Simulation-Based Comparisons of Solutions for TCP Packet Reordering in Wireless Network
|
|
|
- Alyson Mitchell
- 10 years ago
- Views:
Transcription
1 Simulation-Based Comparisons of Solutions for TCP Packet Reordering in Wireless Network 作 者 :Daiqin Yang, Ka-Cheong Leung, and Victor O. K. Li 出 處 :Wireless Communications and Networking Conference, 2007.WCNC IEEE 指 導 教 授 : 陳 朝 鈞 博 士 報 告 人 : 邱 志 銘 1
2 動 機 A receiver may not recognize the resultant signal and hence the transmitted data cannot be received. Some schemes, such as the LL protocol proposed in, perform a packet retransmission only after a loss is detected. The retransmitted packets may then be interspersed with other packets belonging to the same traffic flow, and no effort is made to maintain in-order packet delivery. 大 量 的 封 包 失 序 傳 送 會 導 致 傳 輸 效 率 (throughput) 和 網 路 性 能 下 降 Some algorithms, such as RR-TCP, TCP-DCR,TCP-DOOR, and TCP-PR, have been proposed for TCP packet reordering. The performance of these solutions has been studied extensively in wireline scenarios. But, there is a lack of similar studies in wireless networks. 2
3 Contribution First, we compare the performance, through computer simulations, of some solutions for TCP packet reordering in wireless networks. Second, we present an alternative method to improve the connection goodput in wireless networks through link-layer retransmissions and applying the solutions to TCP packet reordering. We performed a simulation study of four solutions for TCP packet reordering, namely, RR-TCP, TCP-DCR, TCPDOOR, and TCP-PR, under the scenarios of an infrastructure based wireless network and a multi-hop wireless network. We Compared them with two other TCP variants, namely, SACK TCP and TCPW. These solutions have performed the best in each of the four solution categories (state reconciliation, threshold adjustment, response postponement, and retransmission by timeout) as defined in. They merely require some changes in the TCP clients and do not need any modifications to any devices in the underlying communication networks. 3
4 Overview of TCP 1-1 Sequence Number TCP is a byte-stream protocol, with its flow control and acknowledgement based on byte number rather than packet number. When a destination receives a data segment, it acknowledges the receipt of the segment by issuing an ACK with the next expected data octet number. 分 段 1:10010~12009 * 傳 送 一 個 6000 個 位 元 組 的 檔 案 * 每 個 分 段 可 以 攜 帶 2000 個 位 元 組 * 資 料 會 分 成 三 段 來 傳 送 確 認 值 為 分 段 1:12010~ 第 1 分 段 : ~12009 第 2 分 段 : ~14009 第 3 分 段 : ~16009 發 送 端 確 認 值 為 接 收 端
5 Overview of TCP 1-2 Flow control Destination advertises to the associated source the size of a window (advertised window) which indicates the number of data bytes beyond the acknowledged data the source can send to the destination. This information is included in the header of each TCP (data or control) segment sent to the source. Suppose the source knows that, based on ACK(s) received, Byte x is the last data byte received by the destination. The source can send data up to Byte x+w, where W is the size of the advertised window. *The source sequence number space and advertised window 5
6 Overview of TCP 1-3 Congestion control To achieve good performance, it is necessary to control network congestion. Various congestion control measures have been implemented in TCP to limit the sending rate of data entering the Internet by regulating the size of the congestion window cwnd, the number of unacknowledged segments allowed to be sent. These measures include slow start, congestion avoidance, fast retransmit, and fast recovery. 為 了 處 理 分 段 的 遺 失 或 遭 丟 棄,TCP 使 用 重 送 計 時 器 來 設 定 重 新 再 送 的 時 間, 這 個 時 間 就 是 等 待 一 個 分 段 回 應 的 時 間 6
7 Overview of TCP 1-4 slow start When a timeout occurs, slow start threshold, ssthresh is set to half of the amount of outstanding data sent to the network. The slow start process is performed starting with cwnd equal to one until cwnd approaches ssthresh. fast retransmit If the communication channel is an in-order channel, the reception of a duplicate ACK implies the loss of a segment. When the source receives dupthresh duplicate ACKs (where dupthresh is generally set to three), fast retransmit is triggered such that the inferred loss segment is retransmitted before the expiration of the retransmission timer. 7
8 TCP Variants 1-1 Solutions to Packet Reordering RR-TCP TCP-DCR TCP-DOOR TCP-RR SACK TCP TCPW 8
9 TCP Variants 1-2 RR-TCP: ( 調 整 臨 界 值 ) The reordering-robust TCP (RR-TCP) is a sender-side threshold adjustment solution, which adjusts the duplicate acknowledgement threshold dupthresh dynamically to proactively avoid, whenever possible, triggering a spurious fast retransmission and fast recovery and to avoid triggering a retransmission timeout. TCP-DCR: ( 延 遲 壅 塞 回 應 ) The delayed congestion response TCP (TCP-DCR) is a sender-side response postponement approach, which defers a congestion response for a time period, to prevent unnecessary reduction of the congestion window size due to noncongestion events. TCP-DCR advances the time-delayed fast retransmit algorithm [19] by delaying a congestion response for a time interval after the first duplicate ACK is received. 9
