MATHEMATICS BONUS FILES for faculty and students
|
|
|
- Nigel Day
- 9 years ago
- Views:
Transcription
1 MATHEMATICS BONUS FILES for faculty and students RECEIVED: November PUBLISHED: November Solving integrals by differentiation with respect to a parameter Khristo N Boyadzhiev Department of Mathematics Ohio Northern University Ada OH k-boyadzhiev@onuedu Contents 1 Introduction 2 Examples 3Using differential equations 4 Advanced technique using the Leibniz Integral Rule 5 Theory References
2 1 Introduction The 66th Annual William Lowell Putnam Mathematical Competition (2005) includes the evaluation of the following integral (A5) (11) (A solution is provided in [11]) We shall evaluate it now by the very natural and powerful method of Differentiation with respect to a parameter Define the function (12) Then (13) which is easily evaluated by partial fractions (14) Integrating we find (15) and setting we arrive at the equation from which 1
3 (16) This example illustrates the method very well Many integrals containing log arctan arcsin can be evaluated this way Note Equation (15) can be used to evaluate (17) where is Catalan s constant (see [1]) (18) In what follows we present several examples involving the differentiation on a parameter method Some theorems ensuring the legitimacy of the work are listed at the end Applying the theorems in every particular case is left to the reader Our main reference in the excellent book of Fikhtengolts [5] 2 Examples Example 21 Consider the integral (211) where Differentiating for we find: 2
4 and the substitution turns this integral into Therefore (212) In order to evaluate the constant we factor out on the left hand side and on the right hand side of (212) then split both sides this way canceling the term now and setting we find that As a result two integrals are evaluated (213) (214) In particular for : (215) Example 22 We evaluate here the convergent improper integral 3
5 (221) Differentiation for gives: where we use the substitution to obtain Therefore (222) and in particular for : (223) This integral can be found for instance in [6 p 608] It also appears on p321 in [3] with a suggestion to be evaluated by numerical experimentation The evaluation of as given here is from [4] Note that the similar integral (224) 4
6 can not be evaluated in the same way Its derivative is not easy to integrate Later we shall evaluate (224) by a more sophisticated method (see Section 5) An integral similar to (223) is (225) which however can not be evaluated like (223) The value of this integral is where is the Catalan constant - see (18) Example 23 Another convergent improper integral is (231) We find (232) ie (233) Therefore (234) 5
7 as both sides are zeros when When (235) Note that one needs for the evaluation in (232) but this restriction later drops and (234) hold for every Also the reader may wonder why we use instead of in (231) Repeating the above work with instead of will provide an answer to this question Example 24 We shall evaluate now two other integrals with arctangent The first one is (241) For all we compute Therefore (242) Comparing this to (234) we conclude that for all (243) Related to (241) is the following integral 6
8 (244) Differentiating for the first variable and integrating by parts for Setting here we find so finally (cf [8 p 506]) (245) Example 25 The next example is a very popular one (251) where is the parameter and is fixed The derivative uniformly convergent for is: Using integration by parts or a table one finds 7
9 and therefore (252) (the constant of integration is zero because ) At this point we can set and take limits of both sides We arrive at the classical result (253) true for all Note that we can use the derivative for in (251) and evaluate the integral in a similar manner In the variable the integral represents the Laplace transform of Example 26 A similar integral is (261) where again is fixed The derivative is and Setting we find and finally 8
10 (262) Example 27 A symmetrical version of Example 26 is the integral (271) defined for Note that the integral is divergent at infinity when although its derivative exists for We shall require Integrating this derivative we obtain (272) Comparing (272) to (262) we see that for all Example 28 Using the well-known Euler-Poisson integral (281) we can evaluate the following 9
11 where Computing the derivative we find: = and therefore (282) as both sides are zero for Example 29 Sometimes one can use partial derivatives as in the following example Consider the integral (291) with four parameters We shall use only the last two The partial derivatives are: It is easy now to restore the function from these derivatives where is unknown The integral (291) is zero when and therefore 10
