NUMERICAL STUDY OF FLOW AND TURBULENCE THROUGH SUBMERGED VEGETATION
|
|
|
- Virginia Long
- 9 years ago
- Views:
Transcription
1 NUMERICAL STUDY OF FLOW AND TURBULENCE THROUGH SUBMERGED VEGETATION HYUNG SUK KIM (1), MOONHYEONG PARK (2), MOHAMED NABI (3) & ICHIRO KIMURA (4) (1) Korea Institute of Civil Engineering and Building Technology, Goyang, Korea, (2) Korea Institute of Civil Engineering and Building Technology, Goyang, Korea, (3) Deltares, Delft, Netherlands, (4) Hokkaido University, Sapporo, Japan, ABSTRACT In this paper, we perform LES (large eddy simulation) for open channel flows through submerged matrix cylinders which are regarded as rigid vegetation. The computational model solves the filtered Navier-stokes equations on a Cartesian grid with local refinement and employs the ghost-cell immersed boundary method to deal with solid boundary. The cylinders are explicitly treated by computational grids. The model is validated through comparison with experimental data of the streamwise velocity profile. The effects of submergence ratio (water depth to vegetation height) on flow and turbulence structure are investigated. The coherent structures are produced above and behind the cylinders and those intensities amplified with decreasing submergence ratio. The large scale vortices, which are a main mechanism of momentum exchange between the vegetation layer and the out of vegetation, are generated above the vegetation and these penetration depths decrease with an increases in the submergence ratio. It is demonstrated that LES can capture large scale vortices originating at the top of vegetation and account for detailed instantaneous flow field through submerged vegetation. Keywords: LES, vegetation, submergence ratio, turbulence 1. INTRODUCTION Aquatic vegetation in streams is common and plays important roles in physical and ecological processes. It reduces the mean velocities in vegetation zone. The additional form drag exerted by vegetation significantly impacts the mean and instantaneous velocities, Reynolds stresses and turbulence quantities (Choi and Kang, 2004; Lopez and Garcia, 2001; Shimizu and Tsujimoto,1994; Stoesser et al., 2010). In particular, the submerged vegetation produces the velocity gradient above the top of vegetation and thus generates shear layer formation (Nepf and Vivoni, 2000; Nezu and Sanjou, 2008; Stoesser et al., 2009). Due to such complex flow structures, vegetation affects the transport of sediment and solutes. Several computational models have been developed to solve the 3D steady or unsteady Reynolds-averaged Navier- Stokes equations (RANS), which are capable of accurately predicting the time-averaged flows. In order to consider vegetation effects, additional source terms have been employed in momentum and transport equations with coarse grids. This approach is the most suitable method for providing reasonable accuracy of time-averaged flow fields (Choi and Kang, 2004; Fischer-Antze et al., 2001; Shimizu and Tsujimoto,1994;). However, RANS is not able to reproduce the large-scale unsteadiness induced by turbulent flow instabilities because of unsteady shear layer. When the vegetation is submerged, the inflection of the velocity profile at the top of vegetation occurs and thus the strong shear layer is generated. The 3D vortices are produced at the top of vegetation. The coherent structures above the vegetation are important roles in momentum exchanges with sweep and ejection (Ghisalberti and Nepf, 2002 and 2006; Nezu and Sanjou, 2008). Recently, LES (large eddy simulation) model have been developed to solve the unsteady filtered Navier-Stokes equations. LES offers better understanding of the instantaneous unsteady 3D turbulent flow field originated by large-scale unsteadiness. Relatively few studies using LES on open channel flows through vegetation have been conducted by Cui and Neary (2002), Stoesser et al. (2009) and Stoesser et al. (2010) who elucidate the large scale coherent structures. In this paper, we present LES of turbulent open channel flows over and through submerged cylinders which are regarded as rigid vegetation. Individual cylinders are explicitly resolved by computational grid, so that form drag is directly accounted for. Firstly, the present model is validated through comparison with measured data conducted by Liu et al. (2008). The flow and turbulence structures are described and the distance of flow penetration into vegetation canopy is analyzed. 2. Numerical framework The present computational model solves the filtered Navier-Stokes equations on a Cartesian grid. The advection and diffusion terms in the momentum equations are discretized in space on a staggered grid using a second-order finite 1
2 , volume method. A second-order Adams Bashforth scheme is used for the time integration of the advection term, while the Crank Nicolson method is applied for the diffusion term. A ghost-cell immersed boundary method based on a Cartesian grid is used for the bed surface and solid object boundaries. In the Cartesian grid system, uniform grids provide a low efficiency in 3D numerical simulations because a huge number of grids are essential to capture small scale turbulence eddies. In order to resolve this issue, an adaptive multilevel-structure Cartesian grid with local refinement is utilized around high gradients (i.e., near solid boundaries). For more details, we refer to Nabi et al. (2012) 3. Boundary conditions and model setup The setup for first simulations is selected to compare the experiments conducted by Liu et al. (2008). Liu et