10 TCP Variants 1-3 TCP-DOOR: ( 狀 態 調 和 ) TCP with detection of out-of-order and response (TCP-DOOR) is a state reconciliation method, which recovers past congestion responses and/or disables future congestion responses for a time period, to eliminate the retransmission ambiguity and solve the performance problems caused by spurious retransmissions. TCP-PR: ( 超 時 重 送 ) TCP for persistent packet reordering (TCPPR) is a sender-side retransmission by timeout algorithm, in which a TCP client generates an appropriate congestion response only when a retransmission timer expires, to tweak the RTO timer to enhance TCP performance under persistent packet reordering. 10
11 TCP Variants 1-4 SACK TCP: TCP with selective acknowledgement (SACK TCP) applies the selective acknowledgement (SACK) option to report the reception of data segments with sequence numbers higher than the next expected data octet number. A source can then utilize this information to keep track of a list of data segments inferred to be missing at the corresponding destination. TCPW: TCP Westwood (TCPW) is a sender-side solution to alleviate the performance degradation due to non-congestive losses in wired/wireless networks. TCPW adjusts the size of the congestion window upon an inferred segment loss by monitoring the rate of the acknowledged data. 11
12 Performance evaluation 1-1 Simulation setup 1-1 Infrastructure-based wireless network TCP connection between the two end-system(s and D) is routed via a Wireless base station(bs). The wired link between S and BS has a bandwidth of 100 Mbps and a delay of 5 ms. The wireless link between BS and D has a bandwidth of 1 Mbps and a delay of 50 ms. 12
13 Performance evaluation 1-2 Simulation setup 1-2 To simulate the unreliable wireless transmissions between BS and the mobile terminal D, we use a packet error model with a configurable packet error rate. Frames or packets experience independent random errors and hence are dropped according to a given packet error rate during link-layer transmissions. Compared with data segments, ACKs are generally smaller in size and more resistant to non-congestive transmission errors. Therefore, we assume that no ACKs are dropped due to non-congestive loss. When a packet is lost due to some transmission errors, it will be retransmitted after the retransmission period τ, provided that the total number of retransmissions for that packet does not exceed a configurable retransmission limit. To mimic a link-layer retransmission of the wireless link, the relationship among the retransmission period τ, segment size S, link bandwidth C, and link delay δ is governed by: 13
14 Performance evaluation 1-3 Simulation setup 1-3 Multi-hop wireless network Six-hop TCP connection between the two end-systems (S and D) is routed via five routers, namely, R1, R2,..., and R5, over wireless links. Each wireless link has a bandwidth of 1 Mbps and a delay of 50 ms. The same packet error model as that of the infrastructure-based wireless network is adopted. The retransmission limit of a packet sent on a wireless link is set to three. 14
15 Performance evaluation 1-4 Simulation setup 1-4 The simulation study has been performed using the Network Simulator (ns) Version A single, long-lived TCP flow from S to D is simulated for 1100 seconds. The segment size is 1500 bytes. The buffer size in each router is 50 segments. The maximum value of cwnd is 500. We take the connection goodput, which represents the rate of data delivered to the destination successfully, as the performance metric of the algorithms in our study. 15
16 Performance evaluation 1-5 Simulation results
17 Performance evaluation 1-6 Simulation results
18 Performance evaluation 1-7 Simulation results
19 Performance evaluation 1-8 Simulation results
20 Conclusions TCP-PR outperforms all of the other five algorithms, enjoying a greater connection goodput and fewer false fast retransmissions. These observations demonstrate that TCP performance can be significantly improved by employing an efficient link-layer retransmission mechanisms and a solutionfor TCP packet reordering in wireless networks. 20
A packet-reordering solution to wireless losses in transmission control protocol
Wireless Netw () 9:577 59 DOI.7/s76--55-6 A packet-reordering solution to wireless losses in transmission control protocol Ka-Cheong Leung Chengdi Lai Victor O. K. Li Daiqin Yang Published online: 6 February
Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation
Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation R.Navaneethakrishnan Assistant Professor (SG) Bharathiyar College of Engineering and Technology, Karaikal, India.
