What Fun! It's Practice with Scientific Notation!
|
|
|
- Daisy Poole
- 9 years ago
- Views:
Transcription
1 What Fun! It's Practice with Scientific Notation! Review of Scientific Notation Scientific notation provides a place to hold the zeroes that come after a whole number or before a fraction. The number 100,000,000 for example, takes up a lot of room and takes time to write out, while 10 8 is much more efficient. Though we think of zero as having no value, zeroes can make a number much bigger or smaller. Think about the difference between 10 dollars and 100 dollars. Even one zero can make a big difference in the value of the number. In the same way, 0.1 (one-tenth) of the US military budget is much more than 0.01 (one-hundredth) of the budget. The small number to the right of the 10 in scientific notation is called the exponent. Note that a negative exponent indicates that the number is a fraction (less than one). The line below shows the equivalent values of decimal notation (the way we write numbers usually, like "1,000 dollars") and scientific notation (10 3 dollars). For numbers smaller than one, the fraction is given as well. smaller bigger Fraction 1/100 1/10 Decimal notation ,000 Scientific notation
2 Practice With Scientific Notation Write out the decimal equivalent (regular form) of the following numbers that are in scientific notation. Section A: Model: 10 1 = 10 1) 10 2 = 4) 10-2 = 2) 10 4 = 5) 10-5 = 3) 10 7 = 6) 10 0 = Section B: Model: 2 x 10 2 = 200 7) 3 x 10 2 = 10) 6 x 10-3 = 8) 7 x 10 4 = 11) 900 x 10-2 = 9) 2.4 x 10 3 = 12) 4 x 10-6 = Section C: Now convert from decimal form into scientific notation. Model: 1,000 = ) 10 = 16) 0.1 = 14) 100 = 17) = 15) 100,000,000 = 18) 1 = Section D: Model: 2,000 = 2 x ) 400 = 22) = 20) 60,000 = 23) = 21) 750,000 = 24) =
3 More Practice With Scientific Notation Perform the following operations in scientific notation. Refer to the introduction if you need help. Section E: Multiplication (the "easy" operation - remember that you just need to multiply the main numbers and add the exponents). Model: (2 x 10 2 ) x (6 x 10 3 ) = 12 x 10 5 = 1.2 x 10 6 Remember that your answer should be expressed in two parts, as in the model above. The first part should be a number less than 10 (eg: 1.2) and the second part should be a power of 10 (eg: 10 6 ). If the first part is a number greater than ten, you will have to convert the first part. In the above example, you would convert your first answer (12 x 10 5 ) to the second answer, which has the first part less than ten (1.2 x 10 6 ). For extra practice, convert your answer to decimal notation. In the above example, the decimal answer would be 1,200,000 scientific notation decimal notation 25) (1 x 10 3 ) x (3 x 10 1 ) = 26) (3 x 10 4 ) x (2 x 10 3 ) = 27) (5 x 10-5 ) x (11 x 10 4 ) = 28) (2 x 10-4 ) x (4 x 10 3 ) =
4 Section F: Division (a little harder - we basically solve the problem as we did above, using multiplication. But we need to "move" the bottom (denominator) to the top of the fraction. We do this by writing the negative value of the exponent. Next divide the first part of each number. Finally, add the exponents). (12 x 10 3 ) Model: = 2 x (10 3 x 10-2 ) = 2 x 10 1 = 20 (6 x 10 2 ) Write your answer as in the model; first convert to a multiplication problem, then solve the problem. multiplication problem final answer (in sci. not.) 29) (8 x 10 6 ) / (4 x 10 3 ) = 30) (3.6 x 10 8 ) / (1.2 x 10 4 ) = 31) (4 x 10 3 ) / (8 x 10 5 ) = 32) (9 x ) / (3 x ) =
