SOLVING SEXTIC EQUATIONS. Raghavendra G. Kulkarni
|
|
|
- Collin Stevens
- 9 years ago
- Views:
Transcription
1 Atlantic Electronic Journal of Mathematics Volume 3, Number 1, Winter 2008 pp SOLVING SEXTIC EQUATIONS Raghavendra G. Kulkarni Hybrid Microcircuits Division Bharat Electronics Ltd., Jalahalli Post, Bangalore , India Abstract. This paper presents a novel decomposition method to solve various types of solvable sextic equations. 1. Introduction. The works of Abel (1826) and Galois (1832) have shown that the general polynomial equations of degree higher than the fourth cannot be solved in radicals [1]. While Abel published the proof of impossibility of solving these equations (Abel s impossibility theorem), Galois gave a more rigorous proof using the group theory. This does not mean that there is no algebraic solution to the general polynomial equations of degree five and above [2]. In fact these equations are solved algebraically by employing symbolic coefficients: the general quintic is solved by using the Bring radicals, while the general sextic can be solved in terms of Kampe de Feriet functions [3]. In this paper, we describe a method to decompose the given sextic equation (sixth-degree polynomial equation) into two cubic polynomials as factors. The cubic polynomials are then equated to zero and solved to obtain the six roots of the sextic equation in radicals. The salient feature of the sextic solved in this manner is that, the sum of its three roots is equal to the sum of its remaining three roots. The condition required to be satisfied by the coefficients of such solvable sextic is derived. A numerical example is solved in the last section using the method presented. 2. Decomposition of sextic equation. Let the sextic equation whose solution is sought be: x 6 + a 5 x 5 + a 4 x 4 + a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 (1) where a 0, a 1, a 2, a 3, a 4 and a 5 are the real coefficients in the above equation. Consider another sextic equation as shown below: (x 3 + b 2 x 2 + b 1 x + b 0 ) 2 (c 2 x 2 + c 1 x + c 0 ) 2 = 0 (2) where b 0, b 1, b 2, and c 0, c 1, c 2, are the unknown coefficients in the constituent cubic and quadratic polynomials respectively, in the above equation. Notice that the sextic equation (2) can be easily decomposed into two factors as shown below. [x 3 +(b 2 c 2 )x 2 +(b 1 c 1 )x+b 0 c 0 ][x 3 +(b 2 +c 2 )x 2 +(b 1 +c 1 )x+b 0 +c 0 ] = 0 (3) 2000 Mathematics Subject Classification. Primary: 12D05. Key words and phrases. Sextic equation, polynomial decomposition, solvable equations, sixthdegree polynomial equation. The author thanks the management of Bharat Electronics Ltd., Bangalore for supporting this work. 56
2 SOLVING SEXTIC EQUATIONS 57 Therefore, if the given sextic equation (1) can be represented in the form of (2), then it can be factored into two cubic polynomial factors as shown in (3), leading to its solution. These polynomial factors are equated to zero to obtain the following cubic equations. x 3 + (b 2 c 2 )x 2 + (b 1 c 1 )x + b 0 c 0 = 0 x 3 + (b 2 + c 2 )x 2 + (b 1 + c 1 )x + b 0 + c 0 = 0 (4) The six roots of the given sextic equation (1) are then obtained by solving the above cubic equations. Thus in order to represent the given sextic equation (1) in the form of (2), the coefficients of (1) should be equal to the coefficients of (2). However the coefficients of (2) are not explicitly available. Therefore the sextic equation (2) is now expanded and rearranged in descending powers of x as shown below, to facilitate equating its coefficients with that of sextic equation (1). x 6 + 2b 2 x 5 + (b b 1 c 2 2)x 4 + 2(b 0 + b 1 b 2 c 1 c 2 )x 3 +[b b 0 b 2 (c c 0 c 2 )]x 2 + 2(b 0 b 1 c 0 c 1 )x + b 2 0 c 2 0 = 0 (5) Equating the coefficients of (5) with the coefficients of given sextic equation (1), results into following six equations. 