Network layer" 1DT066! Distributed Information Systems!! Chapter 4" Network Layer!! goals: "
|
|
|
- Trevor Curtis
- 9 years ago
- Views:
Transcription
1 1DT066! Distributed Information Systems!! Chapter 4" Network Layer!! Network layer" goals: "! understand principles behind layer services:" " layer service models" " forwarding versus routing" " how a router works and routing algorithms" " syntax an semantics of IP addresses" " address resolution services" " Network Layer 4-
2 Outline and book chapters" 4.1 introduction" 4. virtual circuit and datagram s" 4.3 what s inside a router" 4.4 IP: Internet Protocol" " datagram format" " IPv4 addressing" Network Layer 4-3 Network layer"! forwards packets from sending to receiving host "! on sending side: encapsulates transport packets into datagrams!! on receiving side: delivers packets to transport layer"! layer protocols exist in every host & router"! router examines header fields in all datagrams" application transport application transport pp " Network Layer 4-4
3 Two key -layer functions"! forwarding: move packets from router s input to appropriate router output"! routing: determine route taken by packets from source to dest. " " " routing algorithms" pp , " Network Layer 4-5 Interplay between routing and forwarding" routing algorithm local forwarding table header value output link routing algorithm determines end-end-path through forwarding table determines local forwarding at this router value in arriving packet s header pp " Network Layer 4-6
4 Connection vs connection-less services"! datagram provides -layer connectionless service"! virtual-circuit provides -layer connection service" pp 339" Network Layer 4-7 Virtual circuits: Signaling and flow"! Signaling to setup a virtual circuit, reserve resources, e.g. line capacity and buffers at each router. Establish state."! The flow of data packets starts. "! Signaling to supervise flow (e.g. Route/link failure)"! Signaling to tear down circuit & release resources" application transport 5. data flow begins" 6. receive data" 4. call connected" 3. accept call" 1. initiate call". incoming call" application transport Pp " Network Layer 4-8
5 Datagram s"! no call setup at layer"! routers: no state about end-to-end connections" " no -level concept of connection "! packets forwarded using destination host address, looked up at all encountered routers." application transport 1. send datagrams. receive datagrams application transport pp " Network Layer 4-9 The Internet layer" host, router layer functions:" transport layer: TCP, UDP layer routing protocols! path selection RIP, OSPF, BGP forwarding table IP protocol! addressing conventions datagram format packet handling conventions ICMP protocol! error reporting router signaling link layer layer pp " Network Layer 4-10
6 IP datagram format" IP protocol version number header length (bytes) type of data max number remaining hops (decremented at each router) upper layer protocol to deliver payload to how much overhead?! 0 bytes of TCP! 0 bytes of IP! = 40 bytes + app layer overhead ver head. len 16-bit identifier time to live type of service upper layer 3 bits flgs length fragment offset header checksum 3 bit source IP address 3 bit destination IP address options (if any) data (variable length, typically a TCP or UDP segment) total datagram length (bytes) for fragmentation/ reassembly e.g. timestamp, record route taken, specify list of routers to visit. pp " Network Layer 4-11 IP fragmentation, reassembly"! links have MTU (Max.Transfer Unit) - largest possible link-level frame" " different link types, different MTUs "! large IP datagram are divided ( fragmented ) within net" " one datagram becomes several datagrams" " reassembled only at final destination" " IP header bits used to identify, order related fragments" reassembly fragmentation: in: one large datagram out: 3 smaller datagrams pp " Network Layer 4-1
7 IP addressing: introduction"! IP address: 3-bit identifier for host == router interface "! interface: connection between host/router and link" " router s typically have multiple interfaces" " host s typically has one or two interfaces (e.g., wired Ethernet, wireless 80.11)"! IP addresses associated with each interface! = pp " Network Layer 4-13 Dotted-decimal Notation 3-bit host addresses are often given in a dotted-decimal notation for convenience: The 3bits are split into four groups of 8bits. Each 8-bit value is translated into decimal form. Example: The dotted-decimal notation for is a) Translate the following addresses: pp " Network Layer 4-14
8 Datagram forwarding table" routing algorithm local forwarding table dest address output link address-range 1 address-range address-range 3 address-range billion IP addresses, so rather than list individual destination address" list range of addresses" (aggregate table entries)" IP destination address in arriving packet s header 1 3 pp " Network Layer 4-15 Datagram forwarding table" Destination Address Range through through Link Interface through otherwise 3 Q: but what happens if ranges don t divide up so nicely? " pp 11-17" Network Layer 4-16
