CS268 Exam Solutions. 1) End-to-End (20 pts)
|
|
|
- Jocelin Ruby Sharp
- 9 years ago
- Views:
Transcription
1 CS268 Exam Solutions General comments: ) If you would like a re-grade, submit in a complete explanation of why your solution should be re-graded. Quote parts of your solution if necessary. In person requests for a re-grade will not be accepted. 2) The following solutions are more verbose than we would expect in an actual solution. However, some answers are too terse (e.g., Link layer retransmissions are more efficient. ). Excessively terse answers get partial credit. 3) In many cases, an advantage for one scheme is a disadvantage for another. If a solution contains the same general concept multiple times, we only credit it once. ) End-to-End (20 pts) (a) Retransmission of lost data can be done at the link, transport, and application layers. What are the pros and cons of doing it at each layer? Write no more than three phrases for each advantage/disadvantage. Link layer: + Link layer retransmissions avoid having to retransmit over the entire path. Transport and application layer retransmissions must be sent over the entire path, thus incurring higher latency and wasting bandwidth. + Link layer retransmissions can hide non-congestion losses from higher layer protocols. For example, wireless link layer retransmissions can prevent error losses from being misinterpreted by TCP as congestion losses. - End host to end host retransmissions are still necessary. A packet can be lost can after being successfully received at a router (due to congestion or errors). A route flap can send packets on a path that causes their TTL to expire before arriving at the destination. Some routers may not implement link layer retransmissions. - Link layer retransmissions add some complexity and overhead. (2 pts) - A packet may be retransmitted at multiple layers simultaneously. For example, a packet may be delayed before reaching a wireless link. The link layer protocol retransmits the packet, but the sender has already timed out and retransmits the packet. The link layer s retransmission is superfluous. Transport layer: + Transport layer retransmissions avoid having to reimplement retransmission functionality in applications. Many applications can use the same transport protocol implemented in a library or in the operating system, reducing bugs, implementation time, etc. + Some solutions said that retransmissions and congestion control fit together naturally. This isn t entirely true. (2 pts) Application layer: + Some applications can tolerate loss better than the increased delay of retransmissions. An example is an interactive audio or video application.
2 + Data may be lost above the transport layer. An example of this is a buggy proxy cache. It could transfer data correctly from a server, corrupt the data, and then send the corrupt data to the client. Grading: 4 points for each + or - above unless otherwise noted. 2) TCP and Route Fluttering (20 pts) (a) Describe fast retransmission and fast recovery algorithms (pseudocode preferred). (b) Consider a TCP flow implementing fast recovery. Assume the end-to-end delay of each packet is d in both directions. Suppose the 4 th packet transmitted by the sender experiences a delay of d2 > d. Assume the first packet is transmitted at time t. What is the congestion window size at time t + 6*d + ε? Note: Ignore the time it takes to send/receive a packet and assume that the receiver sends an ack as soon as it receives a packet, and the sender sends the next packet as soon as it gets an ack. Assume there are no packets losses. a) Fourth ACK for packet p received: retransmit p; /* fast retransmission */ sstresh = cwnd/2; /* fast recovery */ cwnd = sstresh; /* actually it s sstresh + 3 to account for packets acked by DUPACKs */ b) b.) d = d2; cwnd = 8 b.2) d < d2; cwnd = 2 or 5 (both answers were considered correct) cwnd= cwnd=2 cwnd=4 cwnd=8 ack= 2,3 ack=2,3 4,5,6,7 ack=4,5,6,7 cwnd= cwnd=2 cwnd=4 ack= 2,3 ack=2,3 5,6,7 ack=3,3,3 cwnd=2 (+3) 4 3) Differentiated and Integrated Services (20 pts) How do premium service (Diffserv) and guaranteed service (Intserv) differ in their semantics and implementation?