2b 2 = a 5 (6) b b 1 c 2 2 = a 4 (7) 2(b 0 + b 1 b 2 c 1 c 2 ) = a 3 (8) b b 0 b 2 (c c 0 c 2 ) = a 2 (9) 2(b 0 b 1 c 0 c 1 ) = a 1 (10) b 2 0 c 2 0 = a 0 (11) Notice that even though there are six equations [(6) to (11)] to determine the six unknowns (b 0, b 1, b 2, c 0, c 1, and c 2 ), all the unknowns cannot be determined since solution to the general sextic equation is not possible in radicals. Since our aim is to solve sextic equation in radicals, we introduce one more equation called supplementary equation to determine all the six unknowns. The supplementary equation introduced will decide the type of solvable sextic. Let the supplementary equation introduced be as follows. From (6) b 2 is evaluated as: Using (12) and (13) in equation (7), b 1 is found out as: c 2 = 0 (12) b 2 = a 5 /2 (13) b 1 = (a 4 /2) (a 2 5/8) (14) Using (12), (13), and (14), the values of c 2, b 2, and b 1 are substituted in equation (8) to evaluate b 0 as: b 0 = (a 3 /2) + (a 3 5/16) (a 4 a 5 /4) (15) Using (12), (13), (14), and (15) respectively, the values of c 2, b 2, b 1, and b 0 are substituted in equation (9), to obtain the value of c 2 1 as: c 2 1 = [(5a 4 5/64) (3a 4 a 2 5/8) + (a 2 4/4) + (a 3 a 5 /2) a 2 ] (16)
3 58 RAGHAVENDRA G. KULKARNI From the above expression, we notice that c 1 has two values, c 11 and c 12, as indicated below. c 11 = a 6 c 12 = a 6 (17) where a 6 is given by: a 6 = (5a 4 5 /64) (3a 4a 2 5 /8) + (a2 4 /4) + (a 3a 5 /2) a 2 (18) Observing the above expression for a 6, the curious reader may wonder whether the proposed method works when a 6 becomes imaginary [i.e., when the term under the square-root sign in (18) becomes negative]; yes, it does work as demonstrated by the numerical example given in the last section. The only condition on a 6 is that it should not be zero (see the next paragraph). Consider equation (10). Substitute the values of c 2, b 2, b 1, b 0, and c 1 using (12), (13), (14), (15), and (17) respectively in (10), to determine c 0. Since c 1 has two values, c 11 and c 12 ; c 0 also has corresponding two values, c 01 and c 02, as shown below (for a 6 0). where a 7 is given by: c 01 = a 7 /a 6 c 02 = a 7 /a 6 (19) a 7 = (a 3 a 4 /4) + (a 4 a 3 5/16) (a 2 4a 5 /8) (a 3 a 2 5/16) (a 5 5/128) (a 1 /2) (20) We have determined all the unknowns, and substituting their values in the cubic equation set (4), we get the following pair of cubic equations. x 3 + b 2 x 2 + (b 1 a 6 )x + b 0 (a 7 /a 6 ) = 0 x 3 + b 2 x 2 + (b 1 + a 6 )x + b 0 + (a 7 /a 6 ) = 0 (21) Notice that, even though there are two values each for c 0 and c 1, both values will yield same pair of cubic equations. These equations are then solved to obtain all the six roots of the given sextic equation (1). 3. Behavior of roots. Let x 1, x 2, x 3, x 4, x 5, and x 6 be the roots of given sextic equation; let x 1, x 2, and x 3 be the roots of first cubic equation in (21), and x 4, x 5, and x 6 be the roots of second cubic equation. Notice that x 2 term in both the cubic equations is same, which means the sum of the roots, x 1, x 2, and x 3, is equal to the sum of the roots, x 4, x 5, and x 6 ; it then follows that this sum is equal to: ( a 5 /2). Thus the roots are related as shown below. x 1 + x 2 + x 3 = x 4 + x 5 + x 6 (22) x 4 + x 5 + x 6 = ( a 5 /2) (23) We note that the solvable sextic equation has one dependent root, and is determined from the remaining five roots through the relation (22).