9 Longest prefix matching" longest prefix matching! when looking for forwarding table entry for given destination address, use longest address prefix that matches destination address." Destination Address Range *** ********* ********* *** ********* otherwise! examples: DA: DA: pp 11-17" Link interface which interface?" which interface?" Network Layer 4-17 Subnets" ! IP address: " " subnet part - high order bits" " host part - low order bits "! what s a subnet?! " device interfaces with same subnet part of IP address" " can ly reach each other without intervening router! subnet part pp 11-17" subnet consisting of 3 subnets /4 host part Network Layer 4-18
10 IP addresses: how to get one?" Q: How does a host get IP address?" "! hard-coded by system admin in a file" " Windows: control-panel->->configuration->tcp/ ip->properties" " UNIX: /etc/rc.config"! : Dynamic Host Configuration Protocol: dynamically get address from server" " " pp " Network Layer 4-19 : example" UDP IP Eth Phy UDP IP Eth Phy router with server built into router! connecting laptop needs its IP address, addr of first-hop router, addr of DNS server: use "! request encapsulated in UDP, encapsulated in IP, encapsulated in 80.1 Ethernet" "! Ethernet frame broadcast (dest: FFFFFFFFFFFF) on LAN, received at router running server"! Ethernet demuxed to IP demuxed, UDP demuxed to " pp " Network Layer 4-0
11 : example" UDP IP Eth Phy UDP IP Eth Phy router with server built into router! DCP server formulates ACK containing client s IP address, IP address of first-hop router for client, name & IP address of DNS server"! encapsulation of server, frame forwarded to client, demuxing up to at client"! client now knows its IP address, name and IP address of DSN server, IP address of its first-hop router" pp " Network Layer 4-1 client-server scenario" server: discover src : , 68 dest.: ,67 yiaddr: transaction ID: 654 arriving client request offer src: , 68 dest:: , 67 yiaddrr: transaction ID: 655 lifetime: 3600 secs src: , 67 dest: , 68 yiaddrr: transaction ID: 654 lifetime: 3600 secs ACK src: , 67 dest: , 68 yiaddrr: transaction ID: 655 lifetime: 3600 secs pp " Network Layer 4-
12 In TCP we talked about the 3-way handshake to make sure both sender and receiver agree that a connection is established. Why does need a fourstep process? o The fourth step is needed to agree on the lifetime of the address lease. o Several servers can answer with offers; therefore an additional step to select an offer of a particular server. o There are four steps because there are four parameters to be transferred: address, subnet mask, first hop router, local DNS server. o To avoid that two hosts configure the same address. Network Layer 4-3 NAT: address translation" rest of Internet local (e.g., home ) / all datagrams leaving local" have same single source NAT IP address: ,different source port numbers" datagrams with source or " destination in this " have /4 address for " source, destination (as usual)" pp " Network Layer 4-4
13 NAT: address translation" motivation: local uses just one IP address as far as outside world is concerned:" " range of addresses not needed from ISP: just one IP address for all devices" " can change addresses of devices in local without notifying outside world" " can change ISP without changing addresses of devices in local " " devices inside local net not explicitly addressable, visible by outside world (a security plus)" " pp " Network Layer 4-5 NAT: address translation" : NAT router changes datagram source addr from , 3345 to , 5001, updates table NAT translation table WAN side addr LAN side addr , , 3345 S: , 5001 D: , S: , 80 D: , : reply arrives dest. address: , S: , 3345 D: , 80 1 S: , 80 D: , : host sends datagram to , : NAT router changes datagram dest addr from , 5001 to , 3345 pp " Network Layer 4-6
14 NAT: address translation"! 16-bit port-number field: " " 60,000 simultaneous connections with a single LAN-side address!"! NAT is controversial:" " routers should only process up to layer 3" " violates end-to-end argument" NAT possibility must be taken into account by app designers, e.g., PP applications" " address shortage should instead be solved by IPv6" pp " Network Layer 4-7 NAT traversal problem"! client wants to connect to server with address " " server address local to LAN (client can t use it as destination addr)" " only one externally visible NATed address: "! solution1: statically configure NAT to forward incoming connection requests at given port to server" " e.g., ( , port 500) always forwarded to port 5000" client? NAT router pp " Network Layer 4-8
Chapter 4 Network Layer
Chapter 4 Network Layer A note on the use of these ppt slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you can add, modify, and delete
IP addressing and forwarding Network layer
The Internet Network layer Host, router network layer functions: IP addressing and forwarding Network layer Routing protocols path selection RIP, OSPF, BGP Transport layer: TCP, UDP forwarding table IP
CS 43: Computer Networks IP. Kevin Webb Swarthmore College November 5, 2013
CS 43: Computer Networks IP Kevin Webb Swarthmore College November 5, 2013 Reading Quiz IP datagram format IP protocol version number header length (bytes) type of data max number remaining hops (decremented
CS 457 Lecture 19 Global Internet - BGP. Fall 2011
CS 457 Lecture 19 Global Internet - BGP Fall 2011 Decision Process Calculate degree of preference for each route in Adj-RIB-In as follows (apply following steps until one route is left): select route with
Chapter 4 Network Layer
Chapter 4 Network Layer Reti degli Elaboratori Canale AL Prof.ssa Chiara Petrioli a.a. 2013/2014 We thank for the support material Prof. Kurose-Ross All material copyright 1996-2012 J.F Kurose and K.W.