3 Semantic differences: - The guaranteed service is end-to-end; the premium service is ingress-to-egress (i.e., the premium service is defined on a domain basis) - The guaranteed service provides both per-flow delay and bandwidth guarantees; the premium service provides only per-flow bandwidth guarantees Implementation differences - Premium service (and Diffserv in general) is deployed on a domain basis, and differentiate between edge and core routers - With the guaranteed service, every router maintains per-flow state and performs per-flow packet processing and admission control; with the premium service, core routers maintain no per-flow state - With the guaranteed service, the admission control is totally distributed; with the premium service, the admission control is centralized within each domain (i.e., it is done by the bandwidth broker) 4) Internet Addressing (20 pts) (a) Classless Inter-Domain Routing (CIDR) allows the allocation of any power of 2 sized IP address range, instead of fixed size class A, B, and C subnets. Name two advantages of using CIDR. CIDR allocates the address space ) more efficiently and 2) reduces routing table size. For example, before CIDR, an organization with 2^0 hosts would get one class B (2^6) subnet or four class C (2^8 addresses) subnets. With one class B subnet, the organization would leave many addresses unused, thus reducing the overall efficiency of the IPv4 32 bit address space. With four class C subnets, those subnets could have different prefixes, resulting in four separate entries in routing tables. With CIDR, the organization could have one 0 bit address space, which it can use efficiently and which only occupies one entry in the routing table. Grading: 4 points for each of the above. (b) A mobile host travels to foreign networks while retaining its home IP address. To support this, mobile hosts advertise their home IP address to foreign routers, who would propagate this information to other routers during routing updates. Name two advantages and disadvantages of this scheme compared to Mobile IP. New scheme: + This enables more efficient routing than Mobile IP. Mobile IP suffers the inefficiency of triangle routing. + Avoid the packet header overhead of encapsulation. + This is more fault tolerant than Mobile IP. The home agent in Mobile IP is a single point of failure.
4 + The mobile host does not need to allocate an address in the foreign network. - The new scheme would propagate routing updates slowly. - The new scheme requires modifying routers. Routers would have to be modified to handle the new advertisements from hosts. - If large numbers of mobile hosts use this scheme, routing tables would become very large. Every mobile host would create an entry in the routing table. Currently, this does not happen because all the hosts in a subnet can be aggregated into one routing table entry. - The new scheme does not preserve location privacy. Anyone can use traceroute to determine which network the mobile host is connected to, which may give away the mobile host s geographic location. Grading: 3 points for each of the above unless otherwise noted. 5) TCP Congestion Control (20 pts) c (a) A TCP flow s throughput is approximately, where c is a constant, r is the round r s trip time, and s is the probability that a segment is lost. Assuming that the probability of packet loss is p, and each segment is split into n fragments, what is the TCP throughput? c ( p) n r For a TCP segment to be useful, all of its fragments must arrive at the receiver. The probability that one fragment arrives is p. The probability that n fragments arrive is ( p) n. Therefore, the probability that a segment is lost is ( p) n Grading: 8 points. (b) What are the pros and cons of explicit and implicit signals for congestion? Implicit: + An Implicit congestion signal does not require router support. + Transport protocols always need to adapt to implicit congestion signals anyway. Explicit congestion signals can be lost, so a lack of an explicit signal does not imply a lack of congestion. + Some explicit signals require sending an extra packet to signal congestion. This can cause control traffic congestion collapse. + Some explicit signaling schemes set a congestion bit in packets. Selfish receivers can subvert this by not sending the bit back the sender. Explicit: + An explicit congestion signal can be used for congestion avoidance. Routers can signal congestion when their queues grow long, but before they have to drop packets.
5 + An explicit congestion signal requires lower latency to interpret than implicit congestion signals. For example, TCP requires 3 duplicate acknowledgements to determine that a packet has been lost. + An explicit congestion signal distinguishes congestion loss from other loss. Wireless networks may drop packets because of signal fading or interference. Route fluttering can send packets into oblivion. This sources of packet loss can be misinterpreted by an implicit congestion signal scheme. Grading: 3 points for each of the above, unless otherwise noted.
Final for ECE374 05/06/13 Solution!!
