radical is 9. (An asterisk * means multiply.)
Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize
1.2 Linear Equations and Rational Equations
Linear Equations and Rational Equations Section Notes Page In this section, you will learn how to solve various linear and rational equations A linear equation will have an variable raised to a power of
Answers to Basic Algebra Review
Answers to Basic Algebra Review 1. -1.1 Follow the sign rules when adding and subtracting: If the numbers have the same sign, add them together and keep the sign. If the numbers have different signs, subtract
Section 1. Inequalities -5-4 -3-2 -1 0 1 2 3 4 5
Worksheet 2.4 Introduction to Inequalities Section 1 Inequalities The sign < stands for less than. It was introduced so that we could write in shorthand things like 3 is less than 5. This becomes 3 < 5.
0.8 Rational Expressions and Equations
96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to
Fractions and Linear Equations
Fractions and Linear Equations Fraction Operations While you can perform operations on fractions using the calculator, for this worksheet you must perform the operations by hand. You must show all steps
Answer Key for California State Standards: Algebra I
Algebra I: Symbolic reasoning and calculations with symbols are central in algebra. Through the study of algebra, a student develops an understanding of the symbolic language of mathematics and the sciences.
Math Review. for the Quantitative Reasoning Measure of the GRE revised General Test
Math Review for the Quantitative Reasoning Measure of the GRE revised General Test www.ets.org Overview This Math Review will familiarize you with the mathematical skills and concepts that are important
26 Integers: Multiplication, Division, and Order
26 Integers: Multiplication, Division, and Order Integer multiplication and division are extensions of whole number multiplication and division. In multiplying and dividing integers, the one new issue
Multiplying and Dividing Signed Numbers. Finding the Product of Two Signed Numbers. (a) (3)( 4) ( 4) ( 4) ( 4) 12 (b) (4)( 5) ( 5) ( 5) ( 5) ( 5) 20
SECTION.4 Multiplying and Dividing Signed Numbers.4 OBJECTIVES 1. Multiply signed numbers 2. Use the commutative property of multiplication 3. Use the associative property of multiplication 4. Divide signed
Math Journal HMH Mega Math. itools Number
Lesson 1.1 Algebra Number Patterns CC.3.OA.9 Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. Identify and
Subtracting Negative Integers
Subtracting Negative Integers Notes: Comparison of CST questions to the skill of subtracting negative integers. 5 th Grade/65 NS2.1 Add, subtract, multiply and divide with decimals; add with negative integers;
Integers, I, is a set of numbers that include positive and negative numbers and zero.
Grade 9 Math Unit 3: Rational Numbers Section 3.1: What is a Rational Number? Integers, I, is a set of numbers that include positive and negative numbers and zero. Imagine a number line These numbers are
Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.
Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. Solve word problems that call for addition of three whole numbers
CAHSEE on Target UC Davis, School and University Partnerships
UC Davis, School and University Partnerships CAHSEE on Target Mathematics Curriculum Published by The University of California, Davis, School/University Partnerships Program 006 Director Sarah R. Martinez,
7 th Grade Integer Arithmetic 7-Day Unit Plan by Brian M. Fischer Lackawanna Middle/High School
7 th Grade Integer Arithmetic 7-Day Unit Plan by Brian M. Fischer Lackawanna Middle/High School Page 1 of 20 Table of Contents Unit Objectives........ 3 NCTM Standards.... 3 NYS Standards....3 Resources
Integer Operations. Overview. Grade 7 Mathematics, Quarter 1, Unit 1.1. Number of Instructional Days: 15 (1 day = 45 minutes) Essential Questions
Grade 7 Mathematics, Quarter 1, Unit 1.1 Integer Operations Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Describe situations in which opposites combine to make zero.
MATH-0910 Review Concepts (Haugen)
Unit 1 Whole Numbers and Fractions MATH-0910 Review Concepts (Haugen) Exam 1 Sections 1.5, 1.6, 1.7, 1.8, 2.1, 2.2, 2.3, 2.4, and 2.5 Dividing Whole Numbers Equivalent ways of expressing division: a b,
Math 115 Spring 2011 Written Homework 5 Solutions
. Evaluate each series. a) 4 7 0... 55 Math 5 Spring 0 Written Homework 5 Solutions Solution: We note that the associated sequence, 4, 7, 0,..., 55 appears to be an arithmetic sequence. If the sequence
Welcome to Basic Math Skills!