al. (2008) carried out flume experiments in rectangular open channel placed rigid cylinders with a staggered array and measured the flow using laser Doppler velocimeter (LDV) at the six locations as shown in Fig. 1. The distance between two cylinder is 10D where D (= 6.35 mm) is the cylinder diameter. The ratio of water depth h to cylinder height h v (= 76mm) is h/h v = 1.5 and 2 cylinders are included in the computational box as shown in Fig. 1. The computational domain spans 10D in both streamwise and lateral directions. In addition to the submergence ratio (h/h v = 1.5) of Liu et al. (2008), numerical simulations are performed for the submergence ratio of h/h v = 1.25 and 3.0. Periodic boundary conditions are applied in the streamwise and lateral directions. At the cylinders and channel bed, the no-slip boundary condition is applied and the free surface is treated as rigid lid without a friction. 4. Results Figure 1. Computational domain and the measured locations (left) and computational box including 2 cylinders (right). Fig. 2 shows the comparison of the LES with the measured data at the six locations for time-averaged streamwise velocities which is normalized by bulk velocity. Figure 2. Comparison of time-averaged streamwise velocities of the LES with measured data at the six selected locations. 2
3 Overall, the computed results are in good agreement with measured data. Streamwise velocities decrease within the canopy and accelerate above the canopy. As shown in the results, the profiles of streamwise velocities are similar regardless of the locations of the profile, which indicates that the flow is affected by the canopy in the entire region, even though the distance of the canopy is large enough. At location 1, which is just downstream of the cylinder, the computed velocity within the canopy is under-predicted whereas it is in agreement with measurement above the canopy. The region where the LES predicts lower velocity is characterized by high turbulence due to vortex shedding. At location 6, which is further downstream of the cylinder, the comparison shows good agreement between computed and measured data. At the results of the other locations (2~5), the computed profiles of the streamwise velocities match well with measured ones. There is almost constant velocity within the canopy and the high velocity gradients are found above the canopy. Fig. 3 presents the time-averaged streamwise velocity in two longitudinal planes where the upper part is a slice through the cylinder and the lower part is a slice of the center between cylinders. In this figure, the time-averaged flow fields for the submergence ratio of 1.25 and 3.0 are displayed. The flow is significantly decelerated within the vegetation layer. In particular, the retardation of the flow is obviously observed behind the cylinder irrespective of the submergence ratio, which is corresponded to recirculation zone. The flow is accelerated above the cylinders and its acceleration increases with a decrease in the submergence ratio, which indicates that a strong shear layer is produced. On the other hand, the time-averaged flow fields in plane where there are no cylinders are not appreciably different from those of a slice through the cylinder except for the downstream of the cylinder. It indicates that high fluid momentum from the vegetation layer is ejected to the out of the vegetation layer. The inflection of the velocity profile at the top of the vegetation layer induced by the suppression of the streamwise velocity in the vegetation zone generates unsteady shear layer and thus it causes large-scale vortices such as trailing vortices or tip vortices. Figure 3. Time-averaged streamwise velocities in two selected longitudinal planes: The upper part presents a slice through the cylinder and the lower part presents a slice of the center between cylinders. The left part is the submergence ratio is 1.5, the middle part is the submergence ratio is 3.0, the right part is the submergence ratio is Fig. 4 presents the instantaneous vorticity in longitudinal plane where the slice is through the cylinder axis for the submergence ratio of 1.5, 1.25 and 3.0. There are two distinct regions of high vorticity. The high value of the vorticity 3
4 , occurs behind the cylinder which is recirculation zone. The vortices are observed by vortex shedding due to Kelvin Helmholtz instability. These vortices occur along the entire cylinder height and the magnitude of vortices is amplified as a decrease in the submergence ratio. The second region of high vorticity is the interface region. The trailing vortices are produced at the top of the cylinders and these are transferred to downstream region. The trailing vortices are interfered with those resulting from vortex shedding, which indicates that high level of turbulence occurs in the rear and the top of the cylinder due to tip vortices penetrating into the canopy. In the interface between the canopy and free flow, fluctuations in the vertical direction that is attributed to the vertical exchange processes are generated in the streamwise direction. The magnitude of the vortices occurring at the canopy increases with decreasing in the submergence ratio. The LES captures the instantaneous vortex structures resulting from the vegetation element. Figure 4. The instantaneous vorticity in longitudinal plane where the slice is through the cylinder: The left part is the submergence ratio is 1.5, the middle part is the submergence ratio is 3.0, the right part is the submergence ratio is Fig. 5 shows the distributions of the turbulence