12 Finally (292) Example 210 The last example in this section is a very interesting one It comes from the nice classical book of Woods [13 p143] Let (2101) Obviously We can assume that in the following computations The last integral can be evaluated by setting and then After some algebra (2102) From here we derive when and when Correspondingly Since we have 11
13 for all (2103) To determine we factor out inside the logarithm in (2101) split into two integrals and cancel the terms on both sides in the same manner as in Example 21 After that setting we obtain Therefore and since is continuous this extend also to ie (2104) 3 Using Differential equations Example 31 Sometimes differentiating with respect to a parameter can be combined with other methods like differential equations Here is a case in point Consider the integral (311) Here and integration by parts leads to the separable differential equation or with solution For we have (see (281)) Therefore 12
14 Example 32 Next we evaluate the Laplace integrals ( ) (321) which can be viewed as Fourier cosine and sine transforms of the functions and correspondingly We shall derive a second order differential equation for Obviously (322) but we can not differentiate this equation further as special trick Adding to both sides becomes divergent We apply instead a (323) (see (253)) we obtain and here we differentiate again for Thus we arrive at the second order differential equation with general solution ( - constants) Here as is a bounded function In order to find we set in (321) and evaluate Finally (323) and from (322) also 13
15 (324) These results can be used to evaluate some similar integrals For instance (325) by integrating (323) for and adjusting the constant of integration Differentiating this integral for we obtain also (326) Example 33 Similar to (321) are the following Laplace integrals and (331) which are also solved by a differential equation but not in the same manner Let We differentiate twice (332) and since at the same time we arrive at the differential equation (333) 14
16 This second order linear differential equation with constant coefficients can be solved by variation of parameters to obtain (334) where the solution involves the special sine and cosine integrals and The choice of integral limits here is dictated by the initial condition From equation (332) we find also (335) Example 34 We can evaluate Hecke s integral (341) by using a differential equation [7] Differentiating for (342) and substituting we obtain the equation ie (343) From here - a constant (344) 15
17 We can set now and using the fact that (345) find (346) 4 Advanced technique This method is based on the Leibniz Integral Rule: where are appropriate functions (see [12]) We shall evaluate now the integral (41) by using this rule Preliminary investigation shows that we can successfully work with the function where with Applying the theorem one finds 16
18 We focus now on the first term on the right hand side the integral Let us call it The substitution helps to solve it This function is easy to integrate as and hence one antiderivative is Also and we write Therefore integrating we obtain 17
19 and using the limit we evaluate Finally (42) In order to evaluate (1) we set here After some simple algebra we obtain (43) Remarks Integrating (1) by parts we arrive at therefore (44) With the substitution we obtain also the following result (see [4]) (45) 18
20 Problem Evaluate (46) by using the function (see [4]) Note that the somewhat similar integral (47) cannot be evaluated this way The value of this integral is ( see (18)) The substitution transforms (47) into which is the fourth in the list in [1] 5 Theorems 1 Suppose the function is defined and continuous on the rectangle together with its partial derivative In that case (51) In order to apply this theorem in the case of improper integrals we have to require uniform convergence of the integral with respect to A simple sufficient condition for uniform 19
21 convergence is the following 2 Suppose is continuous in on and is integrable on that interval If then the integral (52) is uniformly convergent on 3 Suppose the function is defined and continuous on the semi strip together with its partial derivative In that case when the first integral is convergent and the second is uniformly convergent for all The case of improper integrals on finite intervals is treated in a similar way For details and proofs we refer to [2] [5] [7] and [13] The book [5] presents the Leibniz Rule in full details References 1 Victor Adamchik Integral and Series Representations for Catalan's Constant 2 T Apostol Mathematical Analysis Addison Wesley Publishing Co 2nd ed J Borwein D Bradley R Girgensohn Experimentation in Mathematics A K Peters Khristo Boyadzhiev Hans Kappus; Solution to problem E 3140 Amer Math Monthly 95 (1) (1988)
