Guide for Molded Tantalum Capacitors
|
|
|
- Ella Morrison
- 9 years ago
- Views:
Transcription
1 Guide for Molded Tantalum Capacitors INTRODUCTION Tantalum electrolytic capacitors are the preferred choice in applications where volumetric efficiency, stable electrical parameters, high reliability, and long service life are primary considerations. The stability and resistance to elevated temperatures of the tantalum / tantalum oxide / manganese dioxide system make solid tantalum capacitors an appropriate choice for today's surface mount assembly technology. has been a pioneer and leader in this field, producing a large variety of tantalum capacitor types for consumer, industrial, automotive, military, and aerospace electronic applications. Tantalum is not found in its pure state. Rather, it is commonly found in a number of oxide minerals, often in combination with Columbium ore. This combination is known as tantalite when its contents are more than one-half tantalum. Important sources of tantalite include Australia, Brazil, Canada, China, and several African countries. Synthetic tantalite concentrates produced from tin slags in Thailand, Malaysia, and Brazil are also a significant raw material for tantalum production. Electronic applications, and particularly capacitors, consume the largest share of world tantalum production. Other important applications for tantalum include cutting tools (tantalum carbide), high temperature super alloys, chemical processing equipment, medical implants, and military ordnance. is a major user of tantalum materials in the form of powder and wire for capacitor elements and rod and sheet for high temperature vacuum processing. THE BASICS OF TANTALUM CAPACITORS Most metals form crystalline oxides which are non-protecting, such as rust on iron or black oxide on copper. A few metals form dense, stable, tightly adhering, electrically insulating oxides. These are the so-called valve metals and include titanium, zirconium, niobium, tantalum, hafnium, and aluminum. Only a few of these permit the accurate control of oxide thickness by electrochemical means. Of these, the most valuable for the electronics industry are aluminum and tantalum. Capacitors are basic to all kinds of electrical equipment, from radios and television sets to missile controls and automobile ignitions. Their function is to store an electrical charge for later use. Capacitors consist of two conducting surfaces, usually metal plates, whose function is to conduct electricity. They are separated by an insulating material or dielectric. The dielectric used in all tantalum electrolytic capacitors is tantalum pentoxide. Tantalum pentoxide compound possesses high-dielectric strength and a high-dielectric constant. As capacitors are being manufactured, a film of tantalum pentoxide is applied to their electrodes by means of an electrolytic process. The film is applied in various thicknesses and at various voltages and although transparent to begin with, it takes on different colors as light refracts through it. This coloring occurs on the tantalum electrodes of all types of tantalum capacitors. Rating for rating, tantalum capacitors tend to have as much as three times better capacitance / volume efficiency than aluminum electrolytic capacitors. An approximation of the capacitance / volume efficiency of other types of capacitors may be inferred from the following table, which shows the dielectric constant ranges of the various materials used in each type. Note that tantalum pentoxide has a dielectric constant of 26, some three times greater than that of aluminum oxide. This, in addition to the fact that extremely thin films can be deposited during the electrolytic process mentioned earlier, makes the tantalum capacitor extremely efficient with respect to the number of microfarads available per unit volume. The capacitance of any capacitor is determined by the surface area of the two conducting plates, the distance between the