Basic Math Skills Welcome to Basic Math Skills! Most students find the math sections to be the most difficult. Basic Math Skills was designed to give you a refresher on the basics of math. There are lots
Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any.
Algebra 2 - Chapter Prerequisites Vocabulary Copy in your notebook: Add an example of each term with the symbols used in algebra 2 if there are any. P1 p. 1 1. counting(natural) numbers - {1,2,3,4,...}
LINEAR INEQUALITIES. less than, < 2x + 5 x 3 less than or equal to, greater than, > 3x 2 x 6 greater than or equal to,
LINEAR INEQUALITIES When we use the equal sign in an equation we are stating that both sides of the equation are equal to each other. In an inequality, we are stating that both sides of the equation are
Algebraic expressions are a combination of numbers and variables. Here are examples of some basic algebraic expressions.
Page 1 of 13 Review of Linear Expressions and Equations Skills involving linear equations can be divided into the following groups: Simplifying algebraic expressions. Linear expressions. Solving linear
Adding and Subtracting Integers Unit. Grade 7 Math. 5 Days. Tools: Algebra Tiles. Four-Pan Algebra Balance. Playing Cards
Adding and Subtracting Integers Unit Grade 7 Math 5 Days Tools: Algebra Tiles Four-Pan Algebra Balance Playing Cards By Dawn Meginley 1 Objectives and Standards Objectives: Students will be able to add
Chapter 4 -- Decimals
Chapter 4 -- Decimals $34.99 decimal notation ex. The cost of an object. ex. The balance of your bank account ex The amount owed ex. The tax on a purchase. Just like Whole Numbers Place Value - 1.23456789
MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education)
MATH 095, College Prep Mathematics: Unit Coverage Pre-algebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,
Session 29 Scientific Notation and Laws of Exponents. If you have ever taken a Chemistry class, you may have encountered the following numbers:
Session 9 Scientific Notation and Laws of Exponents If you have ever taken a Chemistry class, you may have encountered the following numbers: There are approximately 60,4,79,00,000,000,000,000 molecules
Elementary Number Theory and Methods of Proof. CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.
Elementary Number Theory and Methods of Proof CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 1 Number theory Properties: 2 Properties of integers (whole
Negative Integer Exponents
7.7 Negative Integer Exponents 7.7 OBJECTIVES. Define the zero exponent 2. Use the definition of a negative exponent to simplify an expression 3. Use the properties of exponents to simplify expressions
Core Maths C1. Revision Notes
Core Maths C Revision Notes November 0 Core Maths C Algebra... Indices... Rules of indices... Surds... 4 Simplifying surds... 4 Rationalising the denominator... 4 Quadratic functions... 4 Completing the
Using Proportions to Solve Percent Problems I
RP7-1 Using Proportions to Solve Percent Problems I Pages 46 48 Standards: 7.RP.A. Goals: Students will write equivalent statements for proportions by keeping track of the part and the whole, and by solving
Linear Equations and Inequalities
Linear Equations and Inequalities Section 1.1 Prof. Wodarz Math 109 - Fall 2008 Contents 1 Linear Equations 2 1.1 Standard Form of a Linear Equation................ 2 1.2 Solving Linear Equations......................
Chapter 1: Order of Operations, Fractions & Percents
HOSP 1107 (Business Math) Learning Centre Chapter 1: Order of Operations, Fractions & Percents ORDER OF OPERATIONS When finding the value of an expression, the operations must be carried out in a certain
Partial Fractions Decomposition
Partial Fractions Decomposition Dr. Philippe B. Laval Kennesaw State University August 6, 008 Abstract This handout describes partial fractions decomposition and how it can be used when integrating rational
HFCC Math Lab Arithmetic - 4. Addition, Subtraction, Multiplication and Division of Mixed Numbers
HFCC Math Lab Arithmetic - Addition, Subtraction, Multiplication and Division of Mixed Numbers Part I: Addition and Subtraction of Mixed Numbers There are two ways of adding and subtracting mixed numbers.