intensity against the vertical direction at the location 3 for three submergence ratio and the comparison of penetration depth according to the submergence ratio. For the emergent vegetation, the turbulence intensity is significantly smaller than those of the submerged vegetation (Nepf and Vivoni, 2000; Nezu and Sanjou, 2008). This is due to fact that there is no vertical transport of momentum. The highest turbulence intensities are found at the top of canopy layers and the highest value of turbulence intensity occurs when the submergence ratio is 1.5. Several researches suggested that the penetration depth of turbulence stress is influenced by the mixing-layer vortices where the penetration depth is defined by the distance from the top of the canopy to the level where the Reynolds stress, normal stress or total kinetic energy decay 10% of the maximum value (Nepf and Vivoni, 2000; Nikora and Nikora, 2010; Nezu and Sanjou, 2008; Wilson et al., 2003). In this paper, the penetration depth is defined by the turbulence intensity. In Fig. 5 (right), the variations of the penetration depth are displayed against the submergence ratio. For comparison, the value of the penetration depth for the flexible vegetation conducted by Nepf and Vivoni, 2000, Wilson et al., 2003 and its value for rigid vegetation of Nezu and Sanjou (2008) are included. The value of the submergence ratio decreases rapidly from 1.0 (emergent vegetation) to 1.5, after which it decreases slowly. The value of the penetration depth for the rigid vegetation is higher than the value of the flexible vegetation which means that the higher momentum exchange occurs for the rigid vegetation. In addition, the penetration depth increases with an increase in the vegetation density. Figure 5. Streamwise turbulence intensities at the location 3 (right) and comparison of penetration depth (left) 4
5 5. Conclusions In this paper, we have presented the LES results for open channel flows with the submerged vegetation. For validation of the model, the computed time-averaged velocity at six locations is compared with measurement and the comparison showed good agreement between computed and measured data. The time-averaged velocity, vorticity and turbulence intensity are significantly influenced by the submergence ratio. The presence of the inflection in velocity profile produces a shear layer and the maximum value of turbulence stress near the top of the canopy. The strong shear is highly associated with development of coherent flow structures. The LES reproduces the trailing vortices originating near the top of the canopy and vortex structures behind the cylinder. The penetration depth of large-scale turbulence into the canopy is assessed using the turbulence intensity. The penetration depth increases with increasing the vegetation density or decreasing the submergence ratio. ACKNOWLEDGMENTS This research was financially supported by the Korea Institute of Civil Engineering and Building Technology (project: Development of Floodplain Maintenance Technology for Enhancement of Waterfront Values) REFERENCES Choi, S. U., and Kang, H. (2004). Reynolds stress modeling of vegetated open channel flows. J. Hydraul. Res., 42 (1), Cui, J., and Neary, V. S. (2008). LES study of turbulent flows with submerged vegetation. J. Hydraul. Res., 46 (3), Fischer-Antze, T., Stoesser, T., Bates, P. B., and Olsen, N. R. (2001). 3D numerical modelling of open channel flow with submerged vegetation. J. Hydraul. Res., 39, Ghisalberti, M., and Nepf, H. (2002). Mixing layers and coherent structures in vegetated aquatic flows. J. Geophys. Res., 107(C2), Ghisalberti, M., and Nepf, H. (2006). The structure of shear layer in flow over rigid and flexible canopy. Environ. Fluid Mech., 6, Liu, D., Diplas, P., Fairbanks, J. D., and Hodges, C. C. (2008). An experimental study of flow through rigid vegetation. J. Geophys. Res., 113, Lopez, F., and Garcia, M. (2001). Mean flow and turbulence structure of open channel flow through non-emergent vegetation. J. Hydraul. Eng., 127(5), Nabi, M., H. J. de Vriend, Mosselman, E., Sloff, C. J., and Shimizu, Y. (2012). Detailed simulation of morphodynamics: 1. Hydrodynamics model, Water Resour. Res., 48, W12523 Nepf, H., and Vivoni, E. R. (2000). Flow structure in depth-limited, vegetated flow. J. Geophys. Res., 105(C12), Nezu, I., and Sanjou, M. (2008). Turbulence structure and coherent motion in vegetated canopy open channel flows. J. Hydro-environ. Res., 2, Nikora, N., and Nikora, V. (2010). Flow penetration into the canopy of the submerged vegetation: definitions and quantitative estimates. Proc., River Flow 2010, Shimizu, Y., and Tsujimoto, T. (1994). Numerical analysis of turbulent open channel flow over vegetation layer using k-eps turbulence model. J. Hydrosci. Hydr. Eng., 11(2), Stoesser, T., Palau, G., Rodi, W., and Diplas, P. (2009). Large eddy simulation of turbulent flow through submerged vegetation. Transp Porous Med., 78, Stoesser, T., Kim, S. J., and Diplas, P. (2010). Turbulent flow through idealized emergent vegetation. J. Hydraul. Eng. 136(12), Wilson, C. A. M. E., Stoesser, T., Bates, P. D., Batemann-Prinzen, A. (2009). Open channel flow through different forms of submerged flexible vegetation. J. Hydraul. Eng. 129,
How To Model A Horseshoe Vortex
Comparison of CFD models for multiphase flow evolution in bridge scour processes A. Bayón-Barrachina, D. Valero, F.J. Vallès Morán, P. A. López-Jiménez Dept. of Hydraulic and Environmental Engineering
Dimensional Analysis