4 SOLVING SEXTIC EQUATIONS Condition for coefficients. Since one of the roots of sextic equation (1) is a dependent root, one of the coefficients also will be a dependent coefficient, and it will be determined by the remaining coefficients. To derive this relation (among the coefficients) consider the equation (11), and substitute the values of b 0 and c 0 in (11) using (15) and (19) respectively. We obtain the following expression containing only the coefficients of (1). a 0 = [(a 3 /2) + (a 3 5/16) (a 4 a 5 /4)] 2 (a 7 /a 6 ) 2 (24) Expression (24) is the condition for the coefficients to satisfy, so that the given sextic equation (1) can be solved by the proposed technique. Notice that the coefficient, a 0, can be determined from the remaining coefficients using the relation (24). 5. A note on the supplementary equation. In section 2 we introduced one supplementary equation, c 2 = 0, to facilitate evaluation of unknowns. The supplementary equation chosen decides the type of solvable sextic equation. Notice that if we introduce, c 0 = 0, as supplementary equation, then the solvable sextic equation has its product of three roots (out of six roots) being equal to the product of its remaining three roots, as indicated below. x 1 x 2 x 3 = x 4 x 5 x 6 The interested reader is invited to solve the sextic equation using the supplementary equation, c 0 = 0, and prove that the roots are related as mentioned above. 6. Numerical example. Let us solve the following sextic equation using the proposed method. x 6 8x x 4 78x x 2 110x + 50 = 0 First step is to check whether the coefficients in the above sextic equation satisfy the condition stipulated by the expression (24), or not. Evaluating a 0 from the expression (24), we obtain a 0 = 50, and thus we note that this condition is met. Using (13), (14), (15), (18), and (20), b 2, b 1, b 0, c 1, and c 0, are evaluated as: b 2 = 4, b 1 = 8, b 0 = 7, c 1 = i, and c 0 = i respectively; where i = 1. Using these values in (4), the pair of cubic equations obtained is: x 3 4x 2 + (8 + i)x 7 + i = 0 x 3 4x 2 + (8 i)x 7 i = 0 The roots of the first cubic equation in the above pair are determined from the well-known methods [4] as: 1 + i, 2 + i, and 1 2i; and the roots of second cubic equation are evaluated as: 1 i, 2 i, and 1 + 2i. Thus all the six roots of the sextic equation are found out. 7. Conclusions. A method to solve various types of solvable sextic equations is described. It is shown that, for one of such solvable sextic equations, the sum of its three roots is equal to the sum of its remaining three roots. The condition to be satisfied by the coefficients of such solvable sextic is derived.
5 60 RAGHAVENDRA G. KULKARNI REFERENCES [1] B. R. King, Beyond the quartic equation, Birkhauser, Boston (1996). [2] R. G. Kulkarni, A versatile technique for solving quintic equations, Mathematics and Computer Education, 40, (2006), no. 3, [3] E. W. Weisstein, Sextic Equation, From MathWorld-A Wolfram Web Resource, [4] R. G. Kulkarni, Unified method for solving general polynomial equations of degree less than five, Alabama Journal of Mathematics, 30, (2006), Received May 08, 2008; revised August address: [email protected]
Solving certain quintics
Annales Mathematicae et Informaticae 37 010) pp. 193 197 http://ami.ektf.hu Solving certain quintics Raghavendra G. Kulkarni Bharat Electronics Ltd., India Submitted 1 July 010; Accepted 6 July 010 Abstract
Extracting the roots of septics by polynomial decomposition
Lecturas Matemáticas Volumen 29 (2008), páginas 5 12 ISSN 0120 1980 Extracting the roots of septics by polynomial decomposition Raghavendra G. Kulkarni HMC Division, Bharat Electronics Ltd., Bangalore,
SOLVING POLYNOMIAL EQUATIONS BY RADICALS
SOLVING POLYNOMIAL EQUATIONS BY RADICALS Lee Si Ying 1 and Zhang De-Qi 2 1 Raffles Girls School (Secondary), 20 Anderson Road, Singapore 259978 2 Department of Mathematics, National University of Singapore,
SOLVING POLYNOMIAL EQUATIONS
C SOLVING POLYNOMIAL EQUATIONS We will assume in this appendix that you know how to divide polynomials using long division and synthetic division. If you need to review those techniques, refer to an algebra
Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:
Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than
Application. Outline. 3-1 Polynomial Functions 3-2 Finding Rational Zeros of. Polynomial. 3-3 Approximating Real Zeros of.