5 Section G: Addition The first step is to make sure the exponents are the same. We do this by changing the main number (making it bigger or smaller) so that the exponent can change (get bigger or smaller). Then we can add the main numbers and keep the exponents the same. Model: (3 x 10 4 ) + (2 x 10 3 ) = (3 x 10 4 ) + (0.2 x 10 4 ) = 3.2 x 10 4 (same exponent) = 32,000 (final answer) First express the problem with the exponents in the same form, then solve the problem. same exponent final answer 33) (4 x 10 3 ) + (3 x 10 2 ) = 34) (9 x 10 2 ) + (1 x 10 4 ) = 35) (8 x 10 6 ) + (3.2 x 10 7 ) = 36) (1.32 x 10-3 ) + (3.44 x 10-4 ) =
6 Section H: Subtraction Just like addition, the first step is to make the exponents the same. Instead of adding the main numbers, they are subtracted. Try to convert so that you will not get a negative answer. Model: (3 x 10 4 ) - (2 x 10 3 ) = (30 x 10 3 ) - (2 x 10 3 ) = 28 x 10 3 (same exponent) = 2.8 x 10 4 (final answer) same exponent final answer 37) (2 x 10 2 ) - (4 x 10 1 ) = 38) (3 x 10-6 ) - (5 x 10-7 ) = 39) (9 x ) - (8.1 x 10 9 ) = 40) (2.2 x 10-4 ) - (3 x 10 2 ) =
7 And Even MORE Practice with Scientific Notation (Boy, are you going to be good at this!) Positively positives! 41) What is the number of your street address in scientific notation? 42) 1.6 x 10 3 is what? Combine this number with Pennsylvania Avenue and what famous residence do you have? Necessarily negatives! 43) What is 1.25 x 10-1? Is this the same as 125 thousandths? 44) is what in scientific notation? Operations without anesthesia! 45) (2 x 10 3 ) + (3 x 10 2 ) = 46) (2 x 10 3 ) - (3 x 10 2 ) = 47) (32 x 10 4 ) x (2 x 10-3 ) = 48) (9.0 x 10 4 ) / (3.0 x 10 2 ) = Food for thought...and some BIG numbers 49) The cumulative national debt is on the order of $4 trillion. The cumulative amount of high-level waste at the Savannah River Site, Idaho Chemical Processing Plant, Hanford Nuclear Reservation, and the West Valley Demonstration Project is about 25 billion curies. If the entire amount of money associated with the national debt was applied to cleanup of those curies, how many dollars per curie would be spent?
8 Answers: 1) 100 2) 10,000 3) 10,000,000 4) ) ) 1 7) 300 8) 70,000 9) 2,400 10) ) 9 12) ) ) ) ) ) ) ) 4x ) 6X ) 7.5X ) 5x ) 3.4x ) 6.457x a) 3x b) 30,000 26a) 6x b) 60,000,000 27a) 5.5x b) a) 8x b) ) 2x ) 3x ) 5x ) 3x ) 4.3x103 34) 1.09x ) 4x ) 1.664x ) 1.6x ) 2.5x ) x ) x ) Depends 42) )0.125, Yes 44) 5.53x ) 2.3x ) 1.7x ) 6.4x ) 3x ) 160 dollars/curie
Exponents, Radicals, and Scientific Notation
General Exponent Rules: Exponents, Radicals, and Scientific Notation x m x n = x m+n Example 1: x 5 x = x 5+ = x 7 (x m ) n = x mn Example : (x 5 ) = x 5 = x 10 (x m y n ) p = x mp y np Example : (x) =
Fractions to decimals
Worksheet.4 Fractions and Decimals Section Fractions to decimals The most common method of converting fractions to decimals is to use a calculator. A fraction represents a division so is another way of
The gas can has a capacity of 4.17 gallons and weighs 3.4 pounds.
hundred million$ ten------ million$ million$ 00,000,000 0,000,000,000,000 00,000 0,000,000 00 0 0 0 0 0 0 0 0 0 Session 26 Decimal Fractions Explain the meaning of the values stated in the following sentence.