22 5 G M Fikhtengolts A Course of differential and integral calculus (Russian) Vol 2 Nauka Moscow I S Gradshteyn and I M Ryzhik Tables of Integrals Series and Products Academic Press Omar Hijab Introduction to Calculus and Classical Analysis Springer A P Prudnikov Yu A Brychkov O I Marichev Integrals and Series Vol1: Elementary Functions Gordon and Breach Joseph Wiener Differentiation with respect to a parameter College Mathematics Journal 32 No 3(2001) pp Joseph Wiener Donald P Skow Differentiating indefinite integrals with respect to a parameter Missouri Journal of Mathematical Sciences Vol 3 no 2 (1991) th Annual William Lowell Putnam Mathematical Competition Math Magazine 79 (2006) Eric W Weisstein "Leibniz Integral Rule" From MathWorld--A Wolfram Web Resource 13 Woods F S Advanced Calculus New Edition A Course Arranged with Special Reference to the Needs of Students of Applied Mathematics Ginn and Co Boston MA: Ginn Boston 1954 Updated November
Differentiation and Integration
This material is a supplement to Appendix G of Stewart. You should read the appendix, except the last section on complex exponentials, before this material. Differentiation and Integration Suppose we have
DIFFERENTIATION AND INTEGRATION BY USING MATRIX INVERSION
Journal of Applied Mathematics and Computational Mechanics 2014, 13(2), 63-71 DIFFERENTIATION AND INTEGRATION BY USING MATRIX INVERSION Dagmara Matlak, Jarosław Matlak, Damian Słota, Roman Wituła Institute
The Method of Partial Fractions Math 121 Calculus II Spring 2015
Rational functions. as The Method of Partial Fractions Math 11 Calculus II Spring 015 Recall that a rational function is a quotient of two polynomials such f(x) g(x) = 3x5 + x 3 + 16x x 60. The method
SOLVING SEXTIC EQUATIONS. Raghavendra G. Kulkarni
Atlantic Electronic http://aejm.ca Journal of Mathematics http://aejm.ca/rema Volume 3, Number 1, Winter 2008 pp. 56 60 SOLVING SEXTIC EQUATIONS Raghavendra G. Kulkarni Hybrid Microcircuits Division Bharat
Integrals of Rational Functions
Integrals of Rational Functions Scott R. Fulton Overview A rational function has the form where p and q are polynomials. For example, r(x) = p(x) q(x) f(x) = x2 3 x 4 + 3, g(t) = t6 + 4t 2 3, 7t 5 + 3t
Future Value of an Annuity Sinking Fund. MATH 1003 Calculus and Linear Algebra (Lecture 3)
MATH 1003 Calculus and Linear Algebra (Lecture 3) Future Value of an Annuity Definition An annuity is a sequence of equal periodic payments. We call it an ordinary annuity if the payments are made at the
Differentiating under an integral sign
CALIFORNIA INSTITUTE OF TECHNOLOGY Ma 2b KC Border Introduction to Probability and Statistics February 213 Differentiating under an integral sign In the derivation of Maximum Likelihood Estimators, or
Integrating algebraic fractions
Integrating algebraic fractions Sometimes the integral of an algebraic fraction can be found by first epressing the algebraic fraction as the sum of its partial fractions. In this unit we will illustrate
THE SINE PRODUCT FORMULA AND THE GAMMA FUNCTION
THE SINE PRODUCT FORMULA AND THE GAMMA FUNCTION ERICA CHAN DECEMBER 2, 2006 Abstract. The function sin is very important in mathematics and has many applications. In addition to its series epansion, it
MATH 132: CALCULUS II SYLLABUS
MATH 32: CALCULUS II SYLLABUS Prerequisites: Successful completion of Math 3 (or its equivalent elsewhere). Math 27 is normally not a sufficient prerequisite for Math 32. Required Text: Calculus: Early
About the Gamma Function
About the Gamma Function Notes for Honors Calculus II, Originally Prepared in Spring 995 Basic Facts about the Gamma Function The Gamma function is defined by the improper integral Γ) = The integral is
Row Echelon Form and Reduced Row Echelon Form
These notes closely follow the presentation of the material given in David C Lay s textbook Linear Algebra and its Applications (3rd edition) These notes are intended primarily for in-class presentation
Core Maths C2. Revision Notes
Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...
5 Numerical Differentiation
D. Levy 5 Numerical Differentiation 5. Basic Concepts This chapter deals with numerical approximations of derivatives. The first questions that comes up to mind is: why do we need to approximate derivatives
4.3 Lagrange Approximation
206 CHAP. 4 INTERPOLATION AND POLYNOMIAL APPROXIMATION Lagrange Polynomial Approximation 4.3 Lagrange Approximation Interpolation means to estimate a missing function value by taking a weighted average
The Fourth International DERIVE-TI92/89 Conference Liverpool, U.K., 12-15 July 2000. Derive 5: The Easiest... Just Got Better!