1 Final for ECE374 05/06/13 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam taker -
Lecture Objectives. Lecture 07 Mobile Networks: TCP in Wireless Networks. Agenda. TCP Flow Control. Flow Control Can Limit Throughput (1)
Lecture Objectives Wireless and Mobile Systems Design Lecture 07 Mobile Networks: TCP in Wireless Networks Describe TCP s flow control mechanism Describe operation of TCP Reno and TCP Vegas, including
Transport Layer Protocols
Transport Layer Protocols Version. Transport layer performs two main tasks for the application layer by using the network layer. It provides end to end communication between two applications, and implements
TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) Internet Protocol (IP)
TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) *Slides adapted from a talk given by Nitin Vaidya. Wireless Computing and Network Systems Page
TCP in Wireless Mobile Networks
TCP in Wireless Mobile Networks 1 Outline Introduction to transport layer Introduction to TCP (Internet) congestion control Congestion control in wireless networks 2 Transport Layer v.s. Network Layer
TCP for Wireless Networks
TCP for Wireless Networks Outline Motivation TCP mechanisms Indirect TCP Snooping TCP Mobile TCP Fast retransmit/recovery Transmission freezing Selective retransmission Transaction oriented TCP Adapted
Data Networks Summer 2007 Homework #3
Data Networks Summer Homework # Assigned June 8, Due June in class Name: Email: Student ID: Problem Total Points Problem ( points) Host A is transferring a file of size L to host B using a TCP connection.
1. The subnet must prevent additional packets from entering the congested region until those already present can be processed.
Congestion Control When one part of the subnet (e.g. one or more routers in an area) becomes overloaded, congestion results. Because routers are receiving packets faster than they can forward them, one
Lecture 15: Congestion Control. CSE 123: Computer Networks Stefan Savage
Lecture 15: Congestion Control CSE 123: Computer Networks Stefan Savage Overview Yesterday: TCP & UDP overview Connection setup Flow control: resource exhaustion at end node Today: Congestion control Resource
How To Provide Qos Based Routing In The Internet
CHAPTER 2 QoS ROUTING AND ITS ROLE IN QOS PARADIGM 22 QoS ROUTING AND ITS ROLE IN QOS PARADIGM 2.1 INTRODUCTION As the main emphasis of the present research work is on achieving QoS in routing, hence this
Mobile Communications Chapter 9: Mobile Transport Layer
Mobile Communications Chapter 9: Mobile Transport Layer Motivation TCP-mechanisms Classical approaches Indirect TCP Snooping TCP Mobile TCP PEPs in general Additional optimizations Fast retransmit/recovery
TCP over Wireless Networks
TCP over Wireless Networks Raj Jain Professor of Computer Science and Engineering Washington University in Saint Louis Saint Louis, MO 63130 Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse574-10/
BCS THE CHARTERED INSTITUTE FOR IT. BCS HIGHER EDUCATION QUALIFICATIONS BCS Level 5 Diploma in IT COMPUTER NETWORKS
BCS THE CHARTERED INSTITUTE FOR IT BCS HIGHER EDUCATION QUALIFICATIONS BCS Level 5 Diploma in IT COMPUTER NETWORKS Friday 2 nd October 2015 Morning Answer any FOUR questions out of SIX. All questions carry
EECS 489 Winter 2010 Midterm Exam
EECS 489 Winter 2010 Midterm Exam Name: This is an open-book, open-resources exam. Explain or show your work for each question. Your grade will be severely deducted if you don t show your work, even if
TCP and Wireless Networks Classical Approaches Optimizations TCP for 2.5G/3G Systems. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme
Chapter 2 Technical Basics: Layer 1 Methods for Medium Access: Layer 2 Chapter 3 Wireless Networks: Bluetooth, WLAN, WirelessMAN, WirelessWAN Mobile Networks: GSM, GPRS, UMTS Chapter 4 Mobility on the
Network layer: Overview. Network layer functions IP Routing and forwarding
Network layer: Overview Network layer functions IP Routing and forwarding 1 Network layer functions Transport packet from sending to receiving hosts Network layer protocols in every host, router application
Classful IP Addressing (cont.)
