Multipath TCP in Practice (Work in Progress) Mark Handley Damon Wischik Costin Raiciu Alan Ford
|
|
|
- Christiana Parks
- 10 years ago
- Views:
Transcription
1 Multipath TCP in Practice (Work in Progress) Mark Handley Damon Wischik Costin Raiciu Alan Ford
2 The difference between theory and practice is in theory somewhat smaller than in practice. In theory, this quote actually originated somewhere. In practice it is impossible for us to know...
3 Designing an effective Multipath TCP requires a balance between theory and pragmatics Three parts to practical MP-TCP: Desirable packet-level dynamics. Deployable protocol design. Effective heuristics for using the protocol.
4 Desirable packet-level congestion control dynamics.
5 Selfish: Safety: Network: Improve throughput for applications. Improve reliability for applications. Co-exist gracefully with existing single-path TCP flows. Pool resources where possible. Move traffic away from congestion. Predictable behaviour.
6 Implications Window-based protocol Get at least as much throughput as a single-path TCP on the best of the MP-TCP paths. Through a single bottleneck, subflows shouldn t get more than a single TCP flow. RTT dependency.
7 Starting point: a window-based version of a coupled congestion controller.
8 Coupling the subflows is fair, even if they all go through the same bottleneck. x 1 x 2 x 1 + x 2 = y y So coupled MP-TCP will be fair to normal TCP.
9 So, how well does it work in practice? How much more congested is the red link than the blue one?
10 Coupled subflows Uncoupled TCP flows (Epsilon controls the degree of coupling)
11 But what if the load is dynamic? 8 on/off TCP flows 1 multipath flow 3 long lived TCP flows Parameters set so mean loss rate is roughly the same on both paths
12 Coupled subflows Uncoupled TCP flows (Epsilon controls the degree of coupling)
13 Effect of dynamic load 8 on/off TCP flows 3 long lived TCP flows Coupling tries to equalize the loss With unequal loss, will move almost all traffic off the more congested path. On/off flows briefly congest the top path. Coupled algorithm rapidly moves almost all traffic off top path. On/off flows briefly underload the top path. Coupled algorithm is sending so little traffic on top path and increases so slowly it doesn t notice until after the transient underload has passed.
14 Self-interference Consider the ideal case where we have equal random loss on two identical paths. Might hope coupling would split traffic equally across both paths. Subflow window on path 2 Traffic flaps between one path and the other Subflow window on path 1
15 Loss rates are never precisely equal. The coupled congestion controller gets stuck on one path, then after a random time flaps to the other path. Regular TCP Flows Coupled Subflows
16 What to do? Apply some sort of damping? But will be even slower to respond to real changes in load. Compromise on resource pooling a little? Build in some sense of history? Better resource pooling when conditions are stable More responsive when conditions are varying
17 Compromise solution? =1 is an interesting case. Reasonable load balancing, good equipoise. Very simple algorithm.
18 =1 is an algorithm that just links the increases.
19 The linked increases algorithm does not flap. loss on path i: p i window on path i: w i Stable fixed point: w 1 p 1 = w 2 p 2 Does not attempt to completely equalize losses, so doesn t move all the traffic off a more congested path.
20 The linked increases algorithm has nice properties, but isn t sufficient by itself. It s not naturally fair to TCP when multiple subflows go through the same bottleneck. When RTTs on the subflows are dissimilar, it can get poor throughput. But the dynamics are pretty good, so these are just a question of scaling the aggressiveness.
21 Differing round trip times can influence throughput significantly. 1. For the same loss rate, linked increases will equalize the windows of the subflows. 2. For the same bandwidth, an equal number of flows will give a lower loss rate on a higher RTT path.
22 An example: Consider first the throughput when the loss rates and RTTs are equal. w 1 = 10 RTT 1 =10ms => 1000pkts/s Src p 1 = p 2 Dst w 2 = 10 RTT 2 =10ms => 1000pkts/s Total rate = 2000 pkts/s
23 The linked increases algorithm gets low throughput when the round trip times are different. But a regular TCP on on path 1 would get 2000pkts/s w 1 = 10 RTT 1 =10ms => 1000pkts/s Src Dst w 2 = 10 RTT 2 =100ms => 100pkts/s Total rate = 1100 pkts/s
24 We can correct for this, but first we need to decide what a desirable outcome would be. Goal 1: Improve Throughput Do at least as well as a single-path flow on the best path. Goal 2: Do no harm. Affect other flows no more than a single-path flow on their path. Goal 3: Balance congestion Move the maximum amount of traffic off the more congested path
25 We can make the linked increases algorithm fair by simply scaling the increase function. a is the aggressiveness. It doesn t change relative window sizes, so doesn t affect Goal 3: move traffic away from congestion. By tuning a, we can also achieve Goal 1: improve throughput and Goal 2: do no harm.