The Fourth International DERIVE-TI9/89 Conference Liverpool, U.K., -5 July 000 Derive 5: The Easiest... Just Got Better! Michel Beaudin École de technologie supérieure 00, rue Notre-Dame Ouest Montréal
Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients. y + p(t) y + q(t) y = g(t), g(t) 0.
Second Order Linear Nonhomogeneous Differential Equations; Method of Undetermined Coefficients We will now turn our attention to nonhomogeneous second order linear equations, equations with the standard
Lectures 5-6: Taylor Series
Math 1d Instructor: Padraic Bartlett Lectures 5-: Taylor Series Weeks 5- Caltech 213 1 Taylor Polynomials and Series As we saw in week 4, power series are remarkably nice objects to work with. In particular,
To discuss this topic fully, let us define some terms used in this and the following sets of supplemental notes.
INFINITE SERIES SERIES AND PARTIAL SUMS What if we wanted to sum up the terms of this sequence, how many terms would I have to use? 1, 2, 3,... 10,...? Well, we could start creating sums of a finite number
1 Lecture: Integration of rational functions by decomposition
Lecture: Integration of rational functions by decomposition into partial fractions Recognize and integrate basic rational functions, except when the denominator is a power of an irreducible quadratic.
7.6 Approximation Errors and Simpson's Rule
WileyPLUS: Home Help Contact us Logout Hughes-Hallett, Calculus: Single and Multivariable, 4/e Calculus I, II, and Vector Calculus Reading content Integration 7.1. Integration by Substitution 7.2. Integration
Real Roots of Univariate Polynomials with Real Coefficients
Real Roots of Univariate Polynomials with Real Coefficients mostly written by Christina Hewitt March 22, 2012 1 Introduction Polynomial equations are used throughout mathematics. When solving polynomials
Online Appendix to Stochastic Imitative Game Dynamics with Committed Agents
Online Appendix to Stochastic Imitative Game Dynamics with Committed Agents William H. Sandholm January 6, 22 O.. Imitative protocols, mean dynamics, and equilibrium selection In this section, we consider
TOPIC 4: DERIVATIVES
TOPIC 4: DERIVATIVES 1. The derivative of a function. Differentiation rules 1.1. The slope of a curve. The slope of a curve at a point P is a measure of the steepness of the curve. If Q is a point on the
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS
THE FUNDAMENTAL THEOREM OF ALGEBRA VIA PROPER MAPS KEITH CONRAD 1. Introduction The Fundamental Theorem of Algebra says every nonconstant polynomial with complex coefficients can be factored into linear
Continued Fractions. Darren C. Collins
Continued Fractions Darren C Collins Abstract In this paper, we discuss continued fractions First, we discuss the definition and notation Second, we discuss the development of the subject throughout history
Understanding Basic Calculus
Understanding Basic Calculus S.K. Chung Dedicated to all the people who have helped me in my life. i Preface This book is a revised and expanded version of the lecture notes for Basic Calculus and other
Section 1.3 P 1 = 1 2. = 1 4 2 8. P n = 1 P 3 = Continuing in this fashion, it should seem reasonable that, for any n = 1, 2, 3,..., = 1 2 4.
Difference Equations to Differential Equations Section. The Sum of a Sequence This section considers the problem of adding together the terms of a sequence. Of course, this is a problem only if more than
CITY UNIVERSITY LONDON. BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION
No: CITY UNIVERSITY LONDON BEng Degree in Computer Systems Engineering Part II BSc Degree in Computer Systems Engineering Part III PART 2 EXAMINATION ENGINEERING MATHEMATICS 2 (resit) EX2005 Date: August
Partial Fractions. p(x) q(x)
Partial Fractions Introduction to Partial Fractions Given a rational function of the form p(x) q(x) where the degree of p(x) is less than the degree of q(x), the method of partial fractions seeks to break
Equations, Inequalities & Partial Fractions
Contents Equations, Inequalities & Partial Fractions.1 Solving Linear Equations 2.2 Solving Quadratic Equations 1. Solving Polynomial Equations 1.4 Solving Simultaneous Linear Equations 42.5 Solving Inequalities
AP Calculus AB Syllabus
Course Overview and Philosophy AP Calculus AB Syllabus The biggest idea in AP Calculus is the connections among the representations of the major concepts graphically, numerically, analytically, and verbally.