Classful IP Addressing (cont.) 1 Address Prefix aka Net ID defines the network Address Suffix aka Host ID defines the node In Classful addressing, prefix is of fixed length (1, 2, or 3 bytes)! Classful
18: Enhanced Quality of Service
18: Enhanced Quality of Service Mark Handley Traditional best-effort queuing behaviour in routers Data transfer: datagrams: individual packets no recognition of flows connectionless: no signalling Forwarding:
Note! The problem set consists of two parts: Part I: The problem specifications pages Part II: The answer pages
Part I: The problem specifications NTNU The Norwegian University of Science and Technology Department of Telematics Note! The problem set consists of two parts: Part I: The problem specifications pages
EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science
EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science Examination Computer Networks (2IC15) on Monday, June 22 nd 2009, 9.00h-12.00h. First read the entire examination. There
Visualizations and Correlations in Troubleshooting
Visualizations and Correlations in Troubleshooting Kevin Burns Comcast [email protected] 1 Comcast Technology Groups Cable CMTS, Modem, Edge Services Backbone Transport, Routing Converged Regional
CS 268: Lecture 13. QoS: DiffServ and IntServ
CS 268: Lecture 13 QoS: DiffServ and IntServ Ion Stoica Computer Science Division Department of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley, CA 94720-1776 1
Computer Network Foundation. Chun-Jen (James) Chung. Arizona State University
Computer Network Foundation Chun-Jen (James) Chung 1 Outline Network Addressing Subnetting Classless Inter-Domain Routing (CIDR) Route Aggregation Network Addressing How does the network decide where to
High Performance VPN Solutions Over Satellite Networks
High Performance VPN Solutions Over Satellite Networks Enhanced Packet Handling Both Accelerates And Encrypts High-Delay Satellite Circuits Characteristics of Satellite Networks? Satellite Networks have
Networking Test 4 Study Guide
Networking Test 4 Study Guide True/False Indicate whether the statement is true or false. 1. IPX/SPX is considered the protocol suite of the Internet, and it is the most widely used protocol suite in LANs.
First Midterm for ECE374 03/09/12 Solution!!
1 First Midterm for ECE374 03/09/12 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam
Using Fuzzy Logic Control to Provide Intelligent Traffic Management Service for High-Speed Networks ABSTRACT:
Using Fuzzy Logic Control to Provide Intelligent Traffic Management Service for High-Speed Networks ABSTRACT: In view of the fast-growing Internet traffic, this paper propose a distributed traffic management
IP addressing and forwarding Network layer
The Internet Network layer Host, router network layer functions: IP addressing and forwarding Network layer Routing protocols path selection RIP, OSPF, BGP Transport layer: TCP, UDP forwarding table IP
IP Subnetting and Addressing
Indian Institute of Technology Kharagpur IP Subnetting and Addressing Prof Indranil Sengupta Computer Science and Engineering Indian Institute of Technology Kharagpur Lecture 6: IP Subnetting and Addressing
(Refer Slide Time: 02:17)
Internet Technology Prof. Indranil Sengupta Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No #06 IP Subnetting and Addressing (Not audible: (00:46)) Now,
Introduction to LAN/WAN. Network Layer (part II)
Introduction to LAN/WAN Network Layer (part II) Topics The Network Layer Introduction Routing (5.2) The Internet (5.5) IP, IP addresses ARP (5.5.4) OSPF (5.5.5) BGP (5.5.6) Congestion Control (5.3) Internetworking
CSE 473 Introduction to Computer Networks. Exam 2 Solutions. Your name: 10/31/2013
CSE 473 Introduction to Computer Networks Jon Turner Exam Solutions Your name: 0/3/03. (0 points). Consider a circular DHT with 7 nodes numbered 0,,...,6, where the nodes cache key-values pairs for 60
Congestion Control Review. 15-441 Computer Networking. Resource Management Approaches. Traffic and Resource Management. What is congestion control?
Congestion Control Review What is congestion control? 15-441 Computer Networking What is the principle of TCP? Lecture 22 Queue Management and QoS 2 Traffic and Resource Management Resource Management
Midterm Exam CMPSCI 453: Computer Networks Fall 2011 Prof. Jim Kurose
Midterm Exam CMPSCI 453: Computer Networks Fall 2011 Prof. Jim Kurose Instructions: There are 4 questions on this exam. Please use two exam blue books answer questions 1, 2 in one book, and the remaining
Lecture Computer Networks
Prof. Dr. H. P. Großmann mit M. Rabel sowie H. Hutschenreiter und T. Nau Sommersemester 2012 Institut für Organisation und Management von Informationssystemen Thomas Nau, kiz Lecture Computer Networks
8.2 The Internet Protocol
TCP/IP Protocol Suite HTTP SMTP DNS RTP Distributed applications Reliable stream service TCP UDP User datagram service Best-effort connectionless packet transfer Network Interface 1 IP Network Interface
Overview. 15-441: Computer Networking. Components of Integrated Services. Service Interfaces RSVP. Differentiated services
Overview 15-441: Computer Networking Lecture 21: QoS and Mobile/Wireless Networking RSVP Differentiated services Internet mobility TCP Over Noisy Links Lecture 21: 3-31-05 2 Components of Integrated Services
ECSE-6600: Internet Protocols Exam 2
ECSE-6600: Internet Protocols Exam 2 Time: 75 min (strictly enforced) Points: 50 YOUR NAME: Be brief, but DO NOT omit necessary detail {Note: Simply copying text directly from the slides or notes will
Master Course Computer Networks IN2097
Chair for Network Architectures and Services Prof. Carle Department of Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Stephan Günther
First Midterm for ECE374 02/25/15 Solution!!