plates, and the dielectric constant of the insulating material between the plates. COMPARISON OF CAPACITOR DIELECTRIC CONSTANTS DIELECTRIC e DIELECTRIC CONSTANT Air or vacuum 1.0 Paper 2.0 to 6.0 Plastic 2.1 to 6.0 Mineral oil 2.2 to 2.3 Silicone oil 2.7 to 2.8 Quartz 3.8 to 4.4 Glass 4.8 to 8.0 Porcelain 5.1 to 5.9 Mica 5.4 to 8.7 Aluminum oxide 8.4 Tantalum pentoxide 26 Ceramic 12 to 400K In the tantalum electrolytic capacitor, the distance between the plates is very small since it is only the thickness of the tantalum pentoxide film. As the dielectric constant of the tantalum pentoxide is high, the capacitance of a tantalum capacitor is high if the area of the plates is large: where ea C = t C = capacitance e = dielectric constant A = surface area of the dielectric t = thickness of the dielectric Tantalum capacitors contain either liquid or solid electrolytes. In solid electrolyte capacitors, a dry material (manganese dioxide) forms the cathode plate. A tantalum lead is embedded in or welded to the pellet, which is in turn connected to a termination or lead wire. The drawings show the construction details of the surface mount types of tantalum capacitors shown in this catalog. Revision: 11-Apr-16 1 Document Number: 40074
2 SOLID ELECTROLYTE TANTALUM CAPACITORS Solid electrolyte capacitors contain manganese dioxide, which is formed on the tantalum pentoxide dielectric layer by impregnating the pellet with a solution of manganous nitrate. The pellet is then heated in an oven, and the manganous nitrate is converted to manganese dioxide. The pellet is next coated with graphite, followed by a layer of metallic silver, which provides a conductive surface between the pellet and the Leadframe. Molded Chip tantalum capacitor encases the element in plastic resins, such as epoxy materials. After assembly, the capacitors are tested and inspected to assure long life and reliability. It offers excellent reliability and high stability for consumer and commercial electronics with the added feature of low cost Surface mount designs of Solid Tantalum capacitors use lead frames or lead frameless designs as shown in the accompanying drawings. TANTALUM CAPACITORS FOR ALL DESIGN CONSIDERATIONS Solid electrolyte designs are the least expensive for a given rating and are used in many applications where their very small size for a given unit of capacitance is of importance. They will typically withstand up to about 10 % of the rated DC working voltage in a reverse direction. Also important are their good low temperature performance characteristics and freedom from corrosive electrolytes. patented the original solid electrolyte capacitors and was the first to market them in Vishay Sprague has the broadest line of tantalum capacitors and has continued its position of leadership in this field. Data sheets covering the various types and styles of Vishay Sprague capacitors for consumer and entertainment electronics, industry, and military applications are available where detailed performance characteristics must be specified. MOLDED CHIP CAPACITOR, ALL TYPES EXCEPT 893D / TF3 / T86 Silver Adhesive Epoxy Encapsulation Anode Polarity Bar Solderable Cathode Termination MnO 2 /Carbon/ Silver Coating Leadframe Sintered Tantalum Solderable Anode Termination MOLDED CHIP CAPACITOR WITH BUILT-IN FUSE, TYPES 893D / TF3 / T86 Epoxy Encapsulation Silver Adhesive Solderable Cathode Termination Anode Polarity Bar MnO 2 /Carbon/Silver Coating Sintered Tantalum Pellet Fusible Wire Lead Frame Solderable Anode Termination Revision: 11-Apr-16 2 Document Number: 40074