Partial Fractions: Undetermined Coefficients
1. Introduction Partial Fractions: Undetermined Coefficients Not every F(s) we encounter is in the Laplace table. Partial fractions is a method for re-writing F(s) in a form suitable for the use of the
Tips for Solving Mathematical Problems
Tips for Solving Mathematical Problems Don Byrd Revised late April 2011 The tips below are based primarily on my experience teaching precalculus to high-school students, and to a lesser extent on my other
Derive 5: The Easiest... Just Got Better!
Liverpool John Moores University, 1-15 July 000 Derive 5: The Easiest... Just Got Better! Michel Beaudin École de Technologie Supérieure, Canada Email; [email protected] 1. Introduction Engineering
Continued Fractions and the Euclidean Algorithm
Continued Fractions and the Euclidean Algorithm Lecture notes prepared for MATH 326, Spring 997 Department of Mathematics and Statistics University at Albany William F Hammond Table of Contents Introduction
Lies My Calculator and Computer Told Me
Lies My Calculator and Computer Told Me 2 LIES MY CALCULATOR AND COMPUTER TOLD ME Lies My Calculator and Computer Told Me See Section.4 for a discussion of graphing calculators and computers with graphing
Algebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123
Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from
Representation of functions as power series
Representation of functions as power series Dr. Philippe B. Laval Kennesaw State University November 9, 008 Abstract This document is a summary of the theory and techniques used to represent functions
3. Logical Reasoning in Mathematics
3. Logical Reasoning in Mathematics Many state standards emphasize the importance of reasoning. We agree disciplined mathematical reasoning is crucial to understanding and to properly using mathematics.
SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89. by Joseph Collison
SYSTEMS OF EQUATIONS AND MATRICES WITH THE TI-89 by Joseph Collison Copyright 2000 by Joseph Collison All rights reserved Reproduction or translation of any part of this work beyond that permitted by Sections
3.6. Partial Fractions. Introduction. Prerequisites. Learning Outcomes
Partial Fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. For 4x + 7 example it can be shown that x 2 + 3x + 2 has the same
CORDIC: How Hand Calculators Calculate
Integre Technical Publishing Co., Inc. College Mathematics Journal 40: December 7, 008 :49 p.m. sultan.tex page 87 CORDIC: How Hand Calculators Calculate Alan Sultan Alan Sultan is a professor of mathematics
3.1. Solving linear equations. Introduction. Prerequisites. Learning Outcomes. Learning Style
Solving linear equations 3.1 Introduction Many problems in engineering reduce to the solution of an equation or a set of equations. An equation is a type of mathematical expression which contains one or
is identically equal to x 2 +3x +2
Partial fractions 3.6 Introduction It is often helpful to break down a complicated algebraic fraction into a sum of simpler fractions. 4x+7 For example it can be shown that has the same value as 1 + 3
WHEN DOES A CROSS PRODUCT ON R n EXIST?