1 First Midterm for ECE374 02/25/15 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam
Mobile Computing/ Mobile Networks
Mobile Computing/ Mobile Networks TCP in Mobile Networks Prof. Chansu Yu Contents Physical layer issues Communication frequency Signal propagation Modulation and Demodulation Channel access issues Multiple
QoS Parameters. Quality of Service in the Internet. Traffic Shaping: Congestion Control. Keeping the QoS
Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:
CS 348: Computer Networks. - IP addressing; 21 st Aug 2012. Instructor: Sridhar Iyer IIT Bombay
CS 348: Computer Networks - IP addressing; 21 st Aug 2012 Instructor: Sridhar Iyer IIT Bombay Think-Pair-Share: IP addressing What is the need for IP addresses? Why not have only MAC addresses? Given that
King Fahd University of Petroleum & Minerals Computer Engineering g Dept
King Fahd University of Petroleum & Minerals Computer Engineering g Dept COE 543 Mobile and Wireless Networks Term 111 Dr. Ashraf S. Hasan Mahmoud Rm 22-148-3 Ext. 1724 Email: [email protected] 12/24/2011
Internet Packets. Forwarding Datagrams
Internet Packets Packets at the network layer level are called datagrams They are encapsulated in frames for delivery across physical networks Frames are packets at the data link layer Datagrams are formed
The Quality of Internet Service: AT&T s Global IP Network Performance Measurements
The Quality of Internet Service: AT&T s Global IP Network Performance Measurements In today's economy, corporations need to make the most of opportunities made possible by the Internet, while managing
Lecture 33. Streaming Media. Streaming Media. Real-Time. Streaming Stored Multimedia. Streaming Stored Multimedia
Streaming Media Lecture 33 Streaming Audio & Video April 20, 2005 Classes of applications: streaming stored video/audio streaming live video/audio real-time interactive video/audio Examples: distributed
Congestions and Control Mechanisms n Wired and Wireless Networks
International OPEN ACCESS Journal ISSN: 2249-6645 Of Modern Engineering Research (IJMER) Congestions and Control Mechanisms n Wired and Wireless Networks MD Gulzar 1, B Mahender 2, Mr.B.Buchibabu 3 1 (Asst
Network layer" 1DT066! Distributed Information Systems!! Chapter 4" Network Layer!! goals: "
1DT066! Distributed Information Systems!! Chapter 4" Network Layer!! Network layer" goals: "! understand principles behind layer services:" " layer service models" " forwarding versus routing" " how a
IP Addressing. IP Addresses. Introductory material.
IP Addressing Introductory material. An entire module devoted to IP addresses. IP Addresses Structure of an IP address Classful IP addresses Limitations and problems with classful IP addresses Subnetting
Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation
Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation R.Navaneethakrishnan Assistant Professor (SG) Bharathiyar College of Engineering and Technology, Karaikal, India.