Dimensional Analysis An Important Example from Fluid Mechanics: Viscous Shear Forces V d t / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Ƭ = F/A = μ V/d More generally, the viscous
Abaqus/CFD Sample Problems. Abaqus 6.10
Abaqus/CFD Sample Problems Abaqus 6.10 Contents 1. Oscillatory Laminar Plane Poiseuille Flow 2. Flow in Shear Driven Cavities 3. Buoyancy Driven Flow in Cavities 4. Turbulent Flow in a Rectangular Channel
NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES
Vol. XX 2012 No. 4 28 34 J. ŠIMIČEK O. HUBOVÁ NUMERICAL ANALYSIS OF THE EFFECTS OF WIND ON BUILDING STRUCTURES Jozef ŠIMIČEK email: [email protected] Research field: Statics and Dynamics Fluids mechanics
Validation of CFD Simulations for Natural Ventilation
Jiang, Y., Allocca, C., and Chen, Q. 4. Validation of CFD simulations for natural ventilation, International Journal of Ventilation, (4), 359-37. Validation of CFD Simulations for Natural Ventilation Yi
Lecture 11 Boundary Layers and Separation. Applied Computational Fluid Dynamics
Lecture 11 Boundary Layers and Separation Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Overview Drag. The boundary-layer
Using CFD to improve the design of a circulating water channel
2-7 December 27 Using CFD to improve the design of a circulating water channel M.G. Pullinger and J.E. Sargison School of Engineering University of Tasmania, Hobart, TAS, 71 AUSTRALIA Abstract Computational
ME6130 An introduction to CFD 1-1
ME6130 An introduction to CFD 1-1 What is CFD? Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat and mass transfer, chemical reactions, and related phenomena by solving numerically
Practice Problems on Boundary Layers. Answer(s): D = 107 N D = 152 N. C. Wassgren, Purdue University Page 1 of 17 Last Updated: 2010 Nov 22
BL_01 A thin flat plate 55 by 110 cm is immersed in a 6 m/s stream of SAE 10 oil at 20 C. Compute the total skin friction drag if the stream is parallel to (a) the long side and (b) the short side. D =
HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi
HEAT TRANSFER ANALYSIS IN A 3D SQUARE CHANNEL LAMINAR FLOW WITH USING BAFFLES 1 Vikram Bishnoi 2 Rajesh Dudi 1 Scholar and 2 Assistant Professor,Department of Mechanical Engineering, OITM, Hisar (Haryana)
Keywords: Heat transfer enhancement; staggered arrangement; Triangular Prism, Reynolds Number. 1. Introduction
Heat transfer augmentation in rectangular channel using four triangular prisms arrange in staggered manner Manoj Kumar 1, Sunil Dhingra 2, Gurjeet Singh 3 1 Student, 2,3 Assistant Professor 1.2 Department
4.What is the appropriate dimensionless parameter to use in comparing flow types? YOUR ANSWER: The Reynolds Number, Re.
CHAPTER 08 1. What is most likely to be the main driving force in pipe flow? A. Gravity B. A pressure gradient C. Vacuum 2.What is a general description of the flow rate in laminar flow? A. Small B. Large
CHAPTER 4 FLOW IN CHANNELS
CHAPTER 4 FLOW IN CHANNELS INTRODUCTION 1 Flows in conduits or channels are of interest in science, engineering, and everyday life. Flows in closed conduits or channels, like pipes or air ducts, are entirely
BED LOAD TRANSPORT OF FINE SAND BY LAMINAR AND TURBULENT FLOW
BED LOAD TRANSPORT OF FINE SAND BY LAMINAR AND TURBULENT FLOW ABSTRACT by Anthony J.Grass* and Ragaet N.M.Ayoub** An experimental study is described in which the rate of transport of fine sand over a flat
NUMERICAL SIMULATION OF REGULAR WAVES RUN-UP OVER SLOPPING BEACH BY OPEN FOAM
NUMERICAL SIMULATION OF REGULAR WAVES RUN-UP OVER SLOPPING BEACH BY OPEN FOAM Parviz Ghadimi 1*, Mohammad Ghandali 2, Mohammad Reza Ahmadi Balootaki 3 1*, 2, 3 Department of Marine Technology, Amirkabir
Lecture 6 - Boundary Conditions. Applied Computational Fluid Dynamics
Lecture 6 - Boundary Conditions Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Outline Overview. Inlet and outlet boundaries.
CFD Based Air Flow and Contamination Modeling of Subway Stations
CFD Based Air Flow and Contamination Modeling of Subway Stations Greg Byrne Center for Nonlinear Science, Georgia Institute of Technology Fernando Camelli Center for Computational Fluid Dynamics, George
Lecture 8 - Turbulence. Applied Computational Fluid Dynamics
Lecture 8 - Turbulence Applied Computational Fluid Dynamics Instructor: André Bakker http://www.bakker.org André Bakker (2002-2006) Fluent Inc. (2002) 1 Turbulence What is turbulence? Effect of turbulence
Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology
Express Introductory Training in ANSYS Fluent Lecture 1 Introduction to the CFD Methodology Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 - Industry
Basic Equations, Boundary Conditions and Dimensionless Parameters
Chapter 2 Basic Equations, Boundary Conditions and Dimensionless Parameters In the foregoing chapter, many basic concepts related to the present investigation and the associated literature survey were
COMPARISON OF SOLUTION ALGORITHM FOR FLOW AROUND A SQUARE CYLINDER
Ninth International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia - December COMPARISON OF SOLUTION ALGORITHM FOR FLOW AROUND A SQUARE CYLINDER Y. Saito *, T. Soma,
Aerodynamics of Rotating Discs
Proceedings of ICFD 10: Tenth International Congress of FluidofDynamics Proceedings ICFD 10: December 16-19, 2010, Stella Di MareTenth Sea Club Hotel, Ain Soukhna, Egypt International Congress of Red FluidSea,
Chapter 2. Derivation of the Equations of Open Channel Flow. 2.1 General Considerations
Chapter 2. Derivation of the Equations of Open Channel Flow 2.1 General Considerations Of interest is water flowing in a channel with a free surface, which is usually referred to as open channel flow.