Network layer: Overview. Network layer functions IP Routing and forwarding
Network layer: Overview Network layer functions IP Routing and forwarding 1 Network layer functions Transport packet from sending to receiving hosts Network layer protocols in every host, router application
IP addressing. Interface: Connection between host, router and physical link. IP address: 32-bit identifier for host, router interface
IP addressing IP address: 32-bit identifier for host, router interface Interface: Connection between host, router and physical link routers typically have multiple interfaces host may have multiple interfaces
Transport and Network Layer
Transport and Network Layer 1 Introduction Responsible for moving messages from end-to-end in a network Closely tied together TCP/IP: most commonly used protocol o Used in Internet o Compatible with a
DHCP, ICMP, IPv6. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley DHCP. DHCP UDP IP Eth Phy
, ICMP, IPv6 UDP IP Eth Phy UDP IP Eth Phy Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Some materials copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights
8.2 The Internet Protocol
TCP/IP Protocol Suite HTTP SMTP DNS RTP Distributed applications Reliable stream service TCP UDP User datagram service Best-effort connectionless packet transfer Network Interface 1 IP Network Interface
Classful IP Addressing. Classless Addressing: CIDR. Routing & Forwarding: Logical View of a Router. IP Addressing: Basics
Switching and Forwarding Switching and Forwarding Generic Router rchitecture Forwarding Tables: ridges/layer Switches; VLN Routers and Layer 3 Switches Forwarding in Layer 3 (Network Layer) Network Layer
Network Layer IPv4. Dr. Sanjay P. Ahuja, Ph.D. Fidelity National Financial Distinguished Professor of CIS. School of Computing, UNF
Network Layer IPv4 Dr. Sanjay P. Ahuja, Ph.D. Fidelity National Financial Distinguished Professor of CIS School of Computing, UNF IPv4 Internet Protocol (IP) is the glue that holds the Internet together.
Internet Protocol: IP packet headers. vendredi 18 octobre 13
Internet Protocol: IP packet headers 1 IPv4 header V L TOS Total Length Identification F Frag TTL Proto Checksum Options Source address Destination address Data (payload) Padding V: Version (IPv4 ; IPv6)
Internet Packets. Forwarding Datagrams
Internet Packets Packets at the network layer level are called datagrams They are encapsulated in frames for delivery across physical networks Frames are packets at the data link layer Datagrams are formed
Компјутерски Мрежи NAT & ICMP
Компјутерски Мрежи NAT & ICMP Riste Stojanov, M.Sc., Aleksandra Bogojeska, M.Sc., Vladimir Zdraveski, B.Sc Internet AS Hierarchy Inter-AS border (exterior gateway) routers Intra-AS interior (gateway) routers
Future Internet Technologies
Future Internet Technologies Traditional Internet Dr. Dennis Pfisterer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Internet Protocol v4 (IPv4) IPv4 Model
IP Network Layer. Datagram ID FLAG Fragment Offset. IP Datagrams. IP Addresses. IP Addresses. CSCE 515: Computer Network Programming TCP/IP
CSCE 515: Computer Network Programming TCP/IP IP Network Layer Wenyuan Xu Department of Computer Science and Engineering University of South Carolina IP Datagrams IP is the network layer packet delivery
IP - The Internet Protocol
Orientation IP - The Internet Protocol IP (Internet Protocol) is a Network Layer Protocol. IP s current version is Version 4 (IPv4). It is specified in RFC 891. TCP UDP Transport Layer ICMP IP IGMP Network
CS 78 Computer Networks. Internet Protocol (IP) our focus. The Network Layer. Interplay between routing and forwarding
CS 78 Computer Networks Internet Protocol (IP) Andrew T. Campbell [email protected] our focus What we will lean What s inside a router IP forwarding Internet Control Message Protocol (ICMP) IP
Mobile IP Network Layer Lesson 02 TCP/IP Suite and IP Protocol
Mobile IP Network Layer Lesson 02 TCP/IP Suite and IP Protocol 1 TCP/IP protocol suite A suite of protocols for networking for the Internet Transmission control protocol (TCP) or User Datagram protocol
Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network.