Solution Guide Chapter 14 Mixing Fractions, Decimals, and Percents Together
Solution Guide Chapter 4 Mixing Fractions, Decimals, and Percents Together Doing the Math from p. 80 2. 0.72 9 =? 0.08 To change it to decimal, we can tip it over and divide: 9 0.72 To make 0.72 into a
Pre-Algebra Lecture 6
Pre-Algebra Lecture 6 Today we will discuss Decimals and Percentages. Outline: 1. Decimals 2. Ordering Decimals 3. Rounding Decimals 4. Adding and subtracting Decimals 5. Multiplying and Dividing Decimals
Exponents. Learning Objectives 4-1
Eponents -1 to - Learning Objectives -1 The product rule for eponents The quotient rule for eponents The power rule for eponents Power rules for products and quotient We can simplify by combining the like
Exponents. Exponents tell us how many times to multiply a base number by itself.
Exponents Exponents tell us how many times to multiply a base number by itself. Exponential form: 5 4 exponent base number Expanded form: 5 5 5 5 25 5 5 125 5 625 To use a calculator: put in the base number,
Scientific Notation. Section 7-1 Part 2
Scientific Notation Section 7-1 Part 2 Goals Goal To write numbers in scientific notation and standard form. To compare and order numbers using scientific notation. Vocabulary Scientific Notation Powers
PREPARATION FOR MATH TESTING at CityLab Academy
PREPARATION FOR MATH TESTING at CityLab Academy compiled by Gloria Vachino, M.S. Refresh your math skills with a MATH REVIEW and find out if you are ready for the math entrance test by taking a PRE-TEST
Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Section 9 Order of Operations
Supplemental Worksheet Problems To Accompany: The Pre-Algebra Tutor: Volume 1 Please watch Section 9 of this DVD before working these problems. The DVD is located at: http://www.mathtutordvd.com/products/item66.cfm
2.2 Scientific Notation: Writing Large and Small Numbers
2.2 Scientific Notation: Writing Large and Small Numbers A number written in scientific notation has two parts. A decimal part: a number that is between 1 and 10. An exponential part: 10 raised to an exponent,
To Evaluate an Algebraic Expression
1.5 Evaluating Algebraic Expressions 1.5 OBJECTIVES 1. Evaluate algebraic expressions given any signed number value for the variables 2. Use a calculator to evaluate algebraic expressions 3. Find the sum
FRACTIONS COMMON MISTAKES
FRACTIONS COMMON MISTAKES 0/0/009 Fractions Changing Fractions to Decimals How to Change Fractions to Decimals To change fractions to decimals, you need to divide the numerator (top number) by the denominator
Radicals - Rational Exponents
8. Radicals - Rational Exponents Objective: Convert between radical notation and exponential notation and simplify expressions with rational exponents using the properties of exponents. When we simplify
3 cups ¾ ½ ¼ 2 cups ¾ ½ ¼. 1 cup ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼. 1 cup. 1 cup ¾ ½ ¼ ¾ ½ ¼
cups cups cup Fractions are a form of division. When I ask what is / I am asking How big will each part be if I break into equal parts? The answer is. This a fraction. A fraction is part of a whole. The
How do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.
The verbal answers to all of the following questions should be memorized before completion of pre-algebra. Answers that are not memorized will hinder your ability to succeed in algebra 1. Number Basics
Unit 1 Number Sense. In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions.
Unit 1 Number Sense In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions. BLM Three Types of Percent Problems (p L-34) is a summary BLM for the material
Fractions. If the top and bottom numbers of a fraction are the same then you have a whole one.
What do fractions mean? Fractions Academic Skills Advice Look at the bottom of the fraction first this tells you how many pieces the shape (or number) has been cut into. Then look at the top of the fraction
Session 29 Scientific Notation and Laws of Exponents. If you have ever taken a Chemistry class, you may have encountered the following numbers:
Session 9 Scientific Notation and Laws of Exponents If you have ever taken a Chemistry class, you may have encountered the following numbers: There are approximately 60,4,79,00,000,000,000,000 molecules
Negative Exponents and Scientific Notation
3.2 Negative Exponents and Scientific Notation 3.2 OBJECTIVES. Evaluate expressions involving zero or a negative exponent 2. Simplify expressions involving zero or a negative exponent 3. Write a decimal
All the examples in this worksheet and all the answers to questions are available as answer sheets or videos.