The Influence of Aerodynamics on the Design of High-Performance Road Vehicles
The Influence of Aerodynamics on the Design of High-Performance Road Vehicles Guido Buresti Department of Aerospace Engineering University of Pisa (Italy) 1 CONTENTS ELEMENTS OF AERODYNAMICS AERODYNAMICS
Performance prediction of a centrifugal pump working in direct and reverse mode using Computational Fluid Dynamics
European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ) International Conference on Renewable Energies and Power Quality (ICREPQ 10) Granada (Spain), 23rd
The calculation of train slipstreams using Large-Eddy Simulation techniques
The calculation of train slipstreams using Large-Eddy Simulation techniques Abstract Hassan Hemida, Chris Baker Birmingham Centre for Railway Research and Education, School of Civil Engineering, University
A Study on Analysis of Clearwell in Water works by Computational Fluid Dynamics
, pp.217-222 http://dx.doi.org/10.14257/astl.2015. A Study on Analysis of Clearwell in Water works by Computational Fluid Dynamics Jinhong Jung 1,1, Gyewoon Choi 2, 1 Environmental and Plant Engineering
When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid.
Fluid Statics When the fluid velocity is zero, called the hydrostatic condition, the pressure variation is due only to the weight of the fluid. Consider a small wedge of fluid at rest of size Δx, Δz, Δs
OpenFOAM simulations of the Turbulent Flow in a Rod Bundle with Mixing Vanes
OpenFOAM simulations of the Turbulent Flow in a Rod Bundle with Mixing Vanes ABSTRACT Blaž Mikuž Reactor Engineering Division, Jozef Stefan Institute, Jamova cesta 39 SI-1000 Ljubljana, Slovenia [email protected]
11 Navier-Stokes equations and turbulence
11 Navier-Stokes equations and turbulence So far, we have considered ideal gas dynamics governed by the Euler equations, where internal friction in the gas is assumed to be absent. Real fluids have internal
Open channel flow Basic principle
Open channel flow Basic principle INTRODUCTION Flow in rivers, irrigation canals, drainage ditches and aqueducts are some examples for open channel flow. These flows occur with a free surface and the pressure
Differential Relations for Fluid Flow. Acceleration field of a fluid. The differential equation of mass conservation
Differential Relations for Fluid Flow In this approach, we apply our four basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of
Comparison of Hexa-Structured and Hybrid-Unstructured Meshing Approaches for Numerical Prediction of the Flow Around Marine Propellers
First International Symposium on Marine Propulsors smp 09, Trondheim, Norway, June 2009 Comparison of Hexa-Structured and Hybrid-Unstructured Meshing Approaches for Numerical Prediction of the Flow Around
Adaptation of General Purpose CFD Code for Fusion MHD Applications*
Adaptation of General Purpose CFD Code for Fusion MHD Applications* Andrei Khodak Princeton Plasma Physics Laboratory P.O. Box 451 Princeton, NJ, 08540 USA [email protected] Abstract Analysis of many fusion
Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical
European Water 36: 7-35, 11. 11 E.W. Publications Backwater Rise and Drag Characteristics of Bridge Piers under Subcritical Flow Conditions C.R. Suribabu *, R.M. Sabarish, R. Narasimhan and A.R. Chandhru
INTRODUCTION TO FLUID MECHANICS
INTRODUCTION TO FLUID MECHANICS SIXTH EDITION ROBERT W. FOX Purdue University ALAN T. MCDONALD Purdue University PHILIP J. PRITCHARD Manhattan College JOHN WILEY & SONS, INC. CONTENTS CHAPTER 1 INTRODUCTION
Simulation of Flow Field and Particle Trajectories in Hard Disk Drive Enclosures
Simulation of Flow Field and Particle Trajectories in Hard Disk Drive Enclosures H. Song*, M. Damodaran*and Quock Y. Ng** *Singapore-Massachusetts Institute of Technology Alliance (SMA) Nanyang Technological
FLUID MECHANICS IM0235 DIFFERENTIAL EQUATIONS - CB0235 2014_1
COURSE CODE INTENSITY PRE-REQUISITE CO-REQUISITE CREDITS ACTUALIZATION DATE FLUID MECHANICS IM0235 3 LECTURE HOURS PER WEEK 48 HOURS CLASSROOM ON 16 WEEKS, 32 HOURS LABORATORY, 112 HOURS OF INDEPENDENT
Basic Principles in Microfluidics
Basic Principles in Microfluidics 1 Newton s Second Law for Fluidics Newton s 2 nd Law (F= ma) : Time rate of change of momentum of a system equal to net force acting on system!f = dp dt Sum of forces
CHAPTER 4 CFD ANALYSIS OF THE MIXER
98 CHAPTER 4 CFD ANALYSIS OF THE MIXER This section presents CFD results for the venturi-jet mixer and compares the predicted mixing pattern with the present experimental results and correlation results
FLOW CONDITIONER DESIGN FOR IMPROVING OPEN CHANNEL FLOW MEASUREMENT ACCURACY FROM A SONTEK ARGONAUT-SW