Course Name: TCP/IP Networking Course Overview: Learn the essential skills needed to set up, configure, support, and troubleshoot your TCP/IP-based network. TCP/IP is the globally accepted group of protocols
IP address format: Dotted decimal notation: 10000000 00001011 00000011 00011111 128.11.3.31
IP address format: 7 24 Class A 0 Network ID Host ID 14 16 Class B 1 0 Network ID Host ID 21 8 Class C 1 1 0 Network ID Host ID 28 Class D 1 1 1 0 Multicast Address Dotted decimal notation: 10000000 00001011
Networking Test 4 Study Guide
Networking Test 4 Study Guide True/False Indicate whether the statement is true or false. 1. IPX/SPX is considered the protocol suite of the Internet, and it is the most widely used protocol suite in LANs.
Internet Protocols Fall 2005. Lectures 7-8 Andreas Terzis
Internet Protocols Fall 2005 Lectures 7-8 Andreas Terzis Outline Internet Protocol Service Model Fragmentation Addressing Original addressing scheme Subnetting CIDR Forwarding ICMP ARP Address Shortage
Answers to Sample Questions on Network Layer
Answers to Sample Questions on Network Layer ) IP Packets on a certain network can carry a maximum of only 500 bytes in the data portion. An application using TCP/IP on a node on this network generates
The Internet. Internet Technologies and Applications
The Internet Internet Technologies and Applications Aim and Contents Aim: Review the main concepts and technologies used in the Internet Describe the real structure of the Internet today Contents: Internetworking
CS335 Sample Questions for Exam #2
CS335 Sample Questions for Exam #2.) Compare connection-oriented with connectionless protocols. What type of protocol is IP? How about TCP and UDP? Connection-oriented protocols Require a setup time to
Technical Support Information Belkin internal use only
The fundamentals of TCP/IP networking TCP/IP (Transmission Control Protocol / Internet Protocols) is a set of networking protocols that is used for communication on the Internet and on many other networks.
EITF25 Internet Techniques and Applications L5: Wide Area Networks (WAN) Stefan Höst
EITF25 Internet Techniques and Applications L5: Wide Area Networks (WAN) Stefan Höst Data communication in reality In reality, the source and destination hosts are very seldom on the same network, for
2. IP Networks, IP Hosts and IP Ports
1. Introduction to IP... 1 2. IP Networks, IP Hosts and IP Ports... 1 3. IP Packet Structure... 2 4. IP Address Structure... 2 Network Portion... 2 Host Portion... 3 Global vs. Private IP Addresses...3
Lecture Computer Networks
Prof. Dr. H. P. Großmann mit M. Rabel sowie H. Hutschenreiter und T. Nau Sommersemester 2012 Institut für Organisation und Management von Informationssystemen Thomas Nau, kiz Lecture Computer Networks
Lecture 8. IP Fundamentals
Lecture 8. Internet Network Layer: IP Fundamentals Outline Layer 3 functionalities Internet Protocol (IP) characteristics IP packet (first look) IP addresses Routing tables: how to use ARP Layer 3 functionalities
RARP: Reverse Address Resolution Protocol
SFWR 4C03: Computer Networks and Computer Security January 19-22 2004 Lecturer: Kartik Krishnan Lectures 7-9 RARP: Reverse Address Resolution Protocol When a system with a local disk is bootstrapped it
How To Manage Address Management In Ip Networks (Netware)
Address Management in IP Networks -Address Resolution Protocol (ARP) -Reverse Address Resolution Protocol (RARP) -Dynamic Host Configuration Protocol () IP Addresses and Physical Addresses The Forwarding
How do I get to www.randomsite.com?