TCP in Wireless Mobile Networks
TCP in Wireless Mobile Networks 1 Outline Introduction to transport layer Introduction to TCP (Internet) congestion control Congestion control in wireless networks 2 Transport Layer v.s. Network Layer
A Survey: High Speed TCP Variants in Wireless Networks
ISSN: 2321-7782 (Online) Volume 1, Issue 7, December 2013 International Journal of Advance Research in Computer Science and Management Studies Research Paper Available online at: www.ijarcsms.com A Survey:
TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) Internet Protocol (IP)
TCP over Multi-hop Wireless Networks * Overview of Transmission Control Protocol / Internet Protocol (TCP/IP) *Slides adapted from a talk given by Nitin Vaidya. Wireless Computing and Network Systems Page
A Survey on Congestion Control Mechanisms for Performance Improvement of TCP
A Survey on Congestion Control Mechanisms for Performance Improvement of TCP Shital N. Karande Department of Computer Science Engineering, VIT, Pune, Maharashtra, India Sanjesh S. Pawale Department of
Lecture Objectives. Lecture 07 Mobile Networks: TCP in Wireless Networks. Agenda. TCP Flow Control. Flow Control Can Limit Throughput (1)
Lecture Objectives Wireless and Mobile Systems Design Lecture 07 Mobile Networks: TCP in Wireless Networks Describe TCP s flow control mechanism Describe operation of TCP Reno and TCP Vegas, including
An Improved TCP Congestion Control Algorithm for Wireless Networks
An Improved TCP Congestion Control Algorithm for Wireless Networks Ahmed Khurshid Department of Computer Science University of Illinois at Urbana-Champaign Illinois, USA [email protected] Md. Humayun
TCP PACKET CONTROL FOR WIRELESS NETWORKS
TCP PACKET CONTROL FOR WIRELESS NETWORKS by Wan Gang Zeng B. Sc. in Computer Science, University of Ottawa, 2000 THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE
Lecture 15: Congestion Control. CSE 123: Computer Networks Stefan Savage
Lecture 15: Congestion Control CSE 123: Computer Networks Stefan Savage Overview Yesterday: TCP & UDP overview Connection setup Flow control: resource exhaustion at end node Today: Congestion control Resource
Student, Haryana Engineering College, Haryana, India 2 H.O.D (CSE), Haryana Engineering College, Haryana, India
Volume 5, Issue 6, June 2015 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com A New Protocol
SJBIT, Bangalore, KARNATAKA
A Comparison of the TCP Variants Performance over different Routing Protocols on Mobile Ad Hoc Networks S. R. Biradar 1, Subir Kumar Sarkar 2, Puttamadappa C 3 1 Sikkim Manipal Institute of Technology,
TCP over Wireless Networks
TCP over Wireless Networks Raj Jain Professor of Computer Science and Engineering Washington University in Saint Louis Saint Louis, MO 63130 Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse574-10/
Outline. TCP connection setup/data transfer. 15-441 Computer Networking. TCP Reliability. Congestion sources and collapse. Congestion control basics
Outline 15-441 Computer Networking Lecture 8 TCP & Congestion Control TCP connection setup/data transfer TCP Reliability Congestion sources and collapse Congestion control basics Lecture 8: 09-23-2002
Application Level Congestion Control Enhancements in High BDP Networks. Anupama Sundaresan
Application Level Congestion Control Enhancements in High BDP Networks Anupama Sundaresan Organization Introduction Motivation Implementation Experiments and Results Conclusions 2 Developing a Grid service
Data Networks Summer 2007 Homework #3
Data Networks Summer Homework # Assigned June 8, Due June in class Name: Email: Student ID: Problem Total Points Problem ( points) Host A is transferring a file of size L to host B using a TCP connection.