Summer Assignment for incoming Fairhope Middle School 7 th grade Advanced Math Students
Summer Assignment for incoming Fairhope Middle School 7 th grade Advanced Math Students Studies show that most students lose about two months of math abilities over the summer when they do not engage in
Chapter 11 Number Theory
Chapter 11 Number Theory Number theory is one of the oldest branches of mathematics. For many years people who studied number theory delighted in its pure nature because there were few practical applications
MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab
MATH 0110 Developmental Math Skills Review, 1 Credit, 3 hours lab MATH 0110 is established to accommodate students desiring non-course based remediation in developmental mathematics. This structure will
Solving Rational Equations
Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,
Tool 1. Greatest Common Factor (GCF)
Chapter 4: Factoring Review Tool 1 Greatest Common Factor (GCF) This is a very important tool. You must try to factor out the GCF first in every problem. Some problems do not have a GCF but many do. When
MATH 90 CHAPTER 1 Name:.
MATH 90 CHAPTER 1 Name:. 1.1 Introduction to Algebra Need To Know What are Algebraic Expressions? Translating Expressions Equations What is Algebra? They say the only thing that stays the same is change.
Rules of Exponents. Math at Work: Motorcycle Customization OUTLINE CHAPTER
Rules of Exponents CHAPTER 5 Math at Work: Motorcycle Customization OUTLINE Study Strategies: Taking Math Tests 5. Basic Rules of Exponents Part A: The Product Rule and Power Rules Part B: Combining the
Section 1.1 Real Numbers
. Natural numbers (N):. Integer numbers (Z): Section. Real Numbers Types of Real Numbers,, 3, 4,,... 0, ±, ±, ±3, ±4, ±,... REMARK: Any natural number is an integer number, but not any integer number is
Operations with positive and negative numbers - see first chapter below. Rules related to working with fractions - see second chapter below
INTRODUCTION If you are uncomfortable with the math required to solve the word problems in this class, we strongly encourage you to take a day to look through the following links and notes. Some of them
Exponents and Radicals
Exponents and Radicals (a + b) 10 Exponents are a very important part of algebra. An exponent is just a convenient way of writing repeated multiplications of the same number. Radicals involve the use of
Lesson 1: Fractions, Decimals and Percents
Lesson 1: Fractions, Decimals and Percents Selected Content Standards Benchmarks Addressed: N-2-H Demonstrating that a number can be expressed in many forms, and selecting an appropriate form for a given
Contents. Subtraction (Taking Away)... 6. Multiplication... 7 by a single digit. by a two digit number by 10, 100 or 1000
This booklet outlines the methods we teach pupils for place value, times tables, addition, subtraction, multiplication, division, fractions, decimals, percentages, negative numbers and basic algebra Any
Lesson 4. Factors and Multiples. Objectives
Student Name: Date: Contact Person Name: Phone Number: Lesson 4 Factors and Multiples Objectives Understand what factors and multiples are Write a number as a product of its prime factors Find the greatest
A Year-long Pathway to Complete MATH 1111: College Algebra
A Year-long Pathway to Complete MATH 1111: College Algebra A year-long path to complete MATH 1111 will consist of 1-2 Learning Support (LS) classes and MATH 1111. The first semester will consist of the
Algebra Cheat Sheets
Sheets Algebra Cheat Sheets provide you with a tool for teaching your students note-taking, problem-solving, and organizational skills in the context of algebra lessons. These sheets teach the concepts
Chapter 2: Linear Equations and Inequalities Lecture notes Math 1010
Section 2.1: Linear Equations Definition of equation An equation is a statement that equates two algebraic expressions. Solving an equation involving a variable means finding all values of the variable
PYTHAGOREAN TRIPLES KEITH CONRAD
PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient
Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving
Section 7 Algebraic Manipulations and Solving Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Before launching into the mathematics, let s take a moment to talk about the words
Warm-Up. Today s Objective/Standards: Students will use the correct order of operations to evaluate algebraic expressions/ Gr. 6 AF 1.