Networking Primer* *caveat: this is just a brief and incomplete introduction to networking to help students without a networking background learn Network Security. How do I get to www.randomsite.com? Local
Gary Hecht Computer Networking (IP Addressing, Subnet Masks, and Packets)
Gary Hecht Computer Networking (IP Addressing, Subnet Masks, and Packets) The diagram below illustrates four routers on the Internet backbone along with two companies that have gateways for their internal
Internet Control Protocols Reading: Chapter 3
Internet Control Protocols Reading: Chapter 3 ARP - RFC 826, STD 37 DHCP - RFC 2131 ICMP - RFC 0792, STD 05 1 Goals of Today s Lecture Bootstrapping an end host Learning its own configuration parameters
Computer Networks. Lecture 3: IP Protocol. Marcin Bieńkowski. Institute of Computer Science University of Wrocław
Computer Networks Lecture 3: IP Protocol Marcin Bieńkowski Institute of Computer Science University of Wrocław Computer networks (II UWr) Lecture 3 1 / 24 In previous lectures We learned about layer 1
20. Switched Local Area Networks
20. Switched Local Area Networks n Addressing in LANs (ARP) n Spanning tree algorithm n Forwarding in switched Ethernet LANs n Virtual LANs n Layer 3 switching n Datacenter networks John DeHart Based on
Internet Protocols. Addressing & Services. Updated: 9-29-2012
Internet Protocols Addressing & Services Updated: 9-29-2012 Virtual vs. Physical Networks MAC is the part of the underlying network MAC is used on the LAN What is the addressing mechanism in WAN? WAN is
IP Address Classes (Some are Obsolete) 15-441 Computer Networking. Important Concepts. Subnetting 15-441 15-641. Lecture 8 IP Addressing & Packets
Address Classes (Some are Obsolete) 15-441 15-441 Computer Networking 15-641 Class A 0 Network ID Network ID 8 16 Host ID Host ID 24 32 Lecture 8 Addressing & Packets Peter Steenkiste Fall 2013 www.cs.cmu.edu/~prs/15-441-f13
TCP/IP Fundamentals. OSI Seven Layer Model & Seminar Outline
OSI Seven Layer Model & Seminar Outline TCP/IP Fundamentals This seminar will present TCP/IP communications starting from Layer 2 up to Layer 4 (TCP/IP applications cover Layers 5-7) IP Addresses Data
NETWORK LAYER/INTERNET PROTOCOLS
CHAPTER 3 NETWORK LAYER/INTERNET PROTOCOLS You will learn about the following in this chapter: IP operation, fields and functions ICMP messages and meanings Fragmentation and reassembly of datagrams IP
Network Layer: Network Layer and IP Protocol
1 Network Layer: Network Layer and IP Protocol Required reading: Garcia 7.3.3, 8.1, 8.2.1 CSE 3213, Winter 2010 Instructor: N. Vlajic 2 1. Introduction 2. Router Architecture 3. Network Layer Protocols
Chapter 3. TCP/IP Networks. 3.1 Internet Protocol version 4 (IPv4)
Chapter 3 TCP/IP Networks 3.1 Internet Protocol version 4 (IPv4) Internet Protocol version 4 is the fourth iteration of the Internet Protocol (IP) and it is the first version of the protocol to be widely
Internet Architecture and Philosophy
Internet Architecture and Philosophy Conceptually, TCP/IP provides three sets of services to the user: Application Services Reliable Transport Service Connectionless Packet Delivery Service The underlying
Network-Oriented Software Development. Course: CSc4360/CSc6360 Instructor: Dr. Beyah Sessions: M-W, 3:00 4:40pm Lecture 2
Network-Oriented Software Development Course: CSc4360/CSc6360 Instructor: Dr. Beyah Sessions: M-W, 3:00 4:40pm Lecture 2 Topics Layering TCP/IP Layering Internet addresses and port numbers Encapsulation
TCP/IP Basis. OSI Model
TCP/IP Basis 高 雄 大 學 資 訊 工 程 學 系 嚴 力 行 Source OSI Model Destination Application Presentation Session Transport Network Data-Link Physical ENCAPSULATION DATA SEGMENT PACKET FRAME BITS 0101010101010101010
Datagram-based network layer: forwarding; routing. Additional function of VCbased network layer: call setup.