International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015 1169 ISSN 2229-5518
International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July-2015 1169 Comparison of TCP I-Vegas with TCP Vegas in Wired-cum-Wireless Network Nitin Jain & Dr. Neelam Srivastava Abstract
Transport Layer Protocols
Transport Layer Protocols Version. Transport layer performs two main tasks for the application layer by using the network layer. It provides end to end communication between two applications, and implements
Effect of Packet-Size over Network Performance
International Journal of Electronics and Computer Science Engineering 762 Available Online at www.ijecse.org ISSN: 2277-1956 Effect of Packet-Size over Network Performance Abhi U. Shah 1, Daivik H. Bhatt
AN IMPROVED SNOOP FOR TCP RENO AND TCP SACK IN WIRED-CUM- WIRELESS NETWORKS
AN IMPROVED SNOOP FOR TCP RENO AND TCP SACK IN WIRED-CUM- WIRELESS NETWORKS Srikanth Tiyyagura Department of Computer Science and Engineering JNTUA College of Engg., pulivendula, Andhra Pradesh, India.
TCP for Wireless Networks
TCP for Wireless Networks Outline Motivation TCP mechanisms Indirect TCP Snooping TCP Mobile TCP Fast retransmit/recovery Transmission freezing Selective retransmission Transaction oriented TCP Adapted
Research of TCP ssthresh Dynamical Adjustment Algorithm Based on Available Bandwidth in Mixed Networks
Research of TCP ssthresh Dynamical Adjustment Algorithm Based on Available Bandwidth in Mixed Networks 1 Wang Zhanjie, 2 Zhang Yunyang 1, First Author Department of Computer Science,Dalian University of
Computer Networks. Chapter 5 Transport Protocols
Computer Networks Chapter 5 Transport Protocols Transport Protocol Provides end-to-end transport Hides the network details Transport protocol or service (TS) offers: Different types of services QoS Data
SELECTIVE-TCP FOR WIRED/WIRELESS NETWORKS
SELECTIVE-TCP FOR WIRED/WIRELESS NETWORKS by Rajashree Paul Bachelor of Technology, University of Kalyani, 2002 PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF
TCP Westwood for Wireless
TCP Westwood for Wireless מבוא רקע טכני בקרת עומס ב- TCP TCP על קשר אלחוטי שיפור תפוקה עם פרוטוקול TCP Westwood סיכום.1.2.3.4.5 Seminar in Computer Networks and Distributed Systems Hadassah College Spring
TCP in Wireless Networks
Outline Lecture 10 TCP Performance and QoS in Wireless s TCP Performance in wireless networks TCP performance in asymmetric networks WAP Kurose-Ross: Chapter 3, 6.8 On-line: TCP over Wireless Systems Problems
An enhanced TCP mechanism Fast-TCP in IP networks with wireless links
Wireless Networks 6 (2000) 375 379 375 An enhanced TCP mechanism Fast-TCP in IP networks with wireless links Jian Ma a, Jussi Ruutu b and Jing Wu c a Nokia China R&D Center, No. 10, He Ping Li Dong Jie,
A Qos SCHEME TO ADDRESS COMMUNICATION LATENCY ISSUES FOR CRITICAL NETWORK FLOWS IN BEST-EFFORT NETWORKS USING MOBILE AGENTS
A Qos SCHEME TO ADDRESS COMMUNICATION LATENCY ISSUES FOR CRITICAL NETWORK FLOWS IN BEST-EFFORT NETWORKS USING MOBILE AGENTS Visvasuresh Victor * Gergely Zaruba G. Balasekaran Govindaswamy University of
Mobile Communications Chapter 9: Mobile Transport Layer
Mobile Communications Chapter 9: Mobile Transport Layer Motivation TCP-mechanisms Classical approaches Indirect TCP Snooping TCP Mobile TCP PEPs in general Additional optimizations Fast retransmit/recovery
Congestions and Control Mechanisms n Wired and Wireless Networks
International OPEN ACCESS Journal ISSN: 2249-6645 Of Modern Engineering Research (IJMER) Congestions and Control Mechanisms n Wired and Wireless Networks MD Gulzar 1, B Mahender 2, Mr.B.Buchibabu 3 1 (Asst
A Passive Method for Estimating End-to-End TCP Packet Loss