Answers to Sample Questions on Network Layer
Answers to Sample Questions on Network Layer ) IP Packets on a certain network can carry a maximum of only 500 bytes in the data portion. An application using TCP/IP on a node on this network generates
Simulation-Based Comparisons of Solutions for TCP Packet Reordering in Wireless Network
Simulation-Based Comparisons of Solutions for TCP Packet Reordering in Wireless Network 作 者 :Daiqin Yang, Ka-Cheong Leung, and Victor O. K. Li 出 處 :Wireless Communications and Networking Conference, 2007.WCNC
Network management and QoS provisioning - QoS in the Internet
QoS in the Internet Inernet approach is based on datagram service (best effort), so provide QoS was not a purpose for developers. Mainly problems are:. recognizing flows;. manage the issue that packets
2.1.2.2.2 Variable length subnetting
2.1.2.2.2 Variable length subnetting Variable length subnetting or variable length subnet masks (VLSM) allocated subnets within the same network can use different subnet masks. Advantage: conserves the
Final Exam. Route Computation: One reason why link state routing is preferable to distance vector style routing.
UCSD CSE CS 123 Final Exam Computer Networks Directions: Write your name on the exam. Write something for every question. You will get some points if you attempt a solution but nothing for a blank sheet
Asynchronous Transfer Mode: ATM. ATM architecture. ATM: network or link layer? ATM Adaptation Layer (AAL)
Asynchrous Transfer Mode: architecture 1980s/1990 s standard for high-speed (155Mbps to 622 Mbps and higher) Broadband Integrated Service Digital Network architecture Goal: integrated, end-end transport
IP and Mobility. Requirements to a Mobile IP. Terminology in Mobile IP
IP and Mobility Chapter 2 Technical Basics: Layer Methods for Medium Access: Layer 2 Chapter Wireless Networks: Bluetooth, WLAN, WirelessMAN, WirelessWAN Mobile Telecommunication Networks: GSM, GPRS, UMTS
RARP: Reverse Address Resolution Protocol
SFWR 4C03: Computer Networks and Computer Security January 19-22 2004 Lecturer: Kartik Krishnan Lectures 7-9 RARP: Reverse Address Resolution Protocol When a system with a local disk is bootstrapped it
Lecture 16: Quality of Service. CSE 123: Computer Networks Stefan Savage
Lecture 16: Quality of Service CSE 123: Computer Networks Stefan Savage Final Next week (trust Blink wrt time/location) Will cover entire class Style similar to midterm I ll post a sample (i.e. old) final
Multipath TCP in Practice (Work in Progress) Mark Handley Damon Wischik Costin Raiciu Alan Ford
Multipath TCP in Practice (Work in Progress) Mark Handley Damon Wischik Costin Raiciu Alan Ford The difference between theory and practice is in theory somewhat smaller than in practice. In theory, this
Computer Networks. Chapter 5 Transport Protocols
Computer Networks Chapter 5 Transport Protocols Transport Protocol Provides end-to-end transport Hides the network details Transport protocol or service (TS) offers: Different types of services QoS Data
CS 457 Lecture 19 Global Internet - BGP. Fall 2011
CS 457 Lecture 19 Global Internet - BGP Fall 2011 Decision Process Calculate degree of preference for each route in Adj-RIB-In as follows (apply following steps until one route is left): select route with
Quality of Service. Traditional Nonconverged Network. Traditional data traffic characteristics:
Quality of Service 1 Traditional Nonconverged Network Traditional data traffic characteristics: Bursty data flow FIFO access Not overly time-sensitive; delays OK Brief outages are survivable 2 1 Converged
IP SAN Best Practices
IP SAN Best Practices A Dell Technical White Paper PowerVault MD3200i Storage Arrays THIS WHITE PAPER IS FOR INFORMATIONAL PURPOSES ONLY, AND MAY CONTAIN TYPOGRAPHICAL ERRORS AND TECHNICAL INACCURACIES.
AN IMPROVED SNOOP FOR TCP RENO AND TCP SACK IN WIRED-CUM- WIRELESS NETWORKS
AN IMPROVED SNOOP FOR TCP RENO AND TCP SACK IN WIRED-CUM- WIRELESS NETWORKS Srikanth Tiyyagura Department of Computer Science and Engineering JNTUA College of Engg., pulivendula, Andhra Pradesh, India.