26 The value of a can be calculated from the window sizes and the RTTs of the subflows. w^ is the equilibrium window, but experiments show the instantaneous window can be used.
27 RTT compensation is effective; MPTCP implementation over WiFi and 3G
28 Load balancing of a multihomed server A minority of MP-TCP flows can balance the traffic of single-path TCP flows at a multihomed server. 5 and 15 TCP flows, add 10 MP-TCP flows 15 and 25 TCP flows, add 10 MP-TCP flows
29 Can we design a deployable MP-TCP protocol?
30 What does deployable MP-TCP actually mean? Protocol works at least as well as regular TCP. Always works when a regular TCP would work. Falls back to regular TCP when path or endpoint is not MP-TCP capable. Plays nicely with all the strange middleboxes that are out there. Simple and secure.
31 TCP Packet Header Bit 0 Bit 15 Bit 16 Bit 31 Source Port Destination Port Sequence Number Header Length Reserved Acknowledgment Number Code bits Receive Window 20 Bytes Checksum Urgent Pointer Options 0-40 Bytes Data
32 Negotiation Send MP-CAPABLE option on SYN packet. If receive MP-CAPABLE on SYN/ACK packet. else enable MPTCP and establish additional subflows as required. fallback to regular TCP behaviour.
33 Sequence Numbers Packets go multiple paths. Need sequence numbers to put them back in sequence. Need sequence numbers to infer loss on a single path. Options: One sequence space shared across all paths? One sequence space per path, plus an extra one to put data back in the correct order at the receiver?
34 Sequence Numbers One sequence number per path is preferable. Loss inference is more reliable. Some firewalls/proxies expect to see all the sequence numbers on a path. Outer TCP header holds subflow sequence numbers. Where do we put the data sequence numbers?
35 TCP Packet Header Bit 0 Bit 15 Bit 16 Bit 31 Subflow Source Port SubflowDestination Port Header Length Subflow Sequence Number Subflow Acknowledgment Number Reserved Checksum Code bits Data sequence number? Options Receive Window Urgent Pointer 20 Bytes 0-40 Bytes Data sequence number? Data
36 Data Sequence Number It s a little cleaner to put the data sequence number in an option. Assume this; actually quite a big debate though.
37 TCP Packet Header Bit 0 Bit 15 Bit 16 Bit 31 Subflow Source Port SubflowDestination Port Header Length Subflow Sequence Number Subflow Acknowledgment Number Reserved Checksum Code bits [Data sequence number] Options Receive Window Urgent Pointer 20 Bytes What does this this now now mean? 0-40 Bytes Data
38 Receive Window Regular TCP: receive window is the amount of buffer the receiver has available beyond the cumulative ack. Flow control: sender can t send data receiver doesn t have buffering for. Receive window must therefore refer to data sequence space, not subflow sequence space. Relative to which Ack? Really want a Data Acknowledgment field.
39 TCP Packet Header Bit 0 Bit 15 Bit 16 Bit 31 Subflow Source Port Header Length Subflow Sequence Number Subflow Acknowledgment Number Reserved Checksum Code bits [Data sequence number] Options Data SubflowDestination Port DataReceive Windowrelative to Urgent Pointer 20 Bytes 0-40 Bytes [Data acknowledgment number]
40 How big must the receive window be? Need to be able to lose a packet on largest delay subflow, resend, and have the other subflows not fill the receive buffer. If sender cannot fast-retransmit, must wait for a timeout:
41 Problems, problems, problems... TCP offload engines may re-segment TCP packets, replicating options on all segments. Firewalls may drop packets with options. Firewalls may remove options from packets. Proxies may ack data before it s received by receiver. Proxies may report their window, not the receiver s. Proxies/NATs may rewrite/extend/shrink payload and fix up sequence numbers accordingly. Normalizers may ensure retransmissions are consistent with the original data. Firewalls may rewrite sequence numbers in packets.
42 The Resegmentation Problem We cannot guarantee the segmentation of data into packets we send is what is actually received. Implicit mapping of subflow sequence numbers to data sequence numbers in an option is unreliable. Can t just supply a data sequence number; needs to be an explicit data sequence number mapping. But subflow sequence numbers get re-written (eg, by pf) Data seqno must be absolute, Subflow seqno must be relative to start of flow. Need a mapping length to cope with resegmentation where only the first packet gets the option added.