WHEN DOES A CROSS PRODUCT ON R n EXIST? PETER F. MCLOUGHLIN It is probably safe to say that just about everyone reading this article is familiar with the cross product and the dot product. However, what
Inner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL
FEGYVERNEKI SÁNDOR, PROBABILITY THEORY AND MATHEmATICAL STATIsTICs 4 IV. RANDOm VECTORs 1. JOINTLY DIsTRIBUTED RANDOm VARIABLEs If are two rom variables defined on the same sample space we define the joint
UNIT 1: ANALYTICAL METHODS FOR ENGINEERS
UNIT : ANALYTICAL METHODS FOR ENGINEERS Unit code: A/60/40 QCF Level: 4 Credit value: 5 OUTCOME 3 - CALCULUS TUTORIAL DIFFERENTIATION 3 Be able to analyse and model engineering situations and solve problems
PURSUITS IN MATHEMATICS often produce elementary functions as solutions that need to be
Fast Approximation of the Tangent, Hyperbolic Tangent, Exponential and Logarithmic Functions 2007 Ron Doerfler http://www.myreckonings.com June 27, 2007 Abstract There are some of us who enjoy using our
Techniques of Integration
CHPTER 7 Techniques of Integration 7.. Substitution Integration, unlike differentiation, is more of an art-form than a collection of algorithms. Many problems in applied mathematics involve the integration
CURVE FITTING LEAST SQUARES APPROXIMATION
CURVE FITTING LEAST SQUARES APPROXIMATION Data analysis and curve fitting: Imagine that we are studying a physical system involving two quantities: x and y Also suppose that we expect a linear relationship
FRACTIONAL INTEGRALS AND DERIVATIVES. Theory and Applications
FRACTIONAL INTEGRALS AND DERIVATIVES Theory and Applications Stefan G. Samko Rostov State University, Russia Anatoly A. Kilbas Belorussian State University, Minsk, Belarus Oleg I. Marichev Belorussian
PYTHAGOREAN TRIPLES KEITH CONRAD
PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient
Kapitel 1 Multiplication of Long Integers (Faster than Long Multiplication)
Kapitel 1 Multiplication of Long Integers (Faster than Long Multiplication) Arno Eigenwillig und Kurt Mehlhorn An algorithm for multiplication of integers is taught already in primary school: To multiply
A power series about x = a is the series of the form
POWER SERIES AND THE USES OF POWER SERIES Elizabeth Wood Now we are finally going to start working with a topic that uses all of the information from the previous topics. The topic that we are going to
MEMORANDUM. All students taking the CLC Math Placement Exam PLACEMENT INTO CALCULUS AND ANALYTIC GEOMETRY I, MTH 145:
MEMORANDUM To: All students taking the CLC Math Placement Eam From: CLC Mathematics Department Subject: What to epect on the Placement Eam Date: April 0 Placement into MTH 45 Solutions This memo is an
Core Maths C3. Revision Notes
Core Maths C Revision Notes October 0 Core Maths C Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions...
Journal of Engineering Science and Technology Review 2 (1) (2009) 76-81. Lecture Note
Journal of Engineering Science and Technology Review 2 (1) (2009) 76-81 Lecture Note JOURNAL OF Engineering Science and Technology Review www.jestr.org Time of flight and range of the motion of a projectile
Trigonometric Functions and Equations
Contents Trigonometric Functions and Equations Lesson 1 Reasoning with Trigonometric Functions Investigations 1 Proving Trigonometric Identities... 271 2 Sum and Difference Identities... 276 3 Extending
Moreover, under the risk neutral measure, it must be the case that (5) r t = µ t.
LECTURE 7: BLACK SCHOLES THEORY 1. Introduction: The Black Scholes Model In 1973 Fisher Black and Myron Scholes ushered in the modern era of derivative securities with a seminal paper 1 on the pricing
Objectives. Materials
Activity 4 Objectives Understand what a slope field represents in terms of Create a slope field for a given differential equation Materials TI-84 Plus / TI-83 Plus Graph paper Introduction One of the ways
Number Patterns, Cautionary Tales and Finite Differences
Learning and Teaching Mathematics, No. Page Number Patterns, Cautionary Tales and Finite Differences Duncan Samson St Andrew s College Number Patterns I recently included the following question in a scholarship
Microeconomic Theory: Basic Math Concepts
Microeconomic Theory: Basic Math Concepts Matt Van Essen University of Alabama Van Essen (U of A) Basic Math Concepts 1 / 66 Basic Math Concepts In this lecture we will review some basic mathematical concepts
Mean value theorem, Taylors Theorem, Maxima and Minima.
MA 001 Preparatory Mathematics I. Complex numbers as ordered pairs. Argand s diagram. Triangle inequality. De Moivre s Theorem. Algebra: Quadratic equations and express-ions. Permutations and Combinations.
SEMESTER PLANS FOR MATH COURSES, FOR MAJORS OUTSIDE MATH.
SEMESTER PLANS FOR MATH COURSES, FOR MAJORS OUTSIDE MATH. CONTENTS: AP calculus credit and Math Placement levels. List of semester math courses. Student pathways through the semester math courses Transition
I. Pointwise convergence
MATH 40 - NOTES Sequences of functions Pointwise and Uniform Convergence Fall 2005 Previously, we have studied sequences of real numbers. Now we discuss the topic of sequences of real valued functions.