A Preferred Service Architecture for Payload Data Flows. Ray Gilstrap, Thom Stone, Ken Freeman
A Preferred Service Architecture for Payload Data Flows Ray Gilstrap, Thom Stone, Ken Freeman NASA Research and Engineering Network NASA Advanced Supercomputing Division NASA Ames Research Center Outline
Ref: A. Leon Garcia and I. Widjaja, Communication Networks, 2 nd Ed. McGraw Hill, 2006 Latest update of this lecture was on 16 10 2010
IPv4 Addressing There are several non-profit organizations in the world that have the authority for assigning IP addresses to institutions that need access to the Internet. These organizations are (for
Internet Protocol: IP packet headers. vendredi 18 octobre 13
Internet Protocol: IP packet headers 1 IPv4 header V L TOS Total Length Identification F Frag TTL Proto Checksum Options Source address Destination address Data (payload) Padding V: Version (IPv4 ; IPv6)
1. How many unique network IDs are there in class A addresses? # of unique hosts?
CS445: IPv4 Addresses In-class activity Names: Part 1: Address Classes Original three classes of IPv4 addresses: A: 0 network (7 bits) host (24 bits) B: 10 network (14 bits) host (16 bits) C: 110 network
Internet Quality of Service
Internet Quality of Service Weibin Zhao [email protected] 1 Outline 1. Background 2. Basic concepts 3. Supporting mechanisms 4. Frameworks 5. Policy & resource management 6. Conclusion 2 Background:
First Midterm for ECE374 03/24/11 Solution!!
1 First Midterm for ECE374 03/24/11 Solution!! Note: In all written assignments, please show as much of your work as you can. Even if you get a wrong answer, you can get partial credit if you show your
Analysis of IP Network for different Quality of Service
2009 International Symposium on Computing, Communication, and Control (ISCCC 2009) Proc.of CSIT vol.1 (2011) (2011) IACSIT Press, Singapore Analysis of IP Network for different Quality of Service Ajith
Quality of Service using Traffic Engineering over MPLS: An Analysis. Praveen Bhaniramka, Wei Sun, Raj Jain
Praveen Bhaniramka, Wei Sun, Raj Jain Department of Computer and Information Science The Ohio State University 201 Neil Ave, DL39 Columbus, OH 43210 USA Telephone Number: +1 614-292-3989 FAX number: +1
Scaling the Network: Subnetting and Other Protocols. Networking CS 3470, Section 1
Scaling the Network: Subnetting and Other Protocols Networking CS 3470, Section 1 Today CIDR Subnetting Private IP addresses ICMP, IMAP, and DHCP Protocols 2 Packet Encapsulation ** Creative Commons: http://en.wikipedia.org/wiki/file:udp_encapsulation.svg
Names & Addresses. Names & Addresses. Hop-by-Hop Packet Forwarding. Longest-Prefix-Match Forwarding. Longest-Prefix-Match Forwarding
Names & Addresses EE 122: IP Forwarding and Transport Protocols Scott Shenker http://inst.eecs.berkeley.edu/~ee122/ (Materials with thanks to Vern Paxson, Jennifer Rexford, and colleagues at UC Berkeley)
A Review on Quality of Service Architectures for Internet Network Service Provider (INSP)
A Review on Quality of Service Architectures for Internet Network Service Provider (INSP) Herman and Azizah bte Abd. Rahman Faculty of Computer Science and Information System Universiti Teknologi Malaysia
Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, [email protected]
Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, [email protected] 1. Introduction Ad hoc wireless networks pose a big challenge for transport layer protocol and transport layer protocols
Internet Control Protocols Reading: Chapter 3
Internet Control Protocols Reading: Chapter 3 ARP - RFC 826, STD 37 DHCP - RFC 2131 ICMP - RFC 0792, STD 05 1 Goals of Today s Lecture Bootstrapping an end host Learning its own configuration parameters
IP - The Internet Protocol
Orientation IP - The Internet Protocol IP (Internet Protocol) is a Network Layer Protocol. IP s current version is Version 4 (IPv4). It is specified in RFC 891. TCP UDP Transport Layer ICMP IP IGMP Network
A Survey on Congestion Control Mechanisms for Performance Improvement of TCP
A Survey on Congestion Control Mechanisms for Performance Improvement of TCP Shital N. Karande Department of Computer Science Engineering, VIT, Pune, Maharashtra, India Sanjesh S. Pawale Department of
Per-Flow Queuing Allot's Approach to Bandwidth Management
White Paper Per-Flow Queuing Allot's Approach to Bandwidth Management Allot Communications, July 2006. All Rights Reserved. Table of Contents Executive Overview... 3 Understanding TCP/IP... 4 What is Bandwidth
Future Internet Technologies
Future Internet Technologies Traditional Internet Dr. Dennis Pfisterer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Internet Protocol v4 (IPv4) IPv4 Model
The Problem with TCP. Overcoming TCP s Drawbacks
White Paper on managed file transfers How to Optimize File Transfers Increase file transfer speeds in poor performing networks FileCatalyst Page 1 of 6 Introduction With the proliferation of the Internet,
CS 5480/6480: Computer Networks Spring 2012 Homework 4 Solutions Due by 1:25 PM on April 11 th 2012
CS 5480/6480: Computer Networks Spring 2012 Homework 4 Solutions Due by 1:25 PM on April 11 th 2012 Important: The solutions to the homework problems from the course book have been provided by the authors.