FLOW CONDITIONER DESIGN FOR IMPROVING OPEN CHANNEL FLOW MEASUREMENT ACCURACY FROM A SONTEK ARGONAUT-SW Daniel J. Howes, P.E. 1 Charles M. Burt, Ph.D., P.E. 2 Brett F. Sanders, Ph.D. 3 ABSTRACT Acoustic
Flow Patterns in an Open Channel Confluence with Increasingly Dominant Tributary Inflow
Water 2015, 7, 4724-4751; doi:10.3390/w7094724 Article OPEN ACCESS water ISSN 2073-4441 www.mdpi.com/journal/water Flow Patterns in an Open Channel Confluence with Increasingly Dominant Tributary Inflow
Fundamentals of Fluid Mechanics
Sixth Edition. Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department
Simulating Sedimentation Model in Balarood Dam Reservoir Using CCHE2D Software
Bulletin of Environment, Pharmacology and Life Sciences Bull. Env. Pharmacol. Life Sci., Vol 4 [1] December 2014: 67-72 2014 Academy for Environment and Life Sciences, India Online ISSN 2277-1808 Journal
FLOW PATTERNS AND EXCHANGE PROCESSES IN DEAD ZONES OF RIVERS VOLKER WEITBRECHT & GERHARD H. JIRKA
FLOW PATTERNS AND EXCHANGE PROCESSES IN DEAD ZONES OF RIVERS VOLKER WEITBRECHT & GERHARD H. JIRKA Institute for Hydromechanics, University of Karlsruhe 76128 Karlsruhe, Germany [email protected]
1 The basic equations of fluid dynamics
1 The basic equations of fluid dynamics The main task in fluid dynamics is to find the velocity field describing the flow in a given domain. To do this, one uses the basic equations of fluid flow, which
Modelling and Computation of Compressible Liquid Flows with Phase Transition
JASS 2009 - Joint Advanced Student School, Saint Petersburg, 29. 03. - 07. 04. 2009 Modelling and Simulation in Multidisciplinary Engineering Modelling and Computation of Compressible Liquid Flows with
Computational Fluid Dynamics Investigation of Two Surfboard Fin Configurations.
Computational Fluid Dynamics Investigation of Two Surfboard Fin Configurations. By: Anthony Livanos (10408690) Supervisor: Dr Philippa O Neil Faculty of Engineering University of Western Australia For
ANALYSIS OF OPEN-CHANNEL VELOCITY MEASUREMENTS COLLECTED WITH AN ACOUSTIC DOPPLER CURRENT PROFILER
Reprint from RIVERTECH 96 Proceedings from the1st International Conference On New/Emerging Concepts for Rivers Organized by the International Water Resources Association Held September 22-26, 1996, Chicago,
Use of OpenFoam in a CFD analysis of a finger type slug catcher. Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands
Use of OpenFoam in a CFD analysis of a finger type slug catcher Dynaflow Conference 2011 January 13 2011, Rotterdam, the Netherlands Agenda Project background Analytical analysis of two-phase flow regimes
International Journal of Food Engineering
International Journal of Food Engineering Volume 6, Issue 1 2010 Article 13 Numerical Simulation of Oscillating Heat Pipe Heat Exchanger Benyin Chai, Shandong University Min Shao, Shandong Academy of Sciences
THERMAL STRATIFICATION IN A HOT WATER TANK ESTABLISHED BY HEAT LOSS FROM THE TANK
THERMAL STRATIFICATION IN A HOT WATER TANK ESTABLISHED BY HEAT LOSS FROM THE TANK J. Fan and S. Furbo Abstract Department of Civil Engineering, Technical University of Denmark, Brovej, Building 118, DK-28
A fundamental study of the flow past a circular cylinder using Abaqus/CFD
A fundamental study of the flow past a circular cylinder using Abaqus/CFD Masami Sato, and Takaya Kobayashi Mechanical Design & Analysis Corporation Abstract: The latest release of Abaqus version 6.10
Numerical simulations of heat transfer in plane channel
Numerical simulations of heat transfer in plane channel flow Najla El Gharbi, Rafik Absi, Ahmed Benzaoui To cite this version: Najla El Gharbi, Rafik Absi, Ahmed Benzaoui. Numerical simulations of heat
Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412
, July 2-4, 2014, London, U.K. Application of CFD Simulation in the Design of a Parabolic Winglet on NACA 2412 Arvind Prabhakar, Ayush Ohri Abstract Winglets are angled extensions or vertical projections
Embedded LES Methodology for General-Purpose CFD Solvers
Embedded LES Methodology for General-Purpose CFD Solvers Davor Cokljat Domenico Caridi ANSYS UK Ltd., Sheffield S9 1XH, UK [email protected] [email protected] Gerhard Link Richard Lechner
Fluid Mechanics: Static s Kinematics Dynamics Fluid
Fluid Mechanics: Fluid mechanics may be defined as that branch of engineering science that deals with the behavior of fluid under the condition of rest and motion Fluid mechanics may be divided into three
Appendix 4-C. Open Channel Theory
4-C-1 Appendix 4-C Open Channel Theory 4-C-2 Appendix 4.C - Table of Contents 4.C.1 Open Channel Flow Theory 4-C-3 4.C.2 Concepts 4-C-3 4.C.2.1 Specific Energy 4-C-3 4.C.2.2 Velocity Distribution Coefficient
Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2)
Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) In this lecture How does turbulence affect the ensemble-mean equations of fluid motion/transport? Force balance in a quasi-steady turbulent boundary
Aerodynamic Department Institute of Aviation. Adam Dziubiński CFD group FLUENT
Adam Dziubiński CFD group IoA FLUENT Content Fluent CFD software 1. Short description of main features of Fluent 2. Examples of usage in CESAR Analysis of flow around an airfoil with a flap: VZLU + ILL4xx
Physics of the Atmosphere I
Physics of the Atmosphere I WS 2008/09 Ulrich Platt Institut f. Umweltphysik R. 424 [email protected] heidelberg.de Last week The conservation of mass implies the continuity equation:
NUCLEAR ENERGY RESEARCH INITIATIVE
NUCLEAR ENERGY RESEARCH INITIATIVE Experimental and CFD Analysis of Advanced Convective Cooling Systems PI: Victor M. Ugaz and Yassin A. Hassan, Texas Engineering Experiment Station Collaborators: None
Chapter 9. Steady Flow in Open channels
Chapter 9 Steady Flow in Open channels Objectives Be able to define uniform open channel flow Solve uniform open channel flow using the Manning Equation 9.1 Uniform Flow in Open Channel Open-channel flows
Distinguished Professor George Washington University. Graw Hill
Mechanics of Fluids Fourth Edition Irving H. Shames Distinguished Professor George Washington University Graw Hill Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok
Fluids and Solids: Fundamentals
Fluids and Solids: Fundamentals We normally recognize three states of matter: solid; liquid and gas. However, liquid and gas are both fluids: in contrast to solids they lack the ability to resist deformation.
CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK PART - A
CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART - A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density
Basics of vehicle aerodynamics
Basics of vehicle aerodynamics Prof. Tamás Lajos Budapest University of Technology and Economics Department of Fluid Mechanics University of Rome La Sapienza 2002 Influence of flow characteristics on the
Open Channel Flow. M. Siavashi. School of Mechanical Engineering Iran University of Science and Technology
M. Siavashi School of Mechanical Engineering Iran University of Science and Technology W ebpage: webpages.iust.ac.ir/msiavashi Email: [email protected] Landline: +98 21 77240391 Fall 2013 Introduction
Along-wind self-excited forces of two-dimensional cables under extreme wind speeds
The Seventh International Colloquium on Bluff Body Aerodynamics and Applications (BBAA7) Shanghai, China; September 2-6, 2012 Along-wind self-excited forces of two-dimensional cables under extreme wind
Numerical simulations of the flow in a converging-diverging channel with control through a spanwise slot.
Numerical simulations of the flow in a converging-diverging channel with control through a spanwise slot. Guillaume Fournier, Jean-Philippe Laval, Caroline Braud and Michel Stanislas CNRS, UMR 8107, Laboratoire
Unsteady CFD of a Marine Current Turbine using OpenFOAM with Generalised Grid Interface
Unsteady CFD of a Marine Current Turbine using OpenFOAM with Generalised Grid Interface Thomas P. Lloyd, Stephen R. Turnock and Victor F. Humphrey Fluid-Structure Interactions Research Group; Institute
Universitätsstrasse 1, D-40225 Düsseldorf, Germany 3 Current address: Institut für Festkörperforschung,
Lane formation in oppositely charged colloidal mixtures - supplementary information Teun Vissers 1, Adam Wysocki 2,3, Martin Rex 2, Hartmut Löwen 2, C. Patrick Royall 1,4, Arnout Imhof 1, and Alfons van
TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW
TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS OF FORCED CONVECTION FLOW AND HEAT TRANSFER IN A LAMINAR CHANNEL FLOW Rajesh Khatri 1, 1 M.Tech Scholar, Department of Mechanical Engineering, S.A.T.I., vidisha
O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM. Darmstadt, 27.06.2012
O.F.Wind Wind Site Assessment Simulation in complex terrain based on OpenFOAM Darmstadt, 27.06.2012 Michael Ehlen IB Fischer CFD+engineering GmbH Lipowskystr. 12 81373 München Tel. 089/74118743 Fax 089/74118749
CONVERGE Features, Capabilities and Applications
CONVERGE Features, Capabilities and Applications CONVERGE CONVERGE The industry leading CFD code for complex geometries with moving boundaries. Start using CONVERGE and never make a CFD mesh again. CONVERGE
Mean flow and turbulence statistics over groups of urban-like cubical obstacles
Boundary-Layer Meteorol (6) :9 59 DOI.7/s56-6-976- ORIGINAL PAPER Mean flow and turbulence statistics over groups of urban-like cubical obstacles O. Coceal T. G. Thomas I. P. Castro S. E. Belcher Received:
Dimensional analysis is a method for reducing the number and complexity of experimental variables that affect a given physical phenomena.