3 COMMERCIAL PRODUCTS SOLID TANTALUM CAPACITORS - MOLDED CASE SERIES 293D 793DX-CTC3- CTC4 593D TR3 TP3 TL3 PRODUCT IMAGE TYPE FEATURES Standard industrial grade Surface mount TANTAMOUNT, molded case CECC approved Low ESR Low ESR High performance, automotive grade Very low DCL TEMPERATURE -55 C to +125 C 0.1 μf to 1000 μf 0.1 μf to 100 μf 1 μf to 470 μf 0.47 μf to 1000 μf 0.1 μf to 470 μf 0.1 μf to 470 μf VOLTAGE 4 V to 75 V 4 V to 50 V 4 V to 50 V 4 V to 75 V 4 V to 50 V 4 V to 50 V TOLERANCE ± 10 %, ± 20 % LEAKAGE CURRENT 0.01 CV or 0.5 μa, whichever is greater CV or 0.25 μa, whichever is greater DISSIPATION FACTOR 4 % to 30 % 4 % to 6 % 4 % to 15 % 4 % to 30 % 4 % to 15 % 4 % to 15 % CASE CODES A, B, C, D, E, V A, B, C, D A, B, C, D, E A, B, C, D, E, V, W A, B, C, D, E A, B, C, D, E TERMINATION 100 % matte tin standard, tin / lead available SOLID TANTALUM CAPACITORS - MOLDED CASE SERIES TH3 TH4 TH5 893D TF3 PRODUCT IMAGE TYPE FEATURES High temperature +150 C, automotive grade High temperature +175 C, automotive grade Surface mount TANTAMOUNT, molded case Very high temperature +200 C Built-in fuse Built-in fuse, low ESR TEMPERATURE -55 C to +150 C -55 C to +175 C -55 C to +200 C -55 C to +125 C 0.33 μf to 220 μf 10 μf to 47 μf 4.7 μf to 100 μf 0.47 μf to 680 μf 0.47 μf to 470 μf VOLTAGE 6.3 V to 50 V 6.3 V to 35 V 5 V to 24 V 4 V to 50 V 4 V to 50 V TOLERANCE ± 10 %, ± 20 % LEAKAGE CURRENT 0.01 CV or 0.5 μa, whichever is greater DISSIPATION FACTOR 4 % to 8 % 4.5 % to 6 % 6 % to 10 % 6 % to 15 % 6 % to 15 % CASE CODES A, B, C, D, E B, C, D E C, D, E C, D, E 100 % matte tin TERMINATION standard, tin / lead and gold plated available 100 % matte tin Gold plated 100 % matte tin standard Revision: 11-Apr-16 3 Document Number: 40074
4 HIGH RELIABILITY PRODUCTS SOLID TANTALUM CAPACITORS - MOLDED CASE SERIES TM3 T83 T86 CWR PRODUCT IMAGE TYPE TANTAMOUNT, molded case, Hi-Rel. TANTAMOUNT, molded case, Hi-Rel. COTS TANTAMOUNT, molded case, DLA approved FEATURES High reliability, for Medical Instruments High reliability, standard and low ESR High reliability, built-in fuse, standard and low ESR MIL-PRF-55365/8 qualified Low ESR TEMPERATURE -55 C to +125 C 1 μf to 220 μf 0.1 μf to 470 μf 0.47 μf to 330 μf 0.1 μf to 100 μf 4.7 μf to 220 μf VOLTAGE 4 V to 20 V 4 V to 63 V 4 V to 50 V TOLERANCE LEAKAGE CURRENT CV or 0.25 μa, whichever is greater ± 10 %, ± 20 % ± 5 %, ± 10 %, ± 20 % ± 10 %, ± 20 % 0.01 CV or 0.5 μa, whichever is greater DISSIPATION FACTOR 4 % to 8 % 4 % to 15 % 6 % to 16 % 4 % to 6 % 4 % to 12 % CASE CODES A, B, C, D, E A, B, C, D, E C, D, E A, B, C, D C, D, E TERMINATION 100 % matte tin; tin / lead 100 % matte tin; tin / lead; tin / lead solder fused 100 % matte tin Tin / lead; tin / lead solder fused Tin / lead solder plated; gold plated Revision: 11-Apr-16 4 Document Number: 40074
5 PLASTIC TAPE AND REEL PACKAGING in inches [millimeters] [0.35] Tape thickness Deformation between embossments [ ] ± [4.0 ± 0.10] 10 pitches cumulative tolerance on tape ± [0.200] ± [2.0 ± 0.05] Embossment ± [1.75 ± 0.10] B 1 (Note 6) [0.1] For tape feeder reference only including draft. Concentric around B 0 (Note 5) K 0 Top cover tape Top cover tape Center lines of cavity A 0 B 0 P 1 USER DIRECTION OF FEED Maximum cavity size (Note 1) [0.75] MIN. (Note 3) [0.75] MIN. (Note 4) F W D 1 MIN. for components x [2.0 x 1.2] and larger. (Note 5) 20 Maximum component rotation (Side or front sectional view) Cathode (-) Anode (+) Direction of Feed B 0 A 0 (Top view) 20 maximum component rotation Typical component cavity center line Typical component center line [100.0] [1.0] Tape [1.0] [250.0] Camber (top view) Allowable camber to be 0.039/3.937 [1/100] non-cumulative over [250.0] Tape and Reel Specifications: all case sizes are available on plastic embossed tape per EIA-481. Standard reel diameter is 7" [178 mm], 13" [330 mm] reels are available and recommended as the most cost effective packaging method. The most efficient packaging quantities are full reel increments on a given reel diameter. The quantities shown allow for the sealed empty pockets required to be in conformance with EIA-481. Reel size and packaging orientation must be specified in the part number. Notes Metric dimensions will govern. Dimensions in inches are rounded and for reference only. (1) A 0, B 0, K 0, are determined by the maximum dimensions to the ends of