Polynomial and Rational Functions Outline 3-1 Polynomial Functions 3-2 Finding Rational Zeros of Polynomials 3-3 Approximating Real Zeros of Polynomials 3-4 Rational Functions Chapter 3 Group Activity:
Basics of Polynomial Theory
3 Basics of Polynomial Theory 3.1 Polynomial Equations In geodesy and geoinformatics, most observations are related to unknowns parameters through equations of algebraic (polynomial) type. In cases where
a 1 x + a 0 =0. (3) ax 2 + bx + c =0. (4)
ROOTS OF POLYNOMIAL EQUATIONS In this unit we discuss polynomial equations. A polynomial in x of degree n, where n 0 is an integer, is an expression of the form P n (x) =a n x n + a n 1 x n 1 + + a 1 x
SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS
(Section 0.6: Polynomial, Rational, and Algebraic Expressions) 0.6.1 SECTION 0.6: POLYNOMIAL, RATIONAL, AND ALGEBRAIC EXPRESSIONS LEARNING OBJECTIVES Be able to identify polynomial, rational, and algebraic
Indiana State Core Curriculum Standards updated 2009 Algebra I
Indiana State Core Curriculum Standards updated 2009 Algebra I Strand Description Boardworks High School Algebra presentations Operations With Real Numbers Linear Equations and A1.1 Students simplify and
The Method of Partial Fractions Math 121 Calculus II Spring 2015
Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method
The Notebook Series. The solution of cubic and quartic equations. R.S. Johnson. Professor of Applied Mathematics
The Notebook Series The solution of cubic and quartic equations by R.S. Johnson Professor of Applied Mathematics School of Mathematics & Statistics University of Newcastle upon Tyne R.S.Johnson 006 CONTENTS
Zeros of Polynomial Functions
Review: Synthetic Division Find (x 2-5x - 5x 3 + x 4 ) (5 + x). Factor Theorem Solve 2x 3-5x 2 + x + 2 =0 given that 2 is a zero of f(x) = 2x 3-5x 2 + x + 2. Zeros of Polynomial Functions Introduction
Equations, Inequalities & Partial Fractions
Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities
Unit 6: Polynomials. 1 Polynomial Functions and End Behavior. 2 Polynomials and Linear Factors. 3 Dividing Polynomials
Date Period Unit 6: Polynomials DAY TOPIC 1 Polynomial Functions and End Behavior Polynomials and Linear Factors 3 Dividing Polynomials 4 Synthetic Division and the Remainder Theorem 5 Solving Polynomial
1 Lecture: Integration of rational functions by decomposition
Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.
Trigonometric Functions and Equations
Contents Trigonometric Functions and Equations Lesson 1 Reasoning with Trigonometric Functions Investigations 1 Proving Trigonometric Identities... 271 2 Sum and Difference Identities... 276 3 Extending
2.3. Finding polynomial functions. An Introduction:
2.3. Finding polynomial functions. An Introduction: As is usually the case when learning a new concept in mathematics, the new concept is the reverse of the previous one. Remember how you first learned
0.4 FACTORING POLYNOMIALS
36_.qxd /3/5 :9 AM Page -9 SECTION. Factoring Polynomials -9. FACTORING POLYNOMIALS Use special products and factorization techniques to factor polynomials. Find the domains of radical expressions. Use
expression is written horizontally. The Last terms ((2)( 4)) because they are the last terms of the two polynomials. This is called the FOIL method.
A polynomial of degree n (in one variable, with real coefficients) is an expression of the form: a n x n + a n 1 x n 1 + a n 2 x n 2 + + a 2 x 2 + a 1 x + a 0 where a n, a n 1, a n 2, a 2, a 1, a 0 are
Zeros of Polynomial Functions
Zeros of Polynomial Functions The Rational Zero Theorem If f (x) = a n x n + a n-1 x n-1 + + a 1 x + a 0 has integer coefficients and p/q (where p/q is reduced) is a rational zero, then p is a factor of
7. Some irreducible polynomials
7. Some irreducible polynomials 7.1 Irreducibles over a finite field 7.2 Worked examples Linear factors x α of a polynomial P (x) with coefficients in a field k correspond precisely to roots α k [1] of
Solving Cubic Polynomials
Solving Cubic Polynomials 1.1 The general solution to the quadratic equation There are four steps to finding the zeroes of a quadratic polynomial. 1. First divide by the leading term, making the polynomial
MATH 4552 Cubic equations and Cardano s formulae
MATH 455 Cubic equations and Cardano s formulae Consider a cubic equation with the unknown z and fixed complex coefficients a, b, c, d (where a 0): (1) az 3 + bz + cz + d = 0. To solve (1), it is convenient
ROUTH S STABILITY CRITERION
ECE 680 Modern Automatic Control Routh s Stability Criterion June 13, 2007 1 ROUTH S STABILITY CRITERION Consider a closed-loop transfer function H(s) = b 0s m + b 1 s m 1 + + b m 1 s + b m a 0 s n + s
Zeros of Polynomial Functions
Zeros of Polynomial Functions Objectives: 1.Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions 2.Find rational zeros of polynomial functions 3.Find conjugate
Zeros of a Polynomial Function
Zeros of a Polynomial Function An important consequence of the Factor Theorem is that finding the zeros of a polynomial is really the same thing as factoring it into linear factors. In this section we
6 EXTENDING ALGEBRA. 6.0 Introduction. 6.1 The cubic equation. Objectives
6 EXTENDING ALGEBRA Chapter 6 Extending Algebra Objectives After studying this chapter you should understand techniques whereby equations of cubic degree and higher can be solved; be able to factorise
Linearly Independent Sets and Linearly Dependent Sets
These notes closely follow the presentation of the material given in David C. Lay s textbook Linear Algebra and its Applications (3rd edition). These notes are intended primarily for in-class presentation
The degree of a polynomial function is equal to the highest exponent found on the independent variables.