BIRKBECK MATHS SUPPORT www.mathsupport.wordpress.com Numbers 3 In this section we will look at - improper fractions and mixed fractions - multiplying and dividing fractions - what decimals mean and exponents
Maths Workshop for Parents 2. Fractions and Algebra
Maths Workshop for Parents 2 Fractions and Algebra What is a fraction? A fraction is a part of a whole. There are two numbers to every fraction: 2 7 Numerator Denominator 2 7 This is a proper (or common)
Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving
Section 7 Algebraic Manipulations and Solving Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Before launching into the mathematics, let s take a moment to talk about the words
Decimals and other fractions
Chapter 2 Decimals and other fractions How to deal with the bits and pieces When drugs come from the manufacturer they are in doses to suit most adult patients. However, many of your patients will be very
Indices and Surds. The Laws on Indices. 1. Multiplication: Mgr. ubomíra Tomková
Indices and Surds The term indices refers to the power to which a number is raised. Thus x is a number with an index of. People prefer the phrase "x to the power of ". Term surds is not often used, instead
Progress Check 6. Objective To assess students progress on mathematical content through the end of Unit 6. Looking Back: Cumulative Assessment
Progress Check 6 Objective To assess students progress on mathematical content through the end of Unit 6. Looking Back: Cumulative Assessment The Mid-Year Assessment in the Assessment Handbook is a written
Unit 7 The Number System: Multiplying and Dividing Integers
Unit 7 The Number System: Multiplying and Dividing Integers Introduction In this unit, students will multiply and divide integers, and multiply positive and negative fractions by integers. Students will
ACCUPLACER Arithmetic & Elementary Algebra Study Guide
ACCUPLACER Arithmetic & Elementary Algebra Study Guide Acknowledgments We would like to thank Aims Community College for allowing us to use their ACCUPLACER Study Guides as well as Aims Community College
MATH-0910 Review Concepts (Haugen)
Unit 1 Whole Numbers and Fractions MATH-0910 Review Concepts (Haugen) Exam 1 Sections 1.5, 1.6, 1.7, 1.8, 2.1, 2.2, 2.3, 2.4, and 2.5 Dividing Whole Numbers Equivalent ways of expressing division: a b,
A positive exponent means repeated multiplication. A negative exponent means the opposite of repeated multiplication, which is repeated
Eponents Dealing with positive and negative eponents and simplifying epressions dealing with them is simply a matter of remembering what the definition of an eponent is. division. A positive eponent means
Integers, I, is a set of numbers that include positive and negative numbers and zero.
Grade 9 Math Unit 3: Rational Numbers Section 3.1: What is a Rational Number? Integers, I, is a set of numbers that include positive and negative numbers and zero. Imagine a number line These numbers are
DIVISION OF DECIMALS. 1503 9. We then we multiply by the
Tallahassee Community College 0 DIVISION OF DECIMALS To divide 9, we write these fractions: reciprocal of the divisor 0 9. We then we multiply by the 0 67 67 = = 9 67 67 The decimal equivalent of is. 67.
1004.6 one thousand, four AND six tenths 3.042 three AND forty-two thousandths 0.0063 sixty-three ten-thousands Two hundred AND two hundreds 200.
Section 4 Decimal Notation Place Value Chart 00 0 0 00 000 0000 00000 0. 0.0 0.00 0.000 0.0000 hundred ten one tenth hundredth thousandth Ten thousandth Hundred thousandth Identify the place value for
Summary Of Mental Maths Targets EYFS Yr 6. Year 3. Count from 0 in multiples of 4 & 8, 50 & 100. Count back in 100s, 10s, 1s eg.