Warm-Up CST/CAHSEE: Gr. 6 AF 1.4 Simplify: 8 + 8 2 + 2 A) 4 B) 8 C) 10 D) 14 Review: Gr. 7 NS 1.2 Complete the statement using ,. Explain. 2 5 5 2 How did students get the other answers? Other: Gr.
Common Core Standards for Fantasy Sports Worksheets. Page 1
Scoring Systems Concept(s) Integers adding and subtracting integers; multiplying integers Fractions adding and subtracting fractions; multiplying fractions with whole numbers Decimals adding and subtracting
Direct Translation is the process of translating English words and phrases into numbers, mathematical symbols, expressions, and equations.
Section 1 Mathematics has a language all its own. In order to be able to solve many types of word problems, we need to be able to translate the English Language into Math Language. is the process of translating
Parentheses in Number Sentences
Parentheses in Number Sentences Objective To review the use of parentheses. www.everydaymathonline.com epresentations etoolkit Algorithms Practice EM Facts Workshop Game Family Letters Assessment Management
Algebra 1. Practice Workbook with Examples. McDougal Littell. Concepts and Skills
McDougal Littell Algebra 1 Concepts and Skills Larson Boswell Kanold Stiff Practice Workbook with Examples The Practice Workbook provides additional practice with worked-out examples for every lesson.
ModuMath Basic Math Basic Math 1.1 - Naming Whole Numbers Basic Math 1.2 - The Number Line Basic Math 1.3 - Addition of Whole Numbers, Part I
ModuMath Basic Math Basic Math 1.1 - Naming Whole Numbers 1) Read whole numbers. 2) Write whole numbers in words. 3) Change whole numbers stated in words into decimal numeral form. 4) Write numerals in
To Evaluate an Algebraic Expression
1.5 Evaluating Algebraic Expressions 1.5 OBJECTIVES 1. Evaluate algebraic expressions given any signed number value for the variables 2. Use a calculator to evaluate algebraic expressions 3. Find the sum
1.4. Arithmetic of Algebraic Fractions. Introduction. Prerequisites. Learning Outcomes
Arithmetic of Algebraic Fractions 1.4 Introduction Just as one whole number divided by another is called a numerical fraction, so one algebraic expression divided by another is known as an algebraic fraction.
Session 7 Fractions and Decimals
Key Terms in This Session Session 7 Fractions and Decimals Previously Introduced prime number rational numbers New in This Session period repeating decimal terminating decimal Introduction In this session,
2.3 Solving Equations Containing Fractions and Decimals
2. Solving Equations Containing Fractions and Decimals Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Solve equations containing fractions
Mathematics Scope and Sequence, K-8
Standard 1: Number and Operation Goal 1.1: Understands and uses numbers (number sense) Mathematics Scope and Sequence, K-8 Grade Counting Read, Write, Order, Compare Place Value Money Number Theory K Count
PREPARATION FOR MATH TESTING at CityLab Academy
PREPARATION FOR MATH TESTING at CityLab Academy compiled by Gloria Vachino, M.S. Refresh your math skills with a MATH REVIEW and find out if you are ready for the math entrance test by taking a PRE-TEST
Grade 6 Mathematics Performance Level Descriptors
Limited Grade 6 Mathematics Performance Level Descriptors A student performing at the Limited Level demonstrates a minimal command of Ohio s Learning Standards for Grade 6 Mathematics. A student at this
1.6. Solve Linear Inequalities E XAMPLE 1 E XAMPLE 2. Graph simple inequalities. Graph compound inequalities
.6 Solve Linear Inequalities Before You solved linear equations. Now You will solve linear inequalities. Why? So you can describe temperature ranges, as in Ex. 54. Key Vocabulary linear inequality compound
Integer Instruction That Works: Best Practices for Instruction of Integers for All Students Including LEP Learners Math, LEP Grades 5-8
Integer Instruction That Works: Best Practices for Instruction of Integers for All Students Including LEP Learners Math, LEP Grades 5-8 Frustrated by the fact that your students incorrectly apply the rule