the terminals extending from the component body and / or the body dimensions of the component. The clearance between the ends of the terminals or body of the component to the sides and depth of the cavity (A 0, B 0, K 0 ) must be within 0.002" (0.05 mm) minimum and 0.020" (0.50 mm) maximum. The clearance allowed must also prevent rotation of the component within the cavity of not more than 20. (2) Tape with components shall pass around radius R without damage. The minimum trailer length may require additional length to provide R minimum for 12 mm embossed tape for reels with hub diameters approaching N minimum. (3) This dimension is the flat area from the edge of the sprocket hole to either outward deformation of the carrier tape between the embossed cavities or to the edge of the cavity whichever is less. (4) This dimension is the flat area from the edge of the carrier tape opposite the sprocket holes to either the outward deformation of the carrier tape between the embossed cavity or to the edge of the cavity whichever is less. (5) The embossed hole location shall be measured from the sprocket hole controlling the location of the embossement. Dimensions of embossement location shall be applied independent of each other. (6) B 1 dimension is a reference dimension tape feeder clearance only. CASE CODE TAPE SIZE B 1 () MOLDED CHIP CAPACITORS; ALL TYPES A mm B [4.2] C D 0.32 E 12 mm [8.2] V W D 1 (MIN.) [1.0] [1.5] F ± [3.5 ± 0.05] ± 0.00 [5.5 ± 0.05] K 0 () [2.4] [4.5] P ± [4.0 ± 1.0] ± [8.0 ± 1.0] W ± [8.0 ± 0.30] ± [12.0 ± 0.30] Revision: 11-Apr-16 5 Document Number: 40074
6 RECOMMENDED REFLOW PROFILES Capacitors should withstand reflow profile as per J-STD-020 standard TEMPERATURE ( C) T p Max. ramp-up rate = 3 C/s t p TC - 5 C Max. ramp-down rate = 6 C/s T L T s max. T s min. Preheat area t s t L 25 Time 25 C to peak TIME (s) PROFILE FEATURE SnPb EUTECTIC ASSEMBLY LEAD (Pb)-FREE ASSEMBLY Preheat / soak Temperature min. (T s min. ) 100 C 150 C Temperature max. (T s max. ) 150 C 200 C Time (t s ) from (T s min. to T s max. ) 60 s to 120 s 60 s to 120 s Ramp-up Ramp-up rate (T L to T p ) 3 C/s max. 3 C/s max. Liquidous temperature (T L ) 183 C 217 C Time (t L ) maintained above T L 60 s to 150 s 60 s to 150 s Peak package body temperature (T p ) Depends on case size - see table below Time (t p ) within 5 C of the specified classification temperature (T C ) 20 s 30 s Time 25 C to peak temperature 6 min max. 8 min max. Ramp-down Ramp-down rate (T p to T L ) 6 C/s max. 6 C/s max. PEAK PACKAGE BODY TEMPERATURE (T p ) CASE CODE PEAK PACKAGE BODY TEMPERATURE (T p ) SnPb EUTECTIC PROCESS LEAD (Pb)-FREE PROCESS A, B, C, V 235 C 260 C D, E, W 220 C 250 C PAD DIMENSIONS in inches [millimeters] B D C A CASE CODE A (MIN.) B (NOM.) C (NOM.) D (NOM.) MOLDED CHIP CAPACITORS, ALL TYPES A [1.80] [1.70] [1.35] [4.75] B [3.00] [1.80] [1.65] [5.25] C [3.00] [2.40] [3.00] [7.80] D [4.00] [2.50] [3.80] [8.80] E [4.00] [2.50] [3.80] [8.80] V [4.00] [2.50] [3.80] [8.80] W [4.70] [2.50] [3.80] [8.80] Revision: 11-Apr-16 6 Document Number: 40074
7 GUIDE TO APPLICATION 1. AC Ripple Current: the maximum allowable ripple current shall be determined from the formula: where, P = power dissipation in W at +25 C as given in the tables in the product datasheets (Power Dissipation). R ESR = the capacitor equivalent series resistance at the specified frequency 2. AC Ripple Voltage: the maximum allowable ripple voltage shall be determined from the formula: = I RMS x Z or, from the formula: where, P = I RMS V RMS V RMS P R ESR power dissipation in W at +25 C as given in the tables in the product datasheets (Power Dissipation). R ESR = the capacitor equivalent series resistance at the specified frequency Z = the capacitor impedance at the specified frequency 2.1 The sum of the peak AC voltage plus the applied DC voltage shall not exceed the DC voltage rating of the capacitor. 