CEN 007C Computer Networks Fundamentals Instructor: Prof. A. Helmy Homework : Network Layer Assigned: Nov. 28 th, 2011. Due Date: Dec 8 th, 2011 (to the TA) 1. ( points) What are the 2 most important network-layer
IP Subnetting and Addressing
Indian Institute of Technology Kharagpur IP Subnetting and Addressing Prof Indranil Sengupta Computer Science and Engineering Indian Institute of Technology Kharagpur Lecture 6: IP Subnetting and Addressing
Guide to TCP/IP, Third Edition. Chapter 3: Data Link and Network Layer TCP/IP Protocols
Guide to TCP/IP, Third Edition Chapter 3: Data Link and Network Layer TCP/IP Protocols Objectives Understand the role that data link protocols, such as SLIP and PPP, play for TCP/IP Distinguish among various
Outline. CSc 466/566. Computer Security. 18 : Network Security Introduction. Network Topology. Network Topology. Christian Collberg
Outline Network Topology CSc 466/566 Computer Security 18 : Network Security Introduction Version: 2012/05/03 13:59:29 Department of Computer Science University of Arizona [email protected] Copyright
Savera Tanwir. Internet Protocol
Savera Tanwir Internet Protocol The IP Protocol The IPv4 (Internet Protocol) header. IP Packet Details Header and payload Header itself has a fixed part and variable part Version IPv4, IPv5 or IPv6 IHL,
Interconnection of Heterogeneous Networks. Internetworking. Service model. Addressing Address mapping Automatic host configuration
Interconnection of Heterogeneous Networks Internetworking Service model Addressing Address mapping Automatic host configuration Wireless LAN network@home outer Ethernet PPS Internet-Praktikum Internetworking
ELEC3030 (EL336) Computer Networks. How Networks Differ. Differences that can occur at network layer, which makes internetworking difficult:
How Networks Differ Differences that can occur at network layer, which makes internetworking difficult: It is impossible to resolve all differences, and the solution is to take a simple approach (as in
ICS 351: Today's plan
ICS 351: Today's plan Quiz, on overall Internet function, linux and IOS commands, network monitoring, protocols IPv4 addresses: network part and host part address masks IP interface configuration IPv6
Guide to Network Defense and Countermeasures Third Edition. Chapter 2 TCP/IP
Guide to Network Defense and Countermeasures Third Edition Chapter 2 TCP/IP Objectives Explain the fundamentals of TCP/IP networking Describe IPv4 packet structure and explain packet fragmentation Describe
Unix System Administration
Unix System Administration Chris Schenk Lecture 08 Tuesday Feb 13 CSCI 4113, Spring 2007 ARP Review Host A 128.138.202.50 00:0B:DB:A6:76:18 Host B 128.138.202.53 00:11:43:70:45:81 Switch Host C 128.138.202.71
Introduction to TCP/IP
Introduction to TCP/IP Raj Jain The Ohio State University Columbus, OH 43210 Nayna Networks Milpitas, CA 95035 Email: [email protected] http://www.cis.ohio-state.edu/~jain/ 1 Overview! Internetworking Protocol
Introduction to IP v6
IP v 1-3: defined and replaced Introduction to IP v6 IP v4 - current version; 20 years old IP v5 - streams protocol IP v6 - replacement for IP v4 During developments it was called IPng - Next Generation
Chapter 11. User Datagram Protocol (UDP)
Chapter 11 User Datagram Protocol (UDP) The McGraw-Hill Companies, Inc., 2000 1 CONTENTS PROCESS-TO-PROCESS COMMUNICATION USER DATAGRAM CHECKSUM UDP OPERATION USE OF UDP UDP PACKAGE The McGraw-Hill Companies,
Dynamic Host Configuration Protocol (DHCP) 02 NAT and DHCP Tópicos Avançados de Redes
Dynamic Host Configuration Protocol (DHCP) 1 1 Dynamic Assignment of IP addresses Dynamic assignment of IP addresses is desirable for several reasons: IP addresses are assigned on-demand Avoid manual IP
Network Security TCP/IP Refresher