DETAILED SOLUTIONS AND CONCEPTS - POLYNOMIAL FUNCTIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to [email protected]. Thank you! PLEASE NOTE
9. POLYNOMIALS. Example 1: The expression a(x) = x 3 4x 2 + 7x 11 is a polynomial in x. The coefficients of a(x) are the numbers 1, 4, 7, 11.
9. POLYNOMIALS 9.1. Definition of a Polynomial A polynomial is an expression of the form: a(x) = a n x n + a n-1 x n-1 +... + a 1 x + a 0. The symbol x is called an indeterminate and simply plays the role
ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section
ALGEBRA 2 CRA 2 REVIEW - Chapters 1-6 Answer Section MULTIPLE CHOICE 1. ANS: C 2. ANS: A 3. ANS: A OBJ: 5-3.1 Using Vertex Form SHORT ANSWER 4. ANS: (x + 6)(x 2 6x + 36) OBJ: 6-4.2 Solving Equations by
3.3. Solving Polynomial Equations. Introduction. Prerequisites. Learning Outcomes
Solving Polynomial Equations 3.3 Introduction Linear and quadratic equations, dealt within Sections 3.1 and 3.2, are members of a class of equations, called polynomial equations. These have the general
Algebra II A Final Exam
Algebra II A Final Exam Multiple Choice Identify the choice that best completes the statement or answers the question. Evaluate the expression for the given value of the variable(s). 1. ; x = 4 a. 34 b.
Integer roots of quadratic and cubic polynomials with integer coefficients
Integer roots of quadratic and cubic polynomials with integer coefficients Konstantine Zelator Mathematics, Computer Science and Statistics 212 Ben Franklin Hall Bloomsburg University 400 East Second Street
Introduction to Matrix Algebra
Psychology 7291: Multivariate Statistics (Carey) 8/27/98 Matrix Algebra - 1 Introduction to Matrix Algebra Definitions: A matrix is a collection of numbers ordered by rows and columns. It is customary
3.1. RATIONAL EXPRESSIONS
3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers
MATHEMATICS BONUS FILES for faculty and students http://www2.onu.edu/~mcaragiu1/bonus_files.html
MATHEMATICS BONUS FILES for faculty and students http://www2onuedu/~mcaragiu1/bonus_fileshtml RECEIVED: November 1 2007 PUBLISHED: November 7 2007 Solving integrals by differentiation with respect to a
3.6 The Real Zeros of a Polynomial Function
SECTION 3.6 The Real Zeros of a Polynomial Function 219 3.6 The Real Zeros of a Polynomial Function PREPARING FOR THIS SECTION Before getting started, review the following: Classification of Numbers (Appendix,
SOLVING EQUATIONS WITH RADICALS AND EXPONENTS 9.5. section ( 3 5 3 2 )( 3 25 3 10 3 4 ). The Odd-Root Property
498 (9 3) Chapter 9 Radicals and Rational Exponents Replace the question mark by an expression that makes the equation correct. Equations involving variables are to be identities. 75. 6 76. 3?? 1 77. 1
3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes
Partial Fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. For 4x + 7 example it can be shown that x 2 + 3x + 2 has the same
4.3 Lagrange Approximation
206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average
is identically equal to x 2 +3x +2
Partial fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as 1 + 3
0.8 Rational Expressions and Equations
96 Prerequisites 0.8 Rational Expressions and Equations We now turn our attention to rational expressions - that is, algebraic fractions - and equations which contain them. The reader is encouraged to
Roots of Polynomials
Roots of Polynomials (Com S 477/577 Notes) Yan-Bin Jia Sep 24, 2015 A direct corollary of the fundamental theorem of algebra is that p(x) can be factorized over the complex domain into a product a n (x
Solving for the Roots of the Cubic Equation. Finding the solution to the roots of a polynomial equation has been a fundamental
Dallas Gosselin and Jonathan Fernandez Professor Buckmire April 18, 014 Complex Analysis Project Solving for the Roots of the Cubic Equation Finding the solution to the roots of a polynomial equation has
Zero: If P is a polynomial and if c is a number such that P (c) = 0 then c is a zero of P.