Autumn 1 Say the number names in order to 10. Read and write from 1 to 20 in numerals and words. Count in steps of 2, 3, and 5 from 0, and in tens from any number, forward and backward. Count from 0 in
Rational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have
8.6 Rational Exponents 8.6 OBJECTIVES 1. Define rational exponents 2. Simplify expressions containing rational exponents 3. Use a calculator to estimate the value of an expression containing rational exponents
Preliminary Mathematics
Preliminary Mathematics The purpose of this document is to provide you with a refresher over some topics that will be essential for what we do in this class. We will begin with fractions, decimals, and
Decimals are absolutely amazing We have only 10 symbols, yet can represent any number, large or small We use zero (0) as a place holder to allow us
Decimals 1 Decimals are absolutely amazing We have only 10 symbols, yet can represent any number, large or small We use zero (0) as a place holder to allow us to do this 2 Some Older Number Systems 3 Can
Numerator Denominator
Fractions A fraction is any part of a group, number or whole. Fractions are always written as Numerator Denominator A unitary fraction is one where the numerator is always 1 e.g 1 1 1 1 1...etc... 2 3
Multiplying and Dividing Signed Numbers. Finding the Product of Two Signed Numbers. (a) (3)( 4) ( 4) ( 4) ( 4) 12 (b) (4)( 5) ( 5) ( 5) ( 5) ( 5) 20
SECTION.4 Multiplying and Dividing Signed Numbers.4 OBJECTIVES 1. Multiply signed numbers 2. Use the commutative property of multiplication 3. Use the associative property of multiplication 4. Divide signed
MULTIPLICATION AND DIVISION OF REAL NUMBERS In this section we will complete the study of the four basic operations with real numbers.
1.4 Multiplication and (1-25) 25 In this section Multiplication of Real Numbers Division by Zero helpful hint The product of two numbers with like signs is positive, but the product of three numbers with
Review of Scientific Notation and Significant Figures
II-1 Scientific Notation Review of Scientific Notation and Significant Figures Frequently numbers that occur in physics and other sciences are either very large or very small. For example, the speed of
Useful Number Systems
Useful Number Systems Decimal Base = 10 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Binary Base = 2 Digit Set = {0, 1} Octal Base = 8 = 2 3 Digit Set = {0, 1, 2, 3, 4, 5, 6, 7} Hexadecimal Base = 16 = 2
Using a Scientific Calculator
1 Using a Scientific Calculator In this course, we will be using a scientific calculator to do all of our computations. So, in this section, we want to get use to some of the features of a scientific calculator.
Calculator Worksheet--page 1
Calculator Worksheet--page 1 Name On this worksheet, I will be referencing keys that are on the TI30Xa. If you re using a different calculator, similar keys should be there; you just need to fi them! Positive/Negative
CHAPTER 4 DIMENSIONAL ANALYSIS
CHAPTER 4 DIMENSIONAL ANALYSIS 1. DIMENSIONAL ANALYSIS Dimensional analysis, which is also known as the factor label method or unit conversion method, is an extremely important tool in the field of chemistry.
**Unedited Draft** Arithmetic Revisited Lesson 5: Decimal Fractions or Place Value Extended Part 3: Multiplying Decimals
1. Multiplying Decimals **Unedited Draft** Arithmetic Revisited Lesson 5: Decimal Fractions or Place Value Extended Part 3: Multiplying Decimals Multiplying two (or more) decimals is very similar to how
THE BINARY NUMBER SYSTEM
THE BINARY NUMBER SYSTEM Dr. Robert P. Webber, Longwood University Our civilization uses the base 10 or decimal place value system. Each digit in a number represents a power of 10. For example, 365.42
Rational Expressions - Complex Fractions
7. Rational Epressions - Comple Fractions Objective: Simplify comple fractions by multiplying each term by the least common denominator. Comple fractions have fractions in either the numerator, or denominator,
Fractions and Linear Equations
Fractions and Linear Equations Fraction Operations While you can perform operations on fractions using the calculator, for this worksheet you must perform the operations by hand. You must show all steps
1.2 Linear Equations and Rational Equations
Linear Equations and Rational Equations Section Notes Page In this section, you will learn how to solve various linear and rational equations A linear equation will have an variable raised to a power of
Chapter 1: Order of Operations, Fractions & Percents
HOSP 1107 (Business Math) Learning Centre Chapter 1: Order of Operations, Fractions & Percents ORDER OF OPERATIONS When finding the value of an expression, the operations must be carried out in a certain
Introduce Decimals with an Art Project Criteria Charts, Rubrics, Standards By Susan Ferdman
Introduce Decimals with an Art Project Criteria Charts, Rubrics, Standards By Susan Ferdman hundredths tenths ones tens Decimal Art An Introduction to Decimals Directions: Part 1: Coloring Have children
Subtracting Negative Integers
Subtracting Negative Integers Notes: Comparison of CST questions to the skill of subtracting negative integers. 5 th Grade/65 NS2.1 Add, subtract, multiply and divide with decimals; add with negative integers;
A.2. Exponents and Radicals. Integer Exponents. What you should learn. Exponential Notation. Why you should learn it. Properties of Exponents
Appendix A. Exponents and Radicals A11 A. Exponents and Radicals What you should learn Use properties of exponents. Use scientific notation to represent real numbers. Use properties of radicals. Simplify
Welcome to Basic Math Skills!