2.2 The sum of the negative peak AC voltage plus the applied DC voltage shall not allow a voltage reversal exceeding 10 % of the DC working voltage at +25 C. 3. Reverse Voltage: solid tantalum capacitors are not intended for use with reverse voltage applied. However, they have been shown to be capable of withstanding momentary reverse voltage peaks of up to 10 % of the DC rating at 25 C and 5 % of the DC rating at +85 C. 4. Temperature Derating: if these capacitors are to be operated at temperatures above +25 C, the permissible RMS ripple current shall be calculated using the derating factors as shown: TEMPERATURE ( C) DERATING FACTOR (1) (1) (1) 0.1 Note (1) Applicable for dedicated high temperature product series 5. Power Dissipation: power dissipation will be affected by the heat sinking capability of the mounting surface. Non-sinusoidal ripple current may produce heating effects which differ from those = = Z P R ESR shown. It is important that the equivalent I RMS value be established when calculating permissible operating levels. (Power dissipation calculated using +25 C temperature rise). 6. Printed Circuit Board Materials: molded capacitors are compatible with commonly used printed circuit board materials (alumina substrates, FR4, FR5, G10, PTFE-fluorocarbon and porcelanized steel). 7. Attachment: 7.1 Solder Paste: the recommended thickness of the solder paste after application is 0.007" ± 0.001" [0.178 mm ± mm]. Care should be exercised in selecting the solder paste. The metal purity should be as high as practical. The flux (in the paste) must be active enough to remove the oxides formed on the metallization prior to the exposure to soldering heat. In practice this can be aided by extending the solder preheat time at temperatures below the liquidous state of the solder. 7.2 Soldering: capacitors can be attached by conventional soldering techniques; vapor phase, convection reflow, infrared reflow, wave soldering, and hot plate methods. The soldering profile charts show recommended time / temperature conditions for soldering. Preheating is recommended. The recommended maximum ramp rate is 2 C per s. Attachment with a soldering iron is not recommended due to the difficulty of controlling temperature and time at temperature. The soldering iron must never come in contact with the capacitor Backward and Forward Compatibility: capacitors with SnPb or 100 % tin termination finishes can be soldered using SnPb or lead (Pb)-free soldering processes. 8. Cleaning (Flux Removal) After Soldering: molded capacitors are compatible with all commonly used solvents such as TES, TMS, Prelete, Chlorethane, Terpene and aqueous cleaning media. However, CFC / ODS products are not used in the production of these devices and are not recommended. Solvents containing methylene chloride or other epoxy solvents should be avoided since these will attack the epoxy encapsulation material. 8.1 When using ultrasonic cleaning, the board may resonate if the output power is too high. This vibration can cause cracking or a decrease in the adherence of the termination. DO NOT EXCEED 9W/l at 40 khz for 2 min. 9. Recommended Mounting Pad Geometries: proper mounting pad geometries are essential for successful solder connections. These dimensions are highly process sensitive and should be designed to minimize component rework due to unacceptable solder joints. The dimensional configurations shown are the recommended pad geometries for both wave and reflow soldering techniques. These dimensions are intended to be a starting point for circuit board designers and may be fine tuned if necessary based upon the peculiarities of the soldering process and / or circuit board design. Revision: 11-Apr-16 7 Document Number: 40074
Solid Tantalum Surface Mount Chip Capacitors TANTAMOUNT, Molded Case, Standard Industrial Grade
Solid Tantalum Surface Mount Chip Capacitors TANTAMOUNT, Molded Case, Standard Industrial Grade PERFORMANCE / ELECTRICAL CHARACTERISTICS www.vishay.com/doc?40192 Operating Temperature: -55 C to +125 C