MATH 11011 FINDING REAL ZEROS KSU OF A POLYNOMIAL Definitions: Polynomial: is a function of the form P (x) = a n x n + a n 1 x n 1 + + a x + a 1 x + a 0. The numbers a n, a n 1,..., a 1, a 0 are called
For each learner you will need: mini-whiteboard. For each small group of learners you will need: Card set A Factors; Card set B True/false.
Level A11 of challenge: D A11 Mathematical goals Starting points Materials required Time needed Factorising cubics To enable learners to: associate x-intercepts with finding values of x such that f (x)
Cubic Functions: Global Analysis
Chapter 14 Cubic Functions: Global Analysis The Essential Question, 231 Concavity-sign, 232 Slope-sign, 234 Extremum, 235 Height-sign, 236 0-Concavity Location, 237 0-Slope Location, 239 Extremum Location,
8 Primes and Modular Arithmetic
8 Primes and Modular Arithmetic 8.1 Primes and Factors Over two millennia ago already, people all over the world were considering the properties of numbers. One of the simplest concepts is prime numbers.
JUST THE MATHS UNIT NUMBER 1.8. ALGEBRA 8 (Polynomials) A.J.Hobson
JUST THE MATHS UNIT NUMBER 1.8 ALGEBRA 8 (Polynomials) by A.J.Hobson 1.8.1 The factor theorem 1.8.2 Application to quadratic and cubic expressions 1.8.3 Cubic equations 1.8.4 Long division of polynomials
Algebra I. In this technological age, mathematics is more important than ever. When students
In this technological age, mathematics is more important than ever. When students leave school, they are more and more likely to use mathematics in their work and everyday lives operating computer equipment,
POLYNOMIAL FUNCTIONS
POLYNOMIAL FUNCTIONS Polynomial Division.. 314 The Rational Zero Test.....317 Descarte s Rule of Signs... 319 The Remainder Theorem.....31 Finding all Zeros of a Polynomial Function.......33 Writing a
Algebra 1 Course Title
Algebra 1 Course Title Course- wide 1. What patterns and methods are being used? Course- wide 1. Students will be adept at solving and graphing linear and quadratic equations 2. Students will be adept
Polynomial and Synthetic Division. Long Division of Polynomials. Example 1. 6x 2 7x 2 x 2) 19x 2 16x 4 6x3 12x 2 7x 2 16x 7x 2 14x. 2x 4.
_.qd /7/5 9: AM Page 5 Section.. Polynomial and Synthetic Division 5 Polynomial and Synthetic Division What you should learn Use long division to divide polynomials by other polynomials. Use synthetic
Some facts about polynomials modulo m (Full proof of the Fingerprinting Theorem)
Some facts about polynomials modulo m (Full proof of the Fingerprinting Theorem) In order to understand the details of the Fingerprinting Theorem on fingerprints of different texts from Chapter 19 of the
Factoring Cubic Polynomials
Factoring Cubic Polynomials Robert G. Underwood 1. Introduction There are at least two ways in which using the famous Cardano formulas (1545) to factor cubic polynomials present more difficulties than
This is a square root. The number under the radical is 9. (An asterisk * means multiply.)
Page of Review of Radical Expressions and Equations Skills involving radicals can be divided into the following groups: Evaluate square roots or higher order roots. Simplify radical expressions. Rationalize
Solving Rational Equations
Lesson M Lesson : Student Outcomes Students solve rational equations, monitoring for the creation of extraneous solutions. Lesson Notes In the preceding lessons, students learned to add, subtract, multiply,
Polynomials and Factoring
Lesson 2 Polynomials and Factoring A polynomial function is a power function or the sum of two or more power functions, each of which has a nonnegative integer power. Because polynomial functions are built
Partial Fractions: Undetermined Coefficients
1. Introduction Partial Fractions: Undetermined Coefficients Not every F(s) we encounter is in the Laplace table. Partial fractions is a method for re-writing F(s) in a form suitable for the use of the
Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.