Basic Math Skills Welcome to Basic Math Skills! Most students find the math sections to be the most difficult. Basic Math Skills was designed to give you a refresher on the basics of math. There are lots
Rules of Exponents. Math at Work: Motorcycle Customization OUTLINE CHAPTER
Rules of Exponents CHAPTER 5 Math at Work: Motorcycle Customization OUTLINE Study Strategies: Taking Math Tests 5. Basic Rules of Exponents Part A: The Product Rule and Power Rules Part B: Combining the
MBA Jump Start Program
MBA Jump Start Program Module 2: Mathematics Thomas Gilbert Mathematics Module Online Appendix: Basic Mathematical Concepts 2 1 The Number Spectrum Generally we depict numbers increasing from left to right
Math Refresher. Book #2. Workers Opportunities Resources Knowledge
Math Refresher Book #2 Workers Opportunities Resources Knowledge Contents Introduction...1 Basic Math Concepts...2 1. Fractions...2 2. Decimals...11 3. Percentages...15 4. Ratios...17 Sample Questions...18
2.3. Finding polynomial functions. An Introduction:
2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned
Accuplacer Arithmetic Study Guide
Accuplacer Arithmetic Study Guide Section One: Terms Numerator: The number on top of a fraction which tells how many parts you have. Denominator: The number on the bottom of a fraction which tells how
LESSON 5 - DECIMALS INTRODUCTION
LESSON 5 - DECIMALS INTRODUCTION Now that we know something about whole numbers and fractions, we will begin working with types of numbers that are extensions of whole numbers and related to fractions.
Lesson 1: Fractions, Decimals and Percents
Lesson 1: Fractions, Decimals and Percents Selected Content Standards Benchmarks Addressed: N-2-H Demonstrating that a number can be expressed in many forms, and selecting an appropriate form for a given
Unit 6 Number and Operations in Base Ten: Decimals
Unit 6 Number and Operations in Base Ten: Decimals Introduction Students will extend the place value system to decimals. They will apply their understanding of models for decimals and decimal notation,
LESSON 4 Missing Numbers in Multiplication Missing Numbers in Division LESSON 5 Order of Operations, Part 1 LESSON 6 Fractional Parts LESSON 7 Lines,
Saxon Math 7/6 Class Description: Saxon mathematics is based on the principle of developing math skills incrementally and reviewing past skills daily. It also incorporates regular and cumulative assessments.
Decimals Adding and Subtracting
1 Decimals Adding and Subtracting Decimals are a group of digits, which express numbers or measurements in units, tens, and multiples of 10. The digits for units and multiples of 10 are followed by a decimal
Radicals - Multiply and Divide Radicals
8. Radicals - Multiply and Divide Radicals Objective: Multiply and divide radicals using the product and quotient rules of radicals. Multiplying radicals is very simple if the index on all the radicals
To Multiply Decimals
4.3 Multiplying Decimals 4.3 OBJECTIVES 1. Multiply two or more decimals 2. Use multiplication of decimals to solve application problems 3. Multiply a decimal by a power of ten 4. Use multiplication by
FRACTIONS OPERATIONS
FRACTIONS OPERATIONS Summary 1. Elements of a fraction... 1. Equivalent fractions... 1. Simplification of a fraction... 4. Rules for adding and subtracting fractions... 5. Multiplication rule for two fractions...