43 TCP Packet Header Bit 0 Bit 15 Bit 16 Bit 31 Subflow Source Port Header Length Subflow Sequence Number Subflow Acknowledgment Number Reserved Checksum Code bits Data SubflowDestination Port DataReceive Windowrelative to Urgent Pointer 20 Bytes [Subflow seqno, length -> Data seqno] [Data acknowledgment number] 0-40 Bytes
44 Smart NAT What happens if a NAT rewrites content, changing its length? Gap or overlap in data sequence number mapping. Disaster - cannot recover! DSN mapping must carry a checksum. Checksum fails, drop the subflow. Unless it s the only subflow: Initiate a new subflow between the same addresses Signal an infinite mapping, basically falling back to regular TCP with no further explicit mappings Drop the failed subflow.
45 TCP Packet Header Bit 0 Bit 15 Bit 16 Bit 31 Subflow Source Port Header Length Subflow Sequence Number Subflow Acknowledgment Number Reserved Checksum Code bits Data SubflowDestination Port DataReceive Windowrelative to Urgent Pointer 20 Bytes [Subflow seqno, length -> Data seqno, checksum] [Data acknowledgment number] 0-40 Bytes
46 More issues Lots: What do you do when you receive data for which there s no mapping? Silently drop; sender will retransmit? Ack at subflow, drop at data level? Wrong answer to this leads to potential deadlocks when proxies manipulate receive window. Etc, etc.
47 Heuristics and Open Issues When should we start an additional subflow? Which address pair to use? What should slowstart behaviour be? When should you resend data on a different subflow? When is performance on a subflow so bad we should give up on it. Or should we send redundant data on it, as a placeholder? How should costs (in $ ) factor in to which subflows are used? How does multipath performance trade off against battery life on smart phones and similar devices? Can we factor latency into path choice for delay-sensitive apps? Or is that a recipe for instability?
48 Conclusions Practical congestion control is never simple. Multipath multiply so. Design of deployable extensions to TCP in the presence of creative middleboxes is just painful. No way to verify design decisions short of widespread deployment. Resulting changes are no longer simple. We think we have a design that falls back gracefully to regular TCP behaviour. Will still confuse intrusion detection systems, etc, which no longer see the whole connection.
An Overview of Multipath TCP
An Overview of Multipath TCP Olivier Bonaventure, Mark Handley, and Costin Raiciu Olivier Bonaventure is a Professor at Catholic University of Louvain, Belgium. His research focus is primarily on Internet
Lecture 15: Congestion Control. CSE 123: Computer Networks Stefan Savage
Lecture 15: Congestion Control CSE 123: Computer Networks Stefan Savage Overview Yesterday: TCP & UDP overview Connection setup Flow control: resource exhaustion at end node Today: Congestion control Resource
Data Center Networking with Multipath TCP
Data Center Networking with Multipath TCP Costin Raiciu, Christopher Pluntke, Sebastien Barre, Adam Greenhalgh, Damon Wischik, Mark Handley Hotnets 2010 報 告 者 : 莊 延 安 Outline Introduction Analysis Conclusion
Multipath TCP design, and application to data centers. Damon Wischik, Mark Handley, Costin Raiciu, Christopher Pluntke
Multipath TCP design, and application to data centers Damon Wischik, Mark Handley, Costin Raiciu, Christopher Pluntke Packet switching pools circuits. Multipath pools links : it is Packet Switching 2.0.
How Hard Can It Be? Designing and Implementing a Deployable Multipath TCP
How Hard Can It Be? Designing and Implementing a Deployable Multipath TCP Costin Raiciu, Christoph Paasch, Sebastien Barre, Alan Ford, Michio Honda, Fabien Duchene, Olivier Bonaventure and Mark Handley
Boosting mobility performance with Multi-Path TCP
Boosting mobility performance with Multi-Path TCP Name SURNAME 1, Name SURNAME 2 1 Organisation, Address, City, Postcode, Country Tel: +countrycode localcode number, Fax: + countrycode localcode number,
Flow processing and the rise of the middle.
Flow processing and the rise of the middle. Mark Handley, UCL With acknowledgments to Michio Honda, Laurent Mathy, Costin Raiciu, Olivier Bonaventure, and Felipe Huici. Part 1 Today s Internet Protocol
Data Networks Summer 2007 Homework #3
Data Networks Summer Homework # Assigned June 8, Due June in class Name: Email: Student ID: Problem Total Points Problem ( points) Host A is transferring a file of size L to host B using a TCP connection.
This sequence diagram was generated with EventStudio System Designer (http://www.eventhelix.com/eventstudio).