This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra
ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS
ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS DANIEL RABAYEV AND JACK SONN Abstract. Let f(x) be a monic polynomial in Z[x] with no rational roots but with roots in Q p for
AMSCO S Ann Xavier Gantert
AMSCO S Integrated ALGEBRA 1 Ann Xavier Gantert AMSCO SCHOOL PUBLICATIONS, INC. 315 HUDSON STREET, NEW YORK, N.Y. 10013 Dedication This book is dedicated to Edward Keenan who left a profound influence
A UNIVERSAL METHOD OF SOLVING QUARTIC EQUATIONS
International Journal of Pure and Applied Mathematics Volume 71 No. 011, 51-59 A UNIVERSAL METHOD OF SOLVING QUARTIC EQUATIONS Sergei L. Shmakov Saratov State University 83, Astrakhanskaya Str., Saratov,
College Algebra - MAT 161 Page: 1 Copyright 2009 Killoran
College Algebra - MAT 6 Page: Copyright 2009 Killoran Zeros and Roots of Polynomial Functions Finding a Root (zero or x-intercept) of a polynomial is identical to the process of factoring a polynomial.
Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III
Alum Rock Elementary Union School District Algebra I Study Guide for Benchmark III Name Date Adding and Subtracting Polynomials Algebra Standard 10.0 A polynomial is a sum of one ore more monomials. Polynomial
Higher Education Math Placement
Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication
Math 0980 Chapter Objectives. Chapter 1: Introduction to Algebra: The Integers.
Math 0980 Chapter Objectives Chapter 1: Introduction to Algebra: The Integers. 1. Identify the place value of a digit. 2. Write a number in words or digits. 3. Write positive and negative numbers used
Finding Solutions of Polynomial Equations
DETAILED SOLUTIONS AND CONCEPTS - POLYNOMIAL EQUATIONS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to [email protected]. Thank you! PLEASE NOTE
Factoring Quadratic Expressions
Factoring the trinomial ax 2 + bx + c when a = 1 A trinomial in the form x 2 + bx + c can be factored to equal (x + m)(x + n) when the product of m x n equals c and the sum of m + n equals b. (Note: the
Unit 3: Day 2: Factoring Polynomial Expressions
Unit 3: Day : Factoring Polynomial Expressions Minds On: 0 Action: 45 Consolidate:10 Total =75 min Learning Goals: Extend knowledge of factoring to factor cubic and quartic expressions that can be factored
2.5 Zeros of a Polynomial Functions
.5 Zeros of a Polynomial Functions Section.5 Notes Page 1 The first rule we will talk about is Descartes Rule of Signs, which can be used to determine the possible times a graph crosses the x-axis and
If n is odd, then 3n + 7 is even.
Proof: Proof: We suppose... that 3n + 7 is even. that 3n + 7 is even. Since n is odd, there exists an integer k so that n = 2k + 1. that 3n + 7 is even. Since n is odd, there exists an integer k so that
8 Polynomials Worksheet
8 Polynomials Worksheet Concepts: Quadratic Functions The Definition of a Quadratic Function Graphs of Quadratic Functions - Parabolas Vertex Absolute Maximum or Absolute Minimum Transforming the Graph
Year 9 set 1 Mathematics notes, to accompany the 9H book.
Part 1: Year 9 set 1 Mathematics notes, to accompany the 9H book. equations 1. (p.1), 1.6 (p. 44), 4.6 (p.196) sequences 3. (p.115) Pupils use the Elmwood Press Essential Maths book by David Raymer (9H
3.2. Solving quadratic equations. Introduction. Prerequisites. Learning Outcomes. Learning Style
Solving quadratic equations 3.2 Introduction A quadratic equation is one which can be written in the form ax 2 + bx + c = 0 where a, b and c are numbers and x is the unknown whose value(s) we wish to find.
EAP/GWL Rev. 1/2011 Page 1 of 5. Factoring a polynomial is the process of writing it as the product of two or more polynomial factors.
EAP/GWL Rev. 1/2011 Page 1 of 5 Factoring a polynomial is the process of writing it as the product of two or more polynomial factors. Example: Set the factors of a polynomial equation (as opposed to an
Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given.