A Passive Method for Estimating End-to-End TCP Packet Loss Peter Benko and Andras Veres Traffic Analysis and Network Performance Laboratory, Ericsson Research, Budapest, Hungary {Peter.Benko, Andras.Veres}@eth.ericsson.se
An enhanced approach for transmission control protocol traffic management Mechanism for Wireless Network
An enhanced approach for transmission control protocol traffic management Mechanism for Wireless Network Nitesh Mishra 1, Prof. Shaileena John 2 Department of Electronics & Communication 1, 2 [email protected]
Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, [email protected]
Transport layer issues in ad hoc wireless networks Dmitrij Lagutin, [email protected] 1. Introduction Ad hoc wireless networks pose a big challenge for transport layer protocol and transport layer protocols
A Study on TCP Performance over Mobile Ad Hoc Networks
215 A Study on TCP Performance over Mobile Ad Hoc Networks Shweta Sharma 1, Anshika Garg 2 1 School of Computing Science and Engineering, Galgotias University, Greater Noida 2 School of Computing Science
TCP and UDP Performance for Internet over Optical Packet-Switched Networks
TCP and UDP Performance for Internet over Optical Packet-Switched Networks Jingyi He S-H Gary Chan Department of Electrical and Electronic Engineering Department of Computer Science Hong Kong University
High Speed Internet Access Using Satellite-Based DVB Networks
High Speed Internet Access Using Satellite-Based DVB Networks Nihal K. G. Samaraweera and Godred Fairhurst Electronics Research Group, Department of Engineering University of Aberdeen, Aberdeen, AB24 3UE,
Mobile Computing/ Mobile Networks
Mobile Computing/ Mobile Networks TCP in Mobile Networks Prof. Chansu Yu Contents Physical layer issues Communication frequency Signal propagation Modulation and Demodulation Channel access issues Multiple
First Midterm for ECE374 03/24/11 Solution!!
1 First Midterm for ECE374 03/24/11 Solution!! Note: In all written assignments, please show as much of your work as you can. Even if you get a wrong answer, you can get partial credit if you show your
This sequence diagram was generated with EventStudio System Designer (http://www.eventhelix.com/eventstudio).
Client App Network Server App 25-May-13 15:32 (Page 1) This sequence diagram was generated with EventStudio System Designer (http://www.eventhelix.com/eventstudio). TCP is an end to end protocol which
THE Transmission Control Protocol (TCP) has proved
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 3, NO. 2, APRIL-JUNE 2004 1 Bandwidth Estimation Schemes for TCP over Wireless Networks Antonio Capone, Member, IEEE, Luigi Fratta, Fellow, IEEE, and Fabio Martignon,
CSE 473 Introduction to Computer Networks. Exam 2 Solutions. Your name: 10/31/2013
CSE 473 Introduction to Computer Networks Jon Turner Exam Solutions Your name: 0/3/03. (0 points). Consider a circular DHT with 7 nodes numbered 0,,...,6, where the nodes cache key-values pairs for 60
Names & Addresses. Names & Addresses. Hop-by-Hop Packet Forwarding. Longest-Prefix-Match Forwarding. Longest-Prefix-Match Forwarding
Names & Addresses EE 122: IP Forwarding and Transport Protocols Scott Shenker http://inst.eecs.berkeley.edu/~ee122/ (Materials with thanks to Vern Paxson, Jennifer Rexford, and colleagues at UC Berkeley)
TCP Fast Recovery Strategies: Analysis and Improvements
To appear in INFOCOM 98 TCP Fast Recovery Strategies: Analysis and Improvements Dong Lin and H.T. Kung Division of Engineering and Applied Sciences Harvard University Cambridge, MA 02138 USA Abstract This
TCP and Wireless Networks Classical Approaches Optimizations TCP for 2.5G/3G Systems. Lehrstuhl für Informatik 4 Kommunikation und verteilte Systeme
Chapter 2 Technical Basics: Layer 1 Methods for Medium Access: Layer 2 Chapter 3 Wireless Networks: Bluetooth, WLAN, WirelessMAN, WirelessWAN Mobile Networks: GSM, GPRS, UMTS Chapter 4 Mobility on the
EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science
EINDHOVEN UNIVERSITY OF TECHNOLOGY Department of Mathematics and Computer Science Examination Computer Networks (2IC15) on Monday, June 22 nd 2009, 9.00h-12.00h. First read the entire examination. There
TCP/IP Over Lossy Links - TCP SACK without Congestion Control
Wireless Random Packet Networking, Part II: TCP/IP Over Lossy Links - TCP SACK without Congestion Control Roland Kempter The University of Alberta, June 17 th, 2004 Department of Electrical And Computer
CSE331: Introduction to Networks and Security. Lecture 9 Fall 2006
CSE33: Introduction to Networks and Security Lecture 9 Fall 2006 Announcements Project Due TODAY HW Due on Friday Midterm I will be held next Friday, Oct. 6th. Will cover all course material up to next
TCP based Denial-of-Service Attacks to Edge Network: Analysis and Detection
TCP based Denial-of-Service Attacks to Edge Network: Analysis and Detection V. Anil Kumar 1 and Dorgham Sisalem 2 1 CSIR Centre for Mathematical Modelling and Computer Simulation, Bangalore, India 2 Fraunhofer
CS268 Exam Solutions. 1) End-to-End (20 pts)
CS268 Exam Solutions General comments: ) If you would like a re-grade, submit in email a complete explanation of why your solution should be re-graded. Quote parts of your solution if necessary. In person
2 TCP-like Design. Answer
Homework 3 1 DNS Suppose you have a Host C, a local name server L, and authoritative name servers A root, A com, and A google.com, where the naming convention A x means that the name server knows about
APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM
152 APPENDIX 1 USER LEVEL IMPLEMENTATION OF PPATPAN IN LINUX SYSTEM A1.1 INTRODUCTION PPATPAN is implemented in a test bed with five Linux system arranged in a multihop topology. The system is implemented
A Network-Controlled Architecture for SCTP Hard Handover
A Network-Controlled Architecture for SCTP Hard Handover Khadija Daoud, Karine Guillouard, Philippe Herbelin Orange Labs, Issy Les Moulineaux, France {first name.last name}@orange-ftgroup.com Abstract
TCP/IP Optimization for Wide Area Storage Networks. Dr. Joseph L White Juniper Networks
TCP/IP Optimization for Wide Area Storage Networks Dr. Joseph L White Juniper Networks SNIA Legal Notice The material contained in this tutorial is copyrighted by the SNIA. Member companies and individuals
Low-rate TCP-targeted Denial of Service Attack Defense
Low-rate TCP-targeted Denial of Service Attack Defense Johnny Tsao Petros Efstathopoulos University of California, Los Angeles, Computer Science Department Los Angeles, CA E-mail: {johnny5t, pefstath}@cs.ucla.edu
High-Speed TCP Performance Characterization under Various Operating Systems
High-Speed TCP Performance Characterization under Various Operating Systems Y. Iwanaga, K. Kumazoe, D. Cavendish, M.Tsuru and Y. Oie Kyushu Institute of Technology 68-4, Kawazu, Iizuka-shi, Fukuoka, 82-852,
B-2 Analyzing TCP/IP Networks with Wireshark. Ray Tompkins Founder of Gearbit www.gearbit.com
B-2 Analyzing TCP/IP Networks with Wireshark June 15, 2010 Ray Tompkins Founder of Gearbit www.gearbit.com SHARKFEST 10 Stanford University June 14-17, 2010 TCP In this session we will examine the details
Chapter 5. Transport layer protocols
Chapter 5. Transport layer protocols This chapter provides an overview of the most important and common protocols of the TCP/IP transport layer. These include: User Datagram Protocol (UDP) Transmission
STUDY OF TCP VARIANTS OVER WIRELESS NETWORK
STUDY OF VARIANTS OVER WIRELESS NETWORK 1 DEVENDRA SINGH KUSHWAHA, 2 VIKASH K SINGH, 3 SHAIBYA SINGH, 4 SONAL SHARMA 1,2,3,4 Assistant Professor, Dept. of Computer Science, Indira Gandhi National Tribal