vpolytan TM Solid Tantalum Surface Mount Chip Capacitors, Multianode, Leadframeless Molded Polymer Type
T59 vpolytan TM Solid Tantalum Surface Mount Chip Capacitors, Multianode, Leadframeless Molded Polymer Type PERFORMANCE / ELECTRICAL CHARACTERISTICS Operating Temperature: -55 C to +105 C (above 85 C,
vpolytan TM Solid Tantalum Surface Mount Chip Capacitors, Low Profile, Leadframeless Molded Polymer Type
T52 vpolytan TM Solid Tantalum Surface Mount Chip Capacitors, Low Profile, Leadframeless Molded Polymer Type PERFORMANCE / ELECTRICAL CHARACTERISTICS Operating Temperature: -55 C to +105 C Capacitance
Axial and Radial Leaded Multilayer Ceramic Capacitors for Automotive Applications Class 1 and Class 2, 50 V DC, 100 V DC and 200 V DC
Axial and Radial Leaded Multilayer Ceramic Capacitors for Automotive Applications Class 1 and Class 2, 5 V DC, 1 V DC and 2 V DC DESIGNING For more than 2 years Vitramon has supported the automotive industry
SuperTan Extended (STE) Capacitors, Wet Tantalum Capacitors with Hermetic Seal
SuperTan Extended () Capacitors, Wet Tantalum Capacitors with Hermetic Seal FEATURES SuperTan Extended () represents a major breakthrough in wet tantalum capacitor Available technology. Its unique cathode
Types MC and MCN Multilayer RF Capacitors
High-Frequency, High-Power, High-Voltage Chips with Nonmagnetic Option Rugged flexibility and compatibility with FR4 boards make Type MC and MCN capacitors ideal for use where other multilayer caps aren
Surface Mount Multilayer Ceramic Chip Capacitor Solutions for High Voltage Applications
Surface Mount Multilayer Ceramic Chip Capacitor Solutions for High Voltage Applications ELECTRICAL SPECIFICATIONS X7R GENERAL SPECIFICATION Note Electrical characteristics at +25 C unless otherwise specified
Surface Mount Multilayer Ceramic Chip Capacitors for Automotive Applications
Surface Mount Multilayer Ceramic Chip Capacitors for Automotive Applications FEATURES AEC-Q200 qualified with PPAP available Available in 0402 to 1812 body size Three dielectric materials AgPd termination
TC50 High Precision Power Thin Film chip resistors (RoHS compliant Halogen Free) Size 1206, 0805, 0603
WF2Q, WF08Q, WF06Q ±%, ±0.5%, ±0.25%, ±0.%, ±0.05% TC50 High Precision Power Thin Film chip resistors (RoHS compliant Halogen Free) Size 206, 0805, 0603 *Contents in this sheet are subject to change without
DATA SHEET SURFACE-MOUNT CERAMIC MULTILAYER CAPACITORS General Purpose & High Capacitance Class 2, X7R
DATA SHEET SURFACE-MOUNT CERAMIC MULTILAYER CAPACITORS General Purpose & High Capacitance Class 2, 6.3 V TO 50 V 100 pf to 22 µf RoHS compliant & Halogen Free Product Specification October 13, 11 V.8 Product
SELECTION GUIDE. Nominal Input
www.murata-ps.com NKE Series FEATURES RoHS Compliant Sub-Miniature SIP & DIP Styles 3kVDC Isolation UL Recognised Wide Temperature performance at full 1 Watt load, 40 C to 85 C Increased Power Density
Table 1. Derating Requirements of Capacitors in Tabular Form (Summary) 3
Rev. B Date: 1/17/27 DERATING The derating guidelines for each of the major classes of capacitors are addressed separately, beginning in this section. Capacitors are derated by limiting applied voltage
SMD Aluminum Solid Capacitors with Conductive Polymer
SMD Aluminum Solid Capacitors with Conductive Polymer FEATURES New OS-CON series provides improved characteristics with up to 25 C temperature capability and 35 V maximum voltage rating in a SMD package
Precision Surface Mount Resistors Wirewound or Metal Film Technologies
Precision Surface Mount Resists irewound Metal Film Technologies FEATURES Accding to CECC 40402-801 (wirewound) ide range of ohmic values (0.04 to 1 M) Low temperature coefficient (± 25 ppm/ C available)
Solid Tantalum Surface Mount Capacitors TANTAMOUNT, Molded Case, Low ESR
Solid Tantalum Surface Mount Capacitors TANTAMOUNT, Molded Case, Low ESR Effective September 2005, new capacitor ratings will not be added to the series. All new ratings are available in the TR3 series.