Polynomials (Ch.1) Study Guide by BS, JL, AZ, CC, SH, HL Lagrange Interpolation is a method of fitting an equation to a set of points that functions well when there are few points given. Sasha s method
As we have seen, there is a close connection between Legendre symbols of the form
Gauss Sums As we have seen, there is a close connection between Legendre symbols of the form 3 and cube roots of unity. Secifically, if is a rimitive cube root of unity, then 2 ± i 3 and hence 2 2 3 In
Review of Fundamental Mathematics
Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decision-making tools
Decomposing Rational Functions into Partial Fractions:
Prof. Keely's Math Online Lessons University of Phoenix Online & Clark College, Vancouver WA Copyright 2003 Sally J. Keely. All Rights Reserved. COLLEGE ALGEBRA Hi! Today's topic is highly structured and
Solving Quadratic Equations
9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation
Factoring Polynomials and Solving Quadratic Equations
Factoring Polynomials and Solving Quadratic Equations Math Tutorial Lab Special Topic Factoring Factoring Binomials Remember that a binomial is just a polynomial with two terms. Some examples include 2x+3
Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0.
Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients We will now turn our attention to nonhomogeneous second order linear equations, equations with the standard
3.3 Real Zeros of Polynomials
3.3 Real Zeros of Polynomials 69 3.3 Real Zeros of Polynomials In Section 3., we found that we can use synthetic division to determine if a given real number is a zero of a polynomial function. This section
Partial Fractions. (x 1)(x 2 + 1)
Partial Fractions Adding rational functions involves finding a common denominator, rewriting each fraction so that it has that denominator, then adding. For example, 3x x 1 3x(x 1) (x + 1)(x 1) + 1(x +
A characterization of trace zero symmetric nonnegative 5x5 matrices
A characterization of trace zero symmetric nonnegative 5x5 matrices Oren Spector June 1, 009 Abstract The problem of determining necessary and sufficient conditions for a set of real numbers to be the
Math Common Core Sampler Test
High School Algebra Core Curriculum Math Test Math Common Core Sampler Test Our High School Algebra sampler covers the twenty most common questions that we see targeted for this level. For complete tests
is the degree of the polynomial and is the leading coefficient.
Property: T. Hrubik-Vulanovic e-mail: [email protected] Content (in order sections were covered from the book): Chapter 6 Higher-Degree Polynomial Functions... 1 Section 6.1 Higher-Degree Polynomial Functions...
FACTORISATION YEARS. A guide for teachers - Years 9 10 June 2011. The Improving Mathematics Education in Schools (TIMES) Project
9 10 YEARS The Improving Mathematics Education in Schools (TIMES) Project FACTORISATION NUMBER AND ALGEBRA Module 33 A guide for teachers - Years 9 10 June 2011 Factorisation (Number and Algebra : Module
The Factor Theorem and a corollary of the Fundamental Theorem of Algebra
Math 421 Fall 2010 The Factor Theorem and a corollary of the Fundamental Theorem of Algebra 27 August 2010 Copyright 2006 2010 by Murray Eisenberg. All rights reserved. Prerequisites Mathematica Aside
The Mean Value Theorem
The Mean Value Theorem THEOREM (The Extreme Value Theorem): If f is continuous on a closed interval [a, b], then f attains an absolute maximum value f(c) and an absolute minimum value f(d) at some numbers
UNCORRECTED PAGE PROOFS
number and and algebra TopIC 17 Polynomials 17.1 Overview Why learn this? Just as number is learned in stages, so too are graphs. You have been building your knowledge of graphs and functions over time.
SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS
SECTION 2.5: FINDING ZEROS OF POLYNOMIAL FUNCTIONS Assume f ( x) is a nonconstant polynomial with real coefficients written in standard form. PART A: TECHNIQUES WE HAVE ALREADY SEEN Refer to: Notes 1.31
Factoring Polynomials
Factoring Polynomials Hoste, Miller, Murieka September 12, 2011 1 Factoring In the previous section, we discussed how to determine the product of two or more terms. Consider, for instance, the equations
A three point formula for finding roots of equations by the method of least squares
A three point formula for finding roots of equations by the method of least squares Ababu Teklemariam Tiruneh 1 ; William N. Ndlela 1 ; Stanley J. Nkambule 1 1 Lecturer, Department of Environmental Health
2.5 ZEROS OF POLYNOMIAL FUNCTIONS. Copyright Cengage Learning. All rights reserved.
2.5 ZEROS OF POLYNOMIAL FUNCTIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use the Fundamental Theorem of Algebra to determine the number of zeros of polynomial functions.
Basic numerical skills: EQUATIONS AND HOW TO SOLVE THEM. x + 5 = 7 2 + 5-2 = 7-2 5 + (2-2) = 7-2 5 = 5. x + 5-5 = 7-5. x + 0 = 20.
Basic numerical skills: EQUATIONS AND HOW TO SOLVE THEM 1. Introduction (really easy) An equation represents the equivalence between two quantities. The two sides of the equation are in balance, and solving