Client App Network Server App 25-May-13 15:32 (Page 1) This sequence diagram was generated with EventStudio System Designer (http://www.eventhelix.com/eventstudio). TCP is an end to end protocol which
Multipath TCP in Data Centres (work in progress)
Multipath TCP in Data Centres (work in progress) Costin Raiciu Joint work with Christopher Pluntke, Adam Greenhalgh, Sebastien Barre, Mark Handley, Damon Wischik Data Centre Trends Cloud services are driving
TCP and Wireless Networks Classical Approaches Optimizations TCP for 2.5G/3G Systems. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme
Chapter 2 Technical Basics: Layer 1 Methods for Medium Access: Layer 2 Chapter 3 Wireless Networks: Bluetooth, WLAN, WirelessMAN, WirelessWAN Mobile Networks: GSM, GPRS, UMTS Chapter 4 Mobility on the
Mobile Communications Chapter 9: Mobile Transport Layer
Mobile Communications Chapter 9: Mobile Transport Layer Motivation TCP-mechanisms Classical approaches Indirect TCP Snooping TCP Mobile TCP PEPs in general Additional optimizations Fast retransmit/recovery
CS268 Exam Solutions. 1) End-to-End (20 pts)
CS268 Exam Solutions General comments: ) If you would like a re-grade, submit in email a complete explanation of why your solution should be re-graded. Quote parts of your solution if necessary. In person
TCP in Wireless Mobile Networks
TCP in Wireless Mobile Networks 1 Outline Introduction to transport layer Introduction to TCP (Internet) congestion control Congestion control in wireless networks 2 Transport Layer v.s. Network Layer
Transport Layer Protocols
Transport Layer Protocols Version. Transport layer performs two main tasks for the application layer by using the network layer. It provides end to end communication between two applications, and implements
Lecture Objectives. Lecture 07 Mobile Networks: TCP in Wireless Networks. Agenda. TCP Flow Control. Flow Control Can Limit Throughput (1)
Lecture Objectives Wireless and Mobile Systems Design Lecture 07 Mobile Networks: TCP in Wireless Networks Describe TCP s flow control mechanism Describe operation of TCP Reno and TCP Vegas, including
CSE 473 Introduction to Computer Networks. Exam 2 Solutions. Your name: 10/31/2013
CSE 473 Introduction to Computer Networks Jon Turner Exam Solutions Your name: 0/3/03. (0 points). Consider a circular DHT with 7 nodes numbered 0,,...,6, where the nodes cache key-values pairs for 60
Computer Networks. Chapter 5 Transport Protocols
Computer Networks Chapter 5 Transport Protocols Transport Protocol Provides end-to-end transport Hides the network details Transport protocol or service (TS) offers: Different types of services QoS Data
17: Queue Management. Queuing. Mark Handley
17: Queue Management Mark Handley Queuing The primary purpose of a queue in an IP router is to smooth out bursty arrivals, so that the network utilization can be high. But queues add delay and cause jitter.
COMP 3331/9331: Computer Networks and Applications. Lab Exercise 3: TCP and UDP (Solutions)
COMP 3331/9331: Computer Networks and Applications Lab Exercise 3: TCP and UDP (Solutions) AIM To investigate the behaviour of TCP and UDP in greater detail. EXPERIMENT 1: Understanding TCP Basics Tools
Outline. TCP connection setup/data transfer. 15-441 Computer Networking. TCP Reliability. Congestion sources and collapse. Congestion control basics
Outline 15-441 Computer Networking Lecture 8 TCP & Congestion Control TCP connection setup/data transfer TCP Reliability Congestion sources and collapse Congestion control basics Lecture 8: 09-23-2002
High Performance VPN Solutions Over Satellite Networks
High Performance VPN Solutions Over Satellite Networks Enhanced Packet Handling Both Accelerates And Encrypts High-Delay Satellite Circuits Characteristics of Satellite Networks? Satellite Networks have
The Case Against Jumbo Frames. Richard A Steenbergen <[email protected]> GTT Communications, Inc.
The Case Against Jumbo Frames Richard A Steenbergen GTT Communications, Inc. 1 What s This All About? What the heck is a Jumbo Frame? Technically, the IEEE 802.3 Ethernet standard defines
La couche transport dans l'internet (la suite TCP/IP)
La couche transport dans l'internet (la suite TCP/IP) C. Pham Université de Pau et des Pays de l Adour Département Informatique http://www.univ-pau.fr/~cpham [email protected] Cours de C. Pham,
Prefix AggregaNon. Company X and Company Y connect to the same ISP, and they are assigned the prefixes:
Data Transfer Consider transferring an enormous file of L bytes from Host A to B using a MSS of 1460 bytes and a 66 byte header. What is the maximum value of L such that TCP sequence numbers are not exhausted?