Student Performance Q&A:
Student Performance Q&A: 2008 AP Calculus AB and Calculus BC Free-Response Questions The following comments on the 2008 free-response questions for AP Calculus AB and Calculus BC were written by the Chief
The Quantum Harmonic Oscillator Stephen Webb
The Quantum Harmonic Oscillator Stephen Webb The Importance of the Harmonic Oscillator The quantum harmonic oscillator holds a unique importance in quantum mechanics, as it is both one of the few problems
Adaptive Online Gradient Descent
Adaptive Online Gradient Descent Peter L Bartlett Division of Computer Science Department of Statistics UC Berkeley Berkeley, CA 94709 bartlett@csberkeleyedu Elad Hazan IBM Almaden Research Center 650
Columbia University in the City of New York New York, N.Y. 10027
Columbia University in the City of New York New York, N.Y. 10027 DEPARTMENT OF MATHEMATICS 508 Mathematics Building 2990 Broadway Fall Semester 2005 Professor Ioannis Karatzas W4061: MODERN ANALYSIS Description
Math Course Descriptions & Student Learning Outcomes
Math Course Descriptions & Student Learning Outcomes Table of Contents MAC 100: Business Math... 1 MAC 101: Technical Math... 3 MA 090: Basic Math... 4 MA 095: Introductory Algebra... 5 MA 098: Intermediate
A three point formula for finding roots of equations by the method of least squares
A three point formula for finding roots of equations by the method of least squares Ababu Teklemariam Tiruneh 1 ; William N. Ndlela 1 ; Stanley J. Nkambule 1 1 Lecturer, Department of Environmental Health
arxiv:0909.4913v2 [math.ho] 4 Nov 2009
IRRATIONALITY FROM THE BOOK STEVEN J. MILLER AND DAVID MONTAGUE arxiv:0909.4913v2 [math.ho] 4 Nov 2009 A right of passage to theoretical mathematics is often a proof of the irrationality of 2, or at least
MATH10212 Linear Algebra. Systems of Linear Equations. Definition. An n-dimensional vector is a row or a column of n numbers (or letters): a 1.
MATH10212 Linear Algebra Textbook: D. Poole, Linear Algebra: A Modern Introduction. Thompson, 2006. ISBN 0-534-40596-7. Systems of Linear Equations Definition. An n-dimensional vector is a row or a column
Reference: Introduction to Partial Differential Equations by G. Folland, 1995, Chap. 3.
5 Potential Theory Reference: Introduction to Partial Differential Equations by G. Folland, 995, Chap. 3. 5. Problems of Interest. In what follows, we consider Ω an open, bounded subset of R n with C 2
EASTERN ARIZONA COLLEGE Differential Equations
EASTERN ARIZONA COLLEGE Differential Equations Course Design 2015-2016 Course Information Division Mathematics Course Number MAT 260 (SUN# MAT 2262) Title Differential Equations Credits 3 Developed by
Separable First Order Differential Equations
Separable First Order Differential Equations Form of Separable Equations which take the form = gx hy or These are differential equations = gxĥy, where gx is a continuous function of x and hy is a continuously
Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving
Section 7 Algebraic Manipulations and Solving Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Before launching into the mathematics, let s take a moment to talk about the words
Mathematics 31 Pre-calculus and Limits
Mathematics 31 Pre-calculus and Limits Overview After completing this section, students will be epected to have acquired reliability and fluency in the algebraic skills of factoring, operations with radicals
Taylor and Maclaurin Series
Taylor and Maclaurin Series In the preceding section we were able to find power series representations for a certain restricted class of functions. Here we investigate more general problems: Which functions
SUFFOLK COMMUNITY COLLEGE MATHEMATICS AND COMPUTER SCIENCE DEPARTMENT STUDENT COURSE OUTLINE Summer 2014
SUFFOLK COMMUNITY COLLEGE MATHEMATICS AND COMPUTER SCIENCE DEPARTMENT STUDENT COURSE OUTLINE Summer 2014 INSTRUCTOR: Professor Emeritus Donald R. Coscia OFFICE: e-mail COURSE: MAT131-Calculus for Non-Science
F. ABTAHI and M. ZARRIN. (Communicated by J. Goldstein)
Journal of Algerian Mathematical Society Vol. 1, pp. 1 6 1 CONCERNING THE l p -CONJECTURE FOR DISCRETE SEMIGROUPS F. ABTAHI and M. ZARRIN (Communicated by J. Goldstein) Abstract. For 2 < p
2 Integrating Both Sides
2 Integrating Both Sides So far, the only general method we have for solving differential equations involves equations of the form y = f(x), where f(x) is any function of x. The solution to such an equation
6.4 Logarithmic Equations and Inequalities
6.4 Logarithmic Equations and Inequalities 459 6.4 Logarithmic Equations and Inequalities In Section 6.3 we solved equations and inequalities involving exponential functions using one of two basic strategies.