FRACTIONS. The student will be able to: Essential Fraction Vocabulary
FRACTIONS The student will be able to:. Perform basic operations with common fractions: addition, subtraction, multiplication, and division. Common fractions, such as /, /, and /, are used on the GED Test
Relative and Absolute Change Percentages
Relative and Absolute Change Percentages Ethan D. Bolker Maura M. Mast September 6, 2007 Plan Use the credit card solicitation data to address the question of measuring change. Subtraction comes naturally.
Pre-Algebra - Order of Operations
0.3 Pre-Algebra - Order of Operations Objective: Evaluate expressions using the order of operations, including the use of absolute value. When simplifying expressions it is important that we simplify them
Lesson 4: Convert Fractions, Review Order of Operations
Lesson 4: Convert Fractions, Review Order of Operations LESSON 4: Convert Fractions, Do Order of Operations Weekly Focus: fractions, decimals, percent, order of operations Weekly Skill: convert, compute
Sequential Skills. Strands and Major Topics
Sequential Skills This set of charts lists, by strand, the skills that are assessed, taught, and practiced in the Skills Tutorial program. Each Strand ends with a Mastery Test. You can enter correlating
Mathematics. What to expect Resources Study Strategies Helpful Preparation Tips Problem Solving Strategies and Hints Test taking strategies
Mathematics Before reading this section, make sure you have read the appropriate description of the mathematics section test (computerized or paper) to understand what is expected of you in the mathematics
Recall the process used for adding decimal numbers. 1. Place the numbers to be added in vertical format, aligning the decimal points.
2 MODULE 4. DECIMALS 4a Decimal Arithmetic Adding Decimals Recall the process used for adding decimal numbers. Adding Decimals. To add decimal numbers, proceed as follows: 1. Place the numbers to be added
Figure 1. A typical Laboratory Thermometer graduated in C.
SIGNIFICANT FIGURES, EXPONENTS, AND SCIENTIFIC NOTATION 2004, 1990 by David A. Katz. All rights reserved. Permission for classroom use as long as the original copyright is included. 1. SIGNIFICANT FIGURES
MATH 90 CHAPTER 1 Name:.
MATH 90 CHAPTER 1 Name:. 1.1 Introduction to Algebra Need To Know What are Algebraic Expressions? Translating Expressions Equations What is Algebra? They say the only thing that stays the same is change.
JobTestPrep's Numeracy Review Decimals & Percentages
JobTestPrep's Numeracy Review Decimals & Percentages 1 Table of contents What is decimal? 3 Converting fractions to decimals 4 Converting decimals to fractions 6 Percentages 6 Adding and subtracting decimals
Financial Mathematics
Financial Mathematics For the next few weeks we will study the mathematics of finance. Apart from basic arithmetic, financial mathematics is probably the most practical math you will learn. practical in
MathSphere MATHEMATICS. Equipment. Y6 Fractions 6365 Round decimals. Equivalence between decimals and fractions
MATHEMATICS Y6 Fractions 6365 Round decimals. Equivalence between decimals and fractions Paper, pencil, ruler Fraction cards Calculator Equipment MathSphere 6365 Round decimals. Equivalence between fractions
Balancing Chemical Equations
Balancing Chemical Equations A mathematical equation is simply a sentence that states that two expressions are equal. One or both of the expressions will contain a variable whose value must be determined
Numeracy Preparation Guide. for the. VETASSESS Test for Certificate IV in Nursing (Enrolled / Division 2 Nursing) course
Numeracy Preparation Guide for the VETASSESS Test for Certificate IV in Nursing (Enrolled / Division Nursing) course Introduction The Nursing course selection (or entrance) test used by various Registered
Common Core Standards for Fantasy Sports Worksheets. Page 1