How To Test For Middlebox Behavior On A Network With A Network Box On A Cnet 2.2 (Net 2) Or A Cntc (Net2) (Net 1) (Ipo) (Port 2) (Cnet
Is it Still Possible to Extend TCP? Michio Honda, Yoshifumi Nishida, Costin Raiciu, Adam Greenhalgh, Mark Handley, Hideyuki Tokuda Keio University, Universitatea Politehnica Bucuresti, University College
High-Speed TCP Performance Characterization under Various Operating Systems
High-Speed TCP Performance Characterization under Various Operating Systems Y. Iwanaga, K. Kumazoe, D. Cavendish, M.Tsuru and Y. Oie Kyushu Institute of Technology 68-4, Kawazu, Iizuka-shi, Fukuoka, 82-852,
tcpcrypt Andrea Bittau, Dan Boneh, Mike Hamburg, Mark Handley, David Mazières, Quinn Slack Stanford, UCL
tcpcrypt Andrea Bittau, Dan Boneh, Mike Hamburg, Mark Handley, David Mazières, Quinn Slack! Stanford, UCL Reminder: project goal IPsec SSH TLS Unencrypted TCP traffic today Not drawn to scale Reminder:
Names & Addresses. Names & Addresses. Hop-by-Hop Packet Forwarding. Longest-Prefix-Match Forwarding. Longest-Prefix-Match Forwarding
Names & Addresses EE 122: IP Forwarding and Transport Protocols Scott Shenker http://inst.eecs.berkeley.edu/~ee122/ (Materials with thanks to Vern Paxson, Jennifer Rexford, and colleagues at UC Berkeley)
We will give some overview of firewalls. Figure 1 explains the position of a firewall. Figure 1: A Firewall
Chapter 10 Firewall Firewalls are devices used to protect a local network from network based security threats while at the same time affording access to the wide area network and the internet. Basically,
Improving DNS performance using Stateless TCP in FreeBSD 9
Improving DNS performance using Stateless TCP in FreeBSD 9 David Hayes, Mattia Rossi, Grenville Armitage Centre for Advanced Internet Architectures, Technical Report 101022A Swinburne University of Technology
Visualizations and Correlations in Troubleshooting
Visualizations and Correlations in Troubleshooting Kevin Burns Comcast [email protected] 1 Comcast Technology Groups Cable CMTS, Modem, Edge Services Backbone Transport, Routing Converged Regional
Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation
Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation R.Navaneethakrishnan Assistant Professor (SG) Bharathiyar College of Engineering and Technology, Karaikal, India.
Challenges of Sending Large Files Over Public Internet
Challenges of Sending Large Files Over Public Internet CLICK TO EDIT MASTER TITLE STYLE JONATHAN SOLOMON SENIOR SALES & SYSTEM ENGINEER, ASPERA, INC. CLICK TO EDIT MASTER SUBTITLE STYLE OUTLINE Ø Setting
The Fundamentals of Intrusion Prevention System Testing
The Fundamentals of Intrusion Prevention System Testing New network-based Intrusion Prevention Systems (IPS) complement traditional security products to provide enterprises with unparalleled protection
CSE331: Introduction to Networks and Security. Lecture 9 Fall 2006
CSE33: Introduction to Networks and Security Lecture 9 Fall 2006 Announcements Project Due TODAY HW Due on Friday Midterm I will be held next Friday, Oct. 6th. Will cover all course material up to next
Improving Effective WAN Throughput for Large Data Flows By Peter Sevcik and Rebecca Wetzel November 2008
Improving Effective WAN Throughput for Large Data Flows By Peter Sevcik and Rebecca Wetzel November 2008 When you buy a broadband Wide Area Network (WAN) you want to put the entire bandwidth capacity to
La couche transport dans l'internet (la suite TCP/IP)
La couche transport dans l'internet (la suite TCP/IP) C. Pham RESO-LIP/INRIA Université Lyon 1 http://www.ens-lyon.fr/~cpham Basé sur les transparent de Shivkumar Kalyanaraman La couche transport dans
15-441: Computer Networks Homework 2 Solution
5-44: omputer Networks Homework 2 Solution Assigned: September 25, 2002. Due: October 7, 2002 in class. In this homework you will test your understanding of the TP concepts taught in class including flow
Computer Networks COSC 6377
Computer Networks COSC 6377 Lecture 25 Fall 2011 November 30, 2011 1 Announcements Grades will be sent to each student for verificagon P2 deadline extended 2 Large- scale computagon Search Engine Tasks
CS514: Intermediate Course in Computer Systems
: Intermediate Course in Computer Systems Lecture 7: Sept. 19, 2003 Load Balancing Options Sources Lots of graphics and product description courtesy F5 website (www.f5.com) I believe F5 is market leader
A Survey on Congestion Control Mechanisms for Performance Improvement of TCP
A Survey on Congestion Control Mechanisms for Performance Improvement of TCP Shital N. Karande Department of Computer Science Engineering, VIT, Pune, Maharashtra, India Sanjesh S. Pawale Department of