Dimensional Analysis and Similarity Dimensional analysis is very useful for planning, presentation, and interpretation of experimental data. As discussed previously, most practical fluid mechanics problems
Visualization and Feature Extraction, FLOW Spring School 2016 Prof. Dr. Tino Weinkauf. Flow Visualization. Image-Based Methods (integration-based)
Visualization and Feature Extraction, FLOW Spring School 2016 Prof. Dr. Tino Weinkauf Flow Visualization Image-Based Methods (integration-based) Spot Noise (Jarke van Wijk, Siggraph 1991) Flow Visualization:
Chapter 13 OPEN-CHANNEL FLOW
Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Lecture slides by Mehmet Kanoglu Copyright The McGraw-Hill Companies, Inc. Permission required
NUMERICAL INVESTIGATION OF HEAT AND MASS TRANSFER IN A REFRIGERATED TRUCK COMPARTMENT
NUMERICAL INVESTIGATION OF HEAT AND MASS TRANSFER IN A REFRIGERATED TRUCK COMPARTMENT T. LAFAYE DE MICHEAUX (a), V. SARTRE (a)*, A. STUMPF (b), J. BONJOUR (a) (a) Université de Lyon, CNRS INSA-Lyon, CETHIL,
What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation)
OPEN CHANNEL FLOW 1 3 Question What is the most obvious difference between pipe flow and open channel flow????????????? (in terms of flow conditions and energy situation) Typical open channel shapes Figure
1. Fluids Mechanics and Fluid Properties. 1.1 Objectives of this section. 1.2 Fluids
1. Fluids Mechanics and Fluid Properties What is fluid mechanics? As its name suggests it is the branch of applied mechanics concerned with the statics and dynamics of fluids - both liquids and gases.
Micro-Optical Sensor Use in Boundary Layer Flows with Polymers and Bubbles
2 nd International Symposium on Seawater Drag Reduction Busan, Korea, 23-26 MAY 2005 Micro-Optical Sensor Use in Boundary Layer Flows with Polymers and Bubbles D. Modarress, P. Svitek (Measurement Science
VISCOSITY OF A LIQUID. To determine the viscosity of a lubricating oil. Time permitting, the temperature variation of viscosity can also be studied.
VISCOSITY OF A LIQUID August 19, 004 OBJECTIVE: EQUIPMENT: To determine the viscosity of a lubricating oil. Time permitting, the temperature variation of viscosity can also be studied. Viscosity apparatus
Experiment 3 Pipe Friction
EML 316L Experiment 3 Pipe Friction Laboratory Manual Mechanical and Materials Engineering Department College of Engineering FLORIDA INTERNATIONAL UNIVERSITY Nomenclature Symbol Description Unit A cross-sectional
Numerical Study on the Influence of Boss Cap Fins on Efficiency of Controllable-pitch Propeller
J. Marine Sci. Appl. (2013) 12: 13-20 DOI: 10.1007/s11804-013-1166-9 Numerical Study on the Influence of Boss Cap Fins on Efficiency of Controllable-pitch Propeller Ying Xiong 1, Zhanzhi Wang 1* and Wanjiang
Experimentation and Computational Fluid Dynamics Modelling of Roughness Effects in Flexible Pipelines
Experimentation and Computational Fluid Dynamics Modelling of Roughness Effects in Flexible Pipelines Sophie Yin Jeremy Leggoe School of Mechanical and Chemical Engineering Daniel Teng Paul Pickering CEED
Aeroelastic Investigation of the Sandia 100m Blade Using Computational Fluid Dynamics
Aeroelastic Investigation of the Sandia 100m Blade Using Computational Fluid Dynamics David Corson Altair Engineering, Inc. Todd Griffith Sandia National Laboratories Tom Ashwill (Retired) Sandia National
du u U 0 U dy y b 0 b
BASIC CONCEPTS/DEFINITIONS OF FLUID MECHANICS (by Marios M. Fyrillas) 1. Density (πυκνότητα) Symbol: 3 Units of measure: kg / m Equation: m ( m mass, V volume) V. Pressure (πίεση) Alternative definition:
AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL
14 th European Conference on Mixing Warszawa, 10-13 September 2012 AN EFFECT OF GRID QUALITY ON THE RESULTS OF NUMERICAL SIMULATIONS OF THE FLUID FLOW FIELD IN AN AGITATED VESSEL Joanna Karcz, Lukasz Kacperski
Lecture 6. Jump as energy dissipation Control of jump.
Lecture 6 Jump as energy dissipation Control of jump. Jump as energy dissipation The high energy loss that occurs in a hydraulic jump has led to its adoption as a part of high energy dissipater system
DEVELOPMENT OF CFD MODELS OF MINERAL FLOTATION CELLS
Third International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia 10-12 December 2003 DEVELOPMENT OF CFD MODELS OF MINERAL FLOTATION CELLS P.T.L. KOH 1, M.P. SCHWARZ
CFD Code Validation Against Stratified Air-Water Flow Experimental Data
CFD Code Validation Against Stratified Air-Water Flow F. Terzuoli, M.C. Galassi, D. Mazzini, F. D Auria University of Pisa Department of Mechanics, Nuclear and Production Engineering Via Diotisalvi 2,
THE OECD/NEA MATIS-H BENCHMARK CFD ANALYSIS OF WATER FLOW THROUGH A 5X5 ROD BUNDLE WITH SPACER GRIDS USING ANSYS FLUENT AND ANSYS CFX
CFD4NRS-4, Conference on Experimental Validation and Application of CFD and CMFD Codes in Nuclear Reactor Technology, OECD/NEA and IAEA Workshop, 10.-12. September 2012, Daejeon, South Korea. THE OECD/NEA