Secure SCTP against DoS Attacks in Wireless Internet
Secure SCTP against DoS Attacks in Wireless Internet Inwhee Joe College of Information and Communications Hanyang University Seoul, Korea [email protected] Abstract. The Stream Control Transport Protocol
Stop And Wait. ACK received; transmit frame 2 CS 455 3
Data Link Layer, Part 5 Sliding Window Protocols These slides are created by Dr. Yih Huang of George Mason University. Students registered in Dr. Huang's courses at GMU can make a single machine-readable
PART III. OPS-based wide area networks
PART III OPS-based wide area networks Chapter 7 Introduction to the OPS-based wide area network 7.1 State-of-the-art In this thesis, we consider the general switch architecture with full connectivity
TRANSPORT LAYER AND SECURITY PROTOCOLS FOR AD HOC WIRELESS NETWORKS
Chapter 9 TRANSPORT LAYER AND SECURITY PROTOCOLS FOR AD HOC WIRELESS NETWORKS 9.1 INTRODUCTION The objectives of a transport layer protocol include the setting up of an end-to-end connection, end-to-end
TCP Flow Control. TCP Receiver Window. Sliding Window. Computer Networks. Lecture 30: Flow Control, Reliable Delivery
TCP Flow Control Computer Networks The receiver side of a TCP connection maintains a receiver buffer: Lecture : Flow Control, eliable elivery application process may be slow at reading from the buffer
The Problem with TCP. Overcoming TCP s Drawbacks
White Paper on managed file transfers How to Optimize File Transfers Increase file transfer speeds in poor performing networks FileCatalyst Page 1 of 6 Introduction With the proliferation of the Internet,
Active Queue Management (AQM) based Internet Congestion Control
Active Queue Management (AQM) based Internet Congestion Control October 1 2002 Seungwan Ryu ([email protected]) PhD Student of IE Department University at Buffalo Contents Internet Congestion Control
Linux TCP Implementation Issues in High-Speed Networks
Linux TCP Implementation Issues in High-Speed Networks D.J.Leith Hamilton Institute, Ireland www.hamilton.ie 1. Implementation Issues 1.1. SACK algorithm inefficient Packets in flight and not yet acknowledged
Sample Network Analysis Report
Sample Network Analysis Report Report Information Report created on 1/9/2014 9:35:19 PM. Analyst Information Name Sample Analysis Report E-mail Address [email protected] Phone Number 408-378-7841 Client
CHAPTER 8 CONCLUSION AND FUTURE ENHANCEMENTS
137 CHAPTER 8 CONCLUSION AND FUTURE ENHANCEMENTS 8.1 CONCLUSION In this thesis, efficient schemes have been designed and analyzed to control congestion and distribute the load in the routing process of
A Seamless Handover Mechanism for IEEE 802.16e Broadband Wireless Access
A Seamless Handover Mechanism for IEEE 802.16e Broadband Wireless Access Kyung-ah Kim 1, Chong-Kwon Kim 2, and Tongsok Kim 1 1 Marketing & Technology Lab., KT, Seoul, Republic of Korea, {kka1,tongsok}@kt.co.kr
A study of Skype over IEEE 802.16 networks: voice quality and bandwidth usage
Iowa State University Digital Repository @ Iowa State University Graduate Theses and Dissertations Graduate College 2011 A study of Skype over IEEE 802.16 networks: voice quality and bandwidth usage Kuan-yu
ALTHOUGH it is one of the first protocols
TCP Performance - CUBIC, Vegas & Reno Ing. Luis Marrone [email protected] Lic. Andrés Barbieri [email protected] Mg. Matías Robles [email protected] LINTI - Facultad de Informática
Servicesin ns-3. Outline SIMULACIÓN DE PROTOCOLOS DE ENRUTAMIENTO PARA REDES MÓVILES AD-HOC MEDIANTE HERRRAMIENTA DE SIMULACIÓN NS-3
SIMULACIÓN DE PROTOCOLOS DE ENRUTAMIENTO PARA REDES MÓVILES AD-HOC MEDIANTE HERRRAMIENTA DE SIMULACIÓN NS-3 Servicesin Outline 1. Services in Sockets UDP TCP Bulk Application FTP On off Application 2.