M U L T I P A T H T C P, P W N I N G T O D A Y S N E T W O R K S W I T H
M U L T I P A T H T C P, P W N I N G T O D A Y S N E T W O R K S W I T H T O M O R R O W S P R O T O C O L S. Catherine Pearce [email protected], twitter: @secvalve A B S T R A C T : MultiPath
CSE 123: Computer Networks
CSE 123: Computer Networks Homework 4 Solutions Out: 12/03 Due: 12/10 1. Routers and QoS Packet # Size Flow 1 100 1 2 110 1 3 50 1 4 160 2 5 80 2 6 240 2 7 90 3 8 180 3 Suppose a router has three input
B-2 Analyzing TCP/IP Networks with Wireshark. Ray Tompkins Founder of Gearbit www.gearbit.com
B-2 Analyzing TCP/IP Networks with Wireshark June 15, 2010 Ray Tompkins Founder of Gearbit www.gearbit.com SHARKFEST 10 Stanford University June 14-17, 2010 TCP In this session we will examine the details
TFTP TRIVIAL FILE TRANSFER PROTOCOL OVERVIEW OF TFTP, A VERY SIMPLE FILE TRANSFER PROTOCOL FOR SIMPLE AND CONSTRAINED DEVICES
TFTP - Trivial File TFTP Transfer Protocol TRIVIAL FILE TRANSFER PROTOCOL OVERVIEW OF TFTP, A VERY SIMPLE FILE TRANSFER PROTOCOL FOR SIMPLE AND CONSTRAINED DEVICES Peter R. Egli INDIGOO.COM 1/10 Contents
Computer Networks - CS132/EECS148 - Spring 2013 ------------------------------------------------------------------------------
Computer Networks - CS132/EECS148 - Spring 2013 Instructor: Karim El Defrawy Assignment 3 - Solutions Deadline : May 9 th 9:30pm (hard and soft copies required) ------------------------------------------------------------------------------
TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) Internet Protocol (IP)
TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) *Slides adapted from a talk given by Nitin Vaidya. Wireless Computing and Network Systems Page
Congestion Control Review. 15-441 Computer Networking. Resource Management Approaches. Traffic and Resource Management. What is congestion control?
Congestion Control Review What is congestion control? 15-441 Computer Networking What is the principle of TCP? Lecture 22 Queue Management and QoS 2 Traffic and Resource Management Resource Management
Application Level Congestion Control Enhancements in High BDP Networks. Anupama Sundaresan
Application Level Congestion Control Enhancements in High BDP Networks Anupama Sundaresan Organization Introduction Motivation Implementation Experiments and Results Conclusions 2 Developing a Grid service
Question: 3 When using Application Intelligence, Server Time may be defined as.
1 Network General - 1T6-521 Application Performance Analysis and Troubleshooting Question: 1 One component in an application turn is. A. Server response time B. Network process time C. Application response
Master Course Computer Networks IN2097
Chair for Network Architectures and Services Prof. Carle Department of Computer Science TU München Master Course Computer Networks IN2097 Prof. Dr.-Ing. Georg Carle Christian Grothoff, Ph.D. Stephan Günther
STANDPOINT FOR QUALITY-OF-SERVICE MEASUREMENT
STANDPOINT FOR QUALITY-OF-SERVICE MEASUREMENT 1. TIMING ACCURACY The accurate multi-point measurements require accurate synchronization of clocks of the measurement devices. If for example time stamps
D1.2 Network Load Balancing
D1. Network Load Balancing Ronald van der Pol, Freek Dijkstra, Igor Idziejczak, and Mark Meijerink SARA Computing and Networking Services, Science Park 11, 9 XG Amsterdam, The Netherlands June [email protected],[email protected],
Key Components of WAN Optimization Controller Functionality
Key Components of WAN Optimization Controller Functionality Introduction and Goals One of the key challenges facing IT organizations relative to application and service delivery is ensuring that the applications
Using TrueSpeed VNF to Test TCP Throughput in a Call Center Environment
Using TrueSpeed VNF to Test TCP Throughput in a Call Center Environment TrueSpeed VNF provides network operators and enterprise users with repeatable, standards-based testing to resolve complaints about
Network Probe. Figure 1.1 Cacti Utilization Graph
Network Probe Description The MCNC Client Network Engineering group will install several open source network performance management tools on a computer provided by the LEA or charter school to build a
Access Control: Firewalls (1)
Access Control: Firewalls (1) World is divided in good and bad guys ---> access control (security checks) at a single point of entry/exit: in medieval castles: drawbridge in corporate buildings: security/reception
Recent advances in transport protocols