Scoring Systems Concept(s) Integers adding and subtracting integers; multiplying integers Fractions adding and subtracting fractions; multiplying fractions with whole numbers Decimals adding and subtracting
Section 4.1 Rules of Exponents
Section 4.1 Rules of Exponents THE MEANING OF THE EXPONENT The exponent is an abbreviation for repeated multiplication. The repeated number is called a factor. x n means n factors of x. The exponent tells
3.1. RATIONAL EXPRESSIONS
3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers
EVALUATING ACADEMIC READINESS FOR APPRENTICESHIP TRAINING Revised For ACCESS TO APPRENTICESHIP
EVALUATING ACADEMIC READINESS FOR APPRENTICESHIP TRAINING For ACCESS TO APPRENTICESHIP MATHEMATICS SKILL OPERATIONS WITH INTEGERS AN ACADEMIC SKILLS MANUAL for The Precision Machining And Tooling Trades
Chapter 4 -- Decimals
Chapter 4 -- Decimals $34.99 decimal notation ex. The cost of an object. ex. The balance of your bank account ex The amount owed ex. The tax on a purchase. Just like Whole Numbers Place Value - 1.23456789
Paramedic Program Pre-Admission Mathematics Test Study Guide
Paramedic Program Pre-Admission Mathematics Test Study Guide 05/13 1 Table of Contents Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 Page 9 Page 10 Page 11 Page 12 Page 13 Page 14 Page 15 Page
Lesson Plan -- Rational Number Operations
Lesson Plan -- Rational Number Operations Chapter Resources - Lesson 3-12 Rational Number Operations - Lesson 3-12 Rational Number Operations Answers - Lesson 3-13 Take Rational Numbers to Whole-Number
This is a square root. The number under the radical is 9. (An asterisk * means multiply.)
Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize
DECIMAL COMPETENCY PACKET
DECIMAL COMPETENCY PACKET Developed by: Nancy Tufo Revised: Sharyn Sweeney 2004 Student Support Center North Shore Community College 2 In this booklet arithmetic operations involving decimal numbers are
Decimal Notations for Fractions Number and Operations Fractions /4.NF
Decimal Notations for Fractions Number and Operations Fractions /4.NF Domain: Cluster: Standard: 4.NF Number and Operations Fractions Understand decimal notation for fractions, and compare decimal fractions.
Converting from Fractions to Decimals
.6 Converting from Fractions to Decimals.6 OBJECTIVES. Convert a common fraction to a decimal 2. Convert a common fraction to a repeating decimal. Convert a mixed number to a decimal Because a common fraction
Unit Two Practice Test: Powers and Exponent Laws
Class: Date: Unit Two Practice Test: Powers and Exponent Laws Multiple Choice Identify the choice that best completes the statement or answers the question 1 Write the base of ( 6) 5 a 6 b 6 c 6 5 d 5
BASIC MATHEMATICS. WORKBOOK Volume 2
BASIC MATHEMATICS WORKBOOK Volume 2 2006 Veronique Lankar A r ef resher o n t he i mp o rt a nt s ki l l s y o u l l ne e d b efo r e y o u ca n s t a rt Alg e b ra. This can be use d a s a s elf-teaching
Section 5.4 Multiplying Decimals
Section 5.4 Multiplying Decimals Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Multiply a decimal by a decimal. Multiplying whole numbers
GCSE MATHEMATICS. 43602H Unit 2: Number and Algebra (Higher) Report on the Examination. Specification 4360 November 2014. Version: 1.
GCSE MATHEMATICS 43602H Unit 2: Number and Algebra (Higher) Report on the Examination Specification 4360 November 2014 Version: 1.0 Further copies of this Report are available from aqa.org.uk Copyright
Simplifying Exponential Expressions
Simplifying Eponential Epressions Eponential Notation Base Eponent Base raised to an eponent Eample: What is the base and eponent of the following epression? 7 is the base 7 is the eponent Goal To write
PAYCHEX, INC. BASIC BUSINESS MATH TRAINING MODULE
PAYCHEX, INC. BASIC BUSINESS MATH TRAINING MODULE 1 Property of Paychex, Inc. Basic Business Math Table of Contents Overview...3 Objectives...3 Calculator...4 Basic Calculations...6 Order of Operation...9