Computer Networks - CS132/EECS148 - Spring 2013 ------------------------------------------------------------------------------
Computer Networks - CS132/EECS148 - Spring 2013 Instructor: Karim El Defrawy Assignment 3 - Solutions Deadline : May 9 th 9:30pm (hard and soft copies required) ------------------------------------------------------------------------------
Behavior Analysis of TCP Traffic in Mobile Ad Hoc Network using Reactive Routing Protocols
Behavior Analysis of TCP Traffic in Mobile Ad Hoc Network using Reactive Routing Protocols Purvi N. Ramanuj Department of Computer Engineering L.D. College of Engineering Ahmedabad Hiteishi M. Diwanji
A Comparison of TCP Performance over Three Routing Protocols for Mobile Ad Hoc Networks
A Comparison of TCP Performance over Three Routing Protocols for Mobile Ad Hoc Networks Thomas D. Dyer Computer Science Division The Univ. of Texas at San Antonio San Antonio, TX 8249 [email protected]
ECSE-6600: Internet Protocols Exam 2
ECSE-6600: Internet Protocols Exam 2 Time: 75 min (strictly enforced) Points: 50 YOUR NAME: Be brief, but DO NOT omit necessary detail {Note: Simply copying text directly from the slides or notes will
Network Friendliness of Mobility Management Protocols
Network Friendliness of Mobility Management Protocols Md Sazzadur Rahman, Mohammed Atiquzzaman Telecommunications and Networks Research Lab School of Computer Science, University of Oklahoma, Norman, OK
Quality of Service using Traffic Engineering over MPLS: An Analysis. Praveen Bhaniramka, Wei Sun, Raj Jain
Praveen Bhaniramka, Wei Sun, Raj Jain Department of Computer and Information Science The Ohio State University 201 Neil Ave, DL39 Columbus, OH 43210 USA Telephone Number: +1 614-292-3989 FAX number: +1
15-441: Computer Networks Homework 2 Solution
5-44: omputer Networks Homework 2 Solution Assigned: September 25, 2002. Due: October 7, 2002 in class. In this homework you will test your understanding of the TP concepts taught in class including flow
EFFECT OF TRANSFER FILE SIZE ON TCP-ADaLR PERFORMANCE: A SIMULATION STUDY
EFFECT OF TRANSFER FILE SIZE ON PERFORMANCE: A SIMULATION STUDY Modupe Omueti and Ljiljana Trajković Simon Fraser University Vancouver British Columbia Canada {momueti, ljilja}@cs.sfu.ca ABSTRACT Large
A Survey on Improving TCP Performance over Wireless Networks
A Survey on Improving TCP Performance over Wireless Networks Xiang Chen, Hongqiang Zhai, Jianfeng Wang and Yuguang Fang Dept. of Electrical and Computer Engineering University of Florida, Gainesville,
Performance Issues of TCP and MPEG-4 4 over UMTS
Performance Issues of TCP and MPEG-4 4 over UMTS Anthony Lo [email protected] 1 Wiskunde end Informatica Outline UMTS Overview TCP and MPEG-4 Performance Summary 2 1 Universal Mobile Telecommunications
Robust Router Congestion Control Using Acceptance and Departure Rate Measures
Robust Router Congestion Control Using Acceptance and Departure Rate Measures Ganesh Gopalakrishnan a, Sneha Kasera b, Catherine Loader c, and Xin Wang b a {[email protected]}, Microsoft Corporation,
TCP Over Wireless Network. Jinhua Zhu Jie Xu
TCP Over Wireless Network Jinhua Zhu Jie Xu Overview 1. TCP congestion control scheme 2. ECN scheme 3. Problems with TCP over wireless network 4. ATCP:TCP for mobile ad hoc networks 5. ptcp: a transport
COMP 361 Computer Communications Networks. Fall Semester 2003. Midterm Examination
COMP 361 Computer Communications Networks Fall Semester 2003 Midterm Examination Date: October 23, 2003, Time 18:30pm --19:50pm Name: Student ID: Email: Instructions: 1. This is a closed book exam 2. This
The Effect of Packet Reordering in a Backbone Link on Application Throughput Michael Laor and Lior Gendel, Cisco Systems, Inc.
The Effect of Packet Reordering in a Backbone Link on Application Throughput Michael Laor and Lior Gendel, Cisco Systems, Inc. Abstract Packet reordering in the Internet is a well-known phenomenon. As