Recent advances in transport protocols April 12, 2013 Abstract Transport protocols play a critical role in today s Internet. This chapter first looks at the evolution of the Internet s Transport Layer
Компјутерски Мрежи NAT & ICMP
Компјутерски Мрежи NAT & ICMP Riste Stojanov, M.Sc., Aleksandra Bogojeska, M.Sc., Vladimir Zdraveski, B.Sc Internet AS Hierarchy Inter-AS border (exterior gateway) routers Intra-AS interior (gateway) routers
TCP for Wireless Networks
TCP for Wireless Networks Outline Motivation TCP mechanisms Indirect TCP Snooping TCP Mobile TCP Fast retransmit/recovery Transmission freezing Selective retransmission Transaction oriented TCP Adapted
MMPTCP: A Novel Transport Protocol for Data Centre Networks
MMPTCP: A Novel Transport Protocol for Data Centre Networks Morteza Kheirkhah FoSS, Department of Informatics, University of Sussex Modern Data Centre Networks FatTree It provides full bisection bandwidth
Chapter 5. Transport layer protocols
Chapter 5. Transport layer protocols This chapter provides an overview of the most important and common protocols of the TCP/IP transport layer. These include: User Datagram Protocol (UDP) Transmission
TCP Westwood for Wireless
TCP Westwood for Wireless מבוא רקע טכני בקרת עומס ב- TCP TCP על קשר אלחוטי שיפור תפוקה עם פרוטוקול TCP Westwood סיכום.1.2.3.4.5 Seminar in Computer Networks and Distributed Systems Hadassah College Spring
Cloud Networking Disruption with Software Defined Network Virtualization. Ali Khayam
Cloud Networking Disruption with Software Defined Network Virtualization Ali Khayam In the next one hour Let s discuss two disruptive new paradigms in the world of networking: Network Virtualization Software
TCP Performance Management for Dummies
TCP Performance Management for Dummies Nalini Elkins Inside Products, Inc. Monday, August 8, 2011 Session Number 9285 Our SHARE Sessions Orlando 9285: TCP/IP Performance Management for Dummies Monday,
Network Security: Workshop. Dr. Anat Bremler-Barr. Assignment #2 Analyze dump files Solution Taken from www.chrissanders.org
1.pcap - File download Network Security: Workshop Dr. Anat Bremler-Barr Assignment #2 Analyze dump files Solution Taken from www.chrissanders.org Downloading a file is a pretty basic function when described
Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, [email protected]
Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, [email protected] 1. Introduction Ad hoc wireless networks pose a big challenge for transport layer protocol and transport layer protocols
Frequently Asked Questions
Frequently Asked Questions 1. Q: What is the Network Data Tunnel? A: Network Data Tunnel (NDT) is a software-based solution that accelerates data transfer in point-to-point or point-to-multipoint network
Optimization of Communication Systems Lecture 6: Internet TCP Congestion Control
Optimization of Communication Systems Lecture 6: Internet TCP Congestion Control Professor M. Chiang Electrical Engineering Department, Princeton University ELE539A February 21, 2007 Lecture Outline TCP
First Midterm for ECE374 02/25/15 Solution!!
1 First Midterm for ECE374 02/25/15 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam
Voice-Over-IP. Daniel Zappala. CS 460 Computer Networking Brigham Young University
Voice-Over-IP Daniel Zappala CS 460 Computer Networking Brigham Young University Coping with Best-Effort Service 2/23 sample application send a 160 byte UDP packet every 20ms packet carries a voice sample
Final exam review, Fall 2005 FSU (CIS-5357) Network Security
Final exam review, Fall 2005 FSU (CIS-5357) Network Security Instructor: Breno de Medeiros 1. What is an insertion attack against a NIDS? Answer: An insertion attack against a network intrusion detection
Midterm Exam CMPSCI 453: Computer Networks Fall 2011 Prof. Jim Kurose
Midterm Exam CMPSCI 453: Computer Networks Fall 2011 Prof. Jim Kurose Instructions: There are 4 questions on this exam. Please use two exam blue books answer questions 1, 2 in one book, and the remaining
Applications. Network Application Performance Analysis. Laboratory. Objective. Overview
Laboratory 12 Applications Network Application Performance Analysis Objective The objective of this lab is to analyze the performance of an Internet application protocol and its relation to the underlying
VPN over Satellite A comparison of approaches by Richard McKinney and Russell Lambert
Sales & Engineering 3500 Virginia Beach Blvd Virginia Beach, VA 23452 800.853.0434 Ground Operations 1520 S. Arlington Road Akron, OH 44306 800.268.8653 VPN over Satellite A comparison of approaches by
First Midterm for ECE374 03/24/11 Solution!!