Network Security TCP/IP Refresher What you (at least) need to know about networking! Dr. David Barrera Network Security HS 2014 Outline Network Reference Models Local Area Networks Internet Protocol (IP)
Lecture 15. IP address space managed by Internet Assigned Numbers Authority (IANA)
Lecture 15 IP Address Each host and router on the Internet has an IP address, which consist of a combination of network number and host number. The combination is unique; no two machines have the same
Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ
Computer Networks 1 (Mạng Máy Tính 1) Lectured by: Dr. Phạm Trần Vũ 1 Lecture 7: Network Layer in the Internet Reference: Chapter 5 - Computer Networks, Andrew S. Tanenbaum, 4th Edition, Prentice Hall,
Internetworking. Problem: There is more than one network (heterogeneity & scale)
Internetworking Problem: There is more than one network (heterogeneity & scale) Hongwei Zhang http://www.cs.wayne.edu/~hzhang Internetworking: Internet Protocol (IP) Routing and scalability Group Communication
SUPPORT DE COURS. Dr. Omari Mohammed Maître de Conférences Classe A Université d Adrar Courriel : [email protected]
Dr. Omari Mohammed Maître de Conférences Classe A Université d Adrar Courriel : [email protected] SUPPORT DE COURS Matière : Réseaux 2 Niveau : 3 ème Année Licence en Informatique Option : Réseaux et
Internet Infrastructure Measurement: Challenges and Tools
Internet Infrastructure Measurement: Challenges and Tools Internet Infrastructure Measurement: Challenges and Tools Outline Motivation Challenges Tools Conclusion Why Measure? Why Measure? Internet, with
Efficient Addressing. Outline. Addressing Subnetting Supernetting CS 640 1
Efficient Addressing Outline Addressing Subnetting Supernetting CS 640 1 IPV4 Global Addresses Properties IPv4 uses 32 bit address space globally unique hierarchical: network + host 7 24 Dot Notation 10.3.2.4
Internet Firewall CSIS 4222. Packet Filtering. Internet Firewall. Examples. Spring 2011 CSIS 4222. net15 1. Routers can implement packet filtering
Internet Firewall CSIS 4222 A combination of hardware and software that isolates an organization s internal network from the Internet at large Ch 27: Internet Routing Ch 30: Packet filtering & firewalls
Indian Institute of Technology Kharagpur. TCP/IP Part I. Prof Indranil Sengupta Computer Science and Engineering Indian Institute of Technology
Indian Institute of Technology Kharagpur TCP/IP Part I Prof Indranil Sengupta Computer Science and Engineering Indian Institute of Technology Kharagpur Lecture 3: TCP/IP Part I On completion, the student
Protocols. Packets. What's in an IP packet
Protocols Precise rules that govern communication between two parties TCP/IP: the basic Internet protocols IP: Internet Protocol (bottom level) all packets shipped from network to network as IP packets
ESSENTIALS. Understanding Ethernet Switches and Routers. April 2011 VOLUME 3 ISSUE 1 A TECHNICAL SUPPLEMENT TO CONTROL NETWORK
VOLUME 3 ISSUE 1 A TECHNICAL SUPPLEMENT TO CONTROL NETWORK Contemporary Control Systems, Inc. Understanding Ethernet Switches and Routers This extended article was based on a two-part article that was
Ethernet. Ethernet. Network Devices
Ethernet Babak Kia Adjunct Professor Boston University College of Engineering ENG SC757 - Advanced Microprocessor Design Ethernet Ethernet is a term used to refer to a diverse set of frame based networking
IP Addressing Introductory material.
IP Addressing Introductory material. A module devoted to IP addresses. Addresses & Names Hardware (Layer 2) Lowest level Ethernet (MAC), Serial point-to-point,.. Network (Layer 3) IP IPX, SNA, others Transport
04 Internet Protocol (IP)
SE 4C03 Winter 2007 04 Internet Protocol (IP) William M. Farmer Department of Computing and Software McMaster University 29 January 2007 Internet Protocol (IP) IP provides a connectionless packet delivery
IP Addressing. IP Addresses. Introductory material.