Partial Fractions Decomposition
Partial Fractions Decomposition Dr. Philippe B. Laval Kennesaw State University August 6, 008 Abstract This handout describes partial fractions decomposition and how it can be used when integrating rational
Course outline, MA 113, Spring 2014 Part A, Functions and limits. 1.1 1.2 Functions, domain and ranges, A1.1-1.2-Review (9 problems)
Course outline, MA 113, Spring 2014 Part A, Functions and limits 1.1 1.2 Functions, domain and ranges, A1.1-1.2-Review (9 problems) Functions, domain and range Domain and range of rational and algebraic
Solving Linear Systems, Continued and The Inverse of a Matrix
, Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing
Linearly Independent Sets and Linearly Dependent Sets
These notes closely follow the presentation of the material given in David C. Lay s textbook Linear Algebra and its Applications (3rd edition). These notes are intended primarily for in-class presentation
Partial Fractions. Combining fractions over a common denominator is a familiar operation from algebra:
Partial Fractions Combining fractions over a common denominator is a familiar operation from algebra: From the standpoint of integration, the left side of Equation 1 would be much easier to work with than
Higher Education Math Placement
Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication
36 CHAPTER 1. LIMITS AND CONTINUITY. Figure 1.17: At which points is f not continuous?
36 CHAPTER 1. LIMITS AND CONTINUITY 1.3 Continuity Before Calculus became clearly de ned, continuity meant that one could draw the graph of a function without having to lift the pen and pencil. While this
GRE Prep: Precalculus
GRE Prep: Precalculus Franklin H.J. Kenter 1 Introduction These are the notes for the Precalculus section for the GRE Prep session held at UCSD in August 2011. These notes are in no way intended to teach
Constrained optimization.
ams/econ 11b supplementary notes ucsc Constrained optimization. c 2010, Yonatan Katznelson 1. Constraints In many of the optimization problems that arise in economics, there are restrictions on the values
Appendix 3 IB Diploma Programme Course Outlines
Appendix 3 IB Diploma Programme Course Outlines The following points should be addressed when preparing course outlines for each IB Diploma Programme subject to be taught. Please be sure to use IBO nomenclature
MATH 425, PRACTICE FINAL EXAM SOLUTIONS.
MATH 45, PRACTICE FINAL EXAM SOLUTIONS. Exercise. a Is the operator L defined on smooth functions of x, y by L u := u xx + cosu linear? b Does the answer change if we replace the operator L by the operator
5 Homogeneous systems
5 Homogeneous systems Definition: A homogeneous (ho-mo-jeen -i-us) system of linear algebraic equations is one in which all the numbers on the right hand side are equal to : a x +... + a n x n =.. a m
Solving certain quintics
Annales Mathematicae et Informaticae 37 010) pp. 193 197 http://ami.ektf.hu Solving certain quintics Raghavendra G. Kulkarni Bharat Electronics Ltd., India Submitted 1 July 010; Accepted 6 July 010 Abstract
(Refer Slide Time: 01:11-01:27)
Digital Signal Processing Prof. S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 6 Digital systems (contd.); inverse systems, stability, FIR and IIR,
Solving Systems of Linear Equations Using Matrices
Solving Systems of Linear Equations Using Matrices What is a Matrix? A matrix is a compact grid or array of numbers. It can be created from a system of equations and used to solve the system of equations.