1 First Midterm for ECE374 03/24/11 Solution!! Note: In all written assignments, please show as much of your work as you can. Even if you get a wrong answer, you can get partial credit if you show your
Policy Based Forwarding
Policy Based Forwarding Tech Note PAN-OS 4.1 Revision A 2012, Palo Alto Networks, Inc. www.paloaltonetworks.com Contents Overview... 3 Security... 3 Performance... 3 Symmetric Routing... 3 Service Versus
Final for ECE374 05/06/13 Solution!!
1 Final for ECE374 05/06/13 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam taker -
TCP Flow Control. TCP Receiver Window. Sliding Window. Computer Networks. Lecture 30: Flow Control, Reliable Delivery
TCP Flow Control Computer Networks The receiver side of a TCP connection maintains a receiver buffer: Lecture : Flow Control, eliable elivery application process may be slow at reading from the buffer
AN OVERVIEW OF SILVER PEAK S WAN ACCELERATION TECHNOLOGY
AN OVERVIEW OF SILVER PEAK S WAN ACCELERATION TECHNOLOGY TABLE OF CONTENTS Understanding WAN Challenges 2 Network Memory - Maximize Bandwidth Efficiency 2 Network Integrity - Overcome Congestion and Packet
Measuring Cellular Networks: Characterizing 3G, 4G, and Path Diversity
Measuring Cellular Networks: Characterizing 3G, 4G, and Path Diversity Yung-Chih Chen University of Massachusetts Amherst, MA USA [email protected] Erich M. Nahum IBM T.J. Watson Research Center Hawthorne,
Computer Networks UDP and TCP
Computer Networks UDP and TCP Saad Mneimneh Computer Science Hunter College of CUNY New York I m a system programmer specializing in TCP/IP communication protocol on UNIX systems. How can I explain a thing
Requirements of Voice in an IP Internetwork
Requirements of Voice in an IP Internetwork Real-Time Voice in a Best-Effort IP Internetwork This topic lists problems associated with implementation of real-time voice traffic in a best-effort IP internetwork.
First Midterm for ECE374 03/09/12 Solution!!
1 First Midterm for ECE374 03/09/12 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam
TCP over Wireless Networks
TCP over Wireless Networks Raj Jain Professor of Computer Science and Engineering Washington University in Saint Louis Saint Louis, MO 63130 Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse574-10/
Why SSL is better than IPsec for Fully Transparent Mobile Network Access
Why SSL is better than IPsec for Fully Transparent Mobile Network Access SESSION ID: SP01-R03 Aidan Gogarty HOB Inc. [email protected] What are we all trying to achieve? Fully transparent network access
Improving datacenter performance and robustness with multipath TCP
Improving datacenter performance and robustness with multipath TCP Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam Greenhalgh, Damon Wischik, Mark Handley University College London, Universite
A Measurement-based Study of MultiPath TCP Performance over Wireless Networks
A Measurement-based Study of MultiPath TCP Performance over Wireless Networks Yung-Chih Chen School of Computer Science University of Massachusetts Amherst, MA USA [email protected] Erich M. Nahum
[Prof. Rupesh G Vaishnav] Page 1
Basics The function of transport layer is to provide a reliable end-to-end communications service. It also provides data transfer service for the user layers above and shield the upper layers from the
TCP/IP Optimization for Wide Area Storage Networks. Dr. Joseph L White Juniper Networks
TCP/IP Optimization for Wide Area Storage Networks Dr. Joseph L White Juniper Networks SNIA Legal Notice The material contained in this tutorial is copyrighted by the SNIA. Member companies and individuals
white paper AN OVERVIEW OF SILVER PEAK S VXOA TECHNOLOGY REAL-TIME TECHNIQUES FOR OVERCOMING COMMON WAN BANDWIDTH, DISTANCE AND CONGESTION CHALLENGES
AN OVERVIEW OF SILVER PEAK S VXOA TECHNOLOGY REAL-TIME TECHNIQUES FOR OVERCOMING COMMON WAN BANDWIDTH, DISTANCE AND CONGESTION CHALLENGES AN OVERVIEW OF SILVER PEAK S VXOA TECHNOLOGY REAL-TIME TECHNIQUES
The Problem with TCP. Overcoming TCP s Drawbacks
White Paper on managed file transfers How to Optimize File Transfers Increase file transfer speeds in poor performing networks FileCatalyst Page 1 of 6 Introduction With the proliferation of the Internet,