IP Addressing Introductory material. An entire module devoted to IP addresses. IP Addresses Structure of an IP address Classful IP addresses Limitations and problems with classful IP addresses Subnetting
Internetworking and Internet-1. Global Addresses
Internetworking and Internet Global Addresses IP servcie model has two parts Datagram (connectionless) packet delivery model Global addressing scheme awaytoidentifyall H in the internetwork Properties
Internet Protocol Version 6 (IPv6)
Internet Protocol Version 6 (IPv6) Raj Jain Washington University Saint Louis, MO 63131 [email protected] These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse473-05/ 14-1 Overview
Note! The problem set consists of two parts: Part I: The problem specifications pages Part II: The answer pages
Part I: The problem specifications NTNU The Norwegian University of Science and Technology Department of Telematics Note! The problem set consists of two parts: Part I: The problem specifications pages
Scaling the Network: Subnetting and Other Protocols. Networking CS 3470, Section 1
Scaling the Network: Subnetting and Other Protocols Networking CS 3470, Section 1 Today CIDR Subnetting Private IP addresses ICMP, IMAP, and DHCP Protocols 2 Packet Encapsulation ** Creative Commons: http://en.wikipedia.org/wiki/file:udp_encapsulation.svg
Introduction To Computer Networking
Introduction To Computer Networking Alex S. 1 Introduction 1.1 Serial Lines Serial lines are generally the most basic and most common communication medium you can have between computers and/or equipment.
Internet and IP addressing
Internet and IP addressing Richard T. B. Ma School of Computing National University of Singapore CS 3103: Compute Networks and Protocols Communication Network Taxonomy Telephony Network parses number dialed
Chapter 3: Review of Important Networking Concepts. Magda El Zarki Dept. of CS UC Irvine [email protected] http://www.ics.uci.
Chapter 3: Review of Important Networking Concepts Magda El Zarki Dept. of CS UC Irvine [email protected] http://www.ics.uci.edu/~magda 1 Networking Concepts Protocol Architecture Protocol Layers Encapsulation
Access Control: Firewalls (1)
Access Control: Firewalls (1) World is divided in good and bad guys ---> access control (security checks) at a single point of entry/exit: in medieval castles: drawbridge in corporate buildings: security/reception
Classful IP Addressing (cont.)
Classful IP Addressing (cont.) 1 Address Prefix aka Net ID defines the network Address Suffix aka Host ID defines the node In Classful addressing, prefix is of fixed length (1, 2, or 3 bytes)! Classful
The internetworking solution of the Internet. Single networks. The Internet approach to internetworking. Protocol stacks in the Internet
The internetworking solution of the Internet Prof. Malathi Veeraraghavan Elec. & Comp. Engg. Dept/CATT Polytechnic University [email protected] What is the internetworking problem: how to connect different types
Basic Networking Concepts. 1. Introduction 2. Protocols 3. Protocol Layers 4. Network Interconnection/Internet
Basic Networking Concepts 1. Introduction 2. Protocols 3. Protocol Layers 4. Network Interconnection/Internet 1 1. Introduction -A network can be defined as a group of computers and other devices connected
(Refer Slide Time: 02:17)
Internet Technology Prof. Indranil Sengupta Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture No #06 IP Subnetting and Addressing (Not audible: (00:46)) Now,
Introduction to IP networking
DD2395 p2 2011 Introduction to IP networking Olof Hagsand KTH CSC 1 Example: Packet transfer www.server.org An end host requests a web-page from a server via a local-area network The aim of this lecture
Internet Protocols. Background CHAPTER
CHAPTER 3 Internet Protocols Background The Internet protocols are the world s most popular open-system (nonproprietary) protocol suite because they can be used to communicate across any set of interconnected
Troubleshooting Tools
Troubleshooting Tools An overview of the main tools for verifying network operation from a host Fulvio Risso Mario Baldi Politecnico di Torino (Technical University of Turin) see page 2 Notes n The commands/programs
Internetworking and IP Address
Lecture 8 Internetworking and IP Address Motivation of Internetworking Internet Architecture and Router Internet TCP/IP Reference Model and Protocols IP Addresses - Binary and Dotted Decimal IP Address
Internet Protocol (IP) IP - Network Layer. IP Routing. Advantages of Connectionless. CSCE 515: Computer Network Programming ------ IP routing
Process Process Process Layer CSCE 515: Computer Network Programming ------ IP routing Wenyuan Xu ICMP, AP & AP TCP IP UDP Transport Layer Network Layer Department of Computer Science and Engineering University
Computer Networks CS321
Computer Networks CS321 Dr. Ramana I.I.T Jodhpur Dr. Ramana ( I.I.T Jodhpur ) Computer Networks CS321 1 / 22 Outline of the Lectures 1 Introduction OSI Reference Model Internet Protocol Performance Metrics
PART IV. Network Layer
PART IV Network Layer Position of network layer Network layer duties Internetworking : heterogeneous Physical Networks To look Like a single network to he upper layers The address at Network layer must