IP Addressing Introductory material.
IP Addressing Introductory material. A module devoted to IP addresses. Addresses & Names Hardware (Layer 2) Lowest level Ethernet (MAC), Serial point-to-point,.. Network (Layer 3) IP IPX, SNA, others Transport
Internet Infrastructure Measurement: Challenges and Tools
Internet Infrastructure Measurement: Challenges and Tools Internet Infrastructure Measurement: Challenges and Tools Outline Motivation Challenges Tools Conclusion Why Measure? Why Measure? Internet, with
THE UNIVERSITY OF AUCKLAND
COMPSCI 742 THE UNIVERSITY OF AUCKLAND SECOND SEMESTER, 2008 Campus: City COMPUTER SCIENCE Data Communications and Networks (Time allowed: TWO hours) NOTE: Attempt all questions. Calculators are NOT permitted.
CS 43: Computer Networks IP. Kevin Webb Swarthmore College November 5, 2013
CS 43: Computer Networks IP Kevin Webb Swarthmore College November 5, 2013 Reading Quiz IP datagram format IP protocol version number header length (bytes) type of data max number remaining hops (decremented
Quality of Service in the Internet. QoS Parameters. Keeping the QoS. Traffic Shaping: Leaky Bucket Algorithm
Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:
Network Layer IPv4. Dr. Sanjay P. Ahuja, Ph.D. Fidelity National Financial Distinguished Professor of CIS. School of Computing, UNF
Network Layer IPv4 Dr. Sanjay P. Ahuja, Ph.D. Fidelity National Financial Distinguished Professor of CIS School of Computing, UNF IPv4 Internet Protocol (IP) is the glue that holds the Internet together.
CS335 Sample Questions for Exam #2
CS335 Sample Questions for Exam #2.) Compare connection-oriented with connectionless protocols. What type of protocol is IP? How about TCP and UDP? Connection-oriented protocols Require a setup time to
Student, Haryana Engineering College, Haryana, India 2 H.O.D (CSE), Haryana Engineering College, Haryana, India
Volume 5, Issue 6, June 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com A New Protocol
Measuring IP Performance. Geoff Huston Telstra
Measuring IP Performance Geoff Huston Telstra What are you trying to measure? User experience Responsiveness Sustained Throughput Application performance quality Consistency Availability Network Behaviour
Internet Protocol version 4 Part I
Internet Protocol version 4 Part I Claudio Cicconetti International Master on Information Technology International Master on Communication Networks Engineering Table of Contents
Chapter 4. Distance Vector Routing Protocols
Chapter 4 Distance Vector Routing Protocols CCNA2-1 Chapter 4 Note for Instructors These presentations are the result of a collaboration among the instructors at St. Clair College in Windsor, Ontario.
Network Friendliness of Mobility Management Protocols
Network Friendliness of Mobility Management Protocols Md Sazzadur Rahman, Mohammed Atiquzzaman Telecommunications and Networks Research Lab School of Computer Science, University of Oklahoma, Norman, OK
Distributed Systems 3. Network Quality of Service (QoS)
Distributed Systems 3. Network Quality of Service (QoS) Paul Krzyzanowski [email protected] 1 What factors matter for network performance? Bandwidth (bit rate) Average number of bits per second through
Internet Protocol Address
SFWR 4C03: Computer Networks & Computer Security Jan 17-21, 2005 Lecturer: Kartik Krishnan Lecture 7-9 Internet Protocol Address Addressing is a critical component of the internet abstraction. To give