High-ohmic/high-voltage resistors
FEATURES High pulse loading capability Small size. APPLICATIONS Where high resistance, high stability and high reliability at high voltage are required High humidity environment White goods Power supplies.
Metal-Oxide Varistors (MOVs) Surface Mount Multilayer Varistors (MLVs) > MLN Series. MLN SurgeArray TM Suppressor. Description
MLN SurgeArray TM Suppressor RoHS Description The MLN SurgeArray Suppressor is designed to help protect components from transient voltages that exist at the circuit board level. This device provides four
handbook, 2 columns handbook, halfpage 085 CS
FEATURES Polarized aluminium electrolytic capacitors, non-solid, self healing Extended voltage and capacitance range SMD-version, fully moulded, insulated Flexible terminals, reflow and wave solderable
Aluminum Capacitors Solid Axial
SAL-A End of Life. Last Available Purchase Date is -December- Radial higher CV/volume Fig. QUICK REFERENCE DATA DESCRIPTION VALUE Maximum case size (Ø D x L in mm) 6.7 x. to.9 x. Rated capacitance range
Ta CAPACITORS WITH CONDUCTIVE POLYMER ROBUST TO LEAD FREE PROCESS
Ta CAPACITORS WITH CONDUCTIVE POLYMER ROBUST TO LEAD FREE PROCESS A B S T R A C T : Tantalum capacitors with conductive polymer cathodes have found a place in the market as a low ESR component with reduced
SM712 Series 600W Asymmetrical TVS Diode Array
SM712 Series 6W Asymmetrical TVS Diode Array RoHS Pb GREEN Description The SM712 TVS Diode Array is designed to protect RS-485 applications with asymmetrical working voltages (-7V to from damage due to
MADP-000504-10720T. Non Magnetic MELF PIN Diode
MADP-54-172T Features High Power Handling Low Loss / Low Distortion Leadless Low Inductance MELF Package Non-Magnetic Surface Mountable RoHS Compliant MSL 1 Package Style 172 Dot Denotes Cathode Description
Tantalum in Power Supply Applications
Tantalum in Power Supply Applications 1998 PCIM by John Prymak Applications Manager P.O. Box 5928 Greenville, SC 29606 Phone (864) 963-6300 Fax (864) 963-66521 www.kemet.com F2115 12/04 Abstract Tantalum
Metal Film Resistors, Industrial, Precision
CMF Industrial Metal Film Resistors, Industrial, Precision FEATURES Small size - conformal coated Flame retardant epoxy coating Controlled temperature coefficient Excellent high frequency characteristics
High Ohmic (up to 68 MΩ)/ High Voltage (up to 10 kv) Resistors
High Ohmic (up to 68 MΩ)/ A metal glazed film is deposited on a high grade ceramic body. After a helical groove has been cut in the resistive layer, tinned electrolytic copper wires are welded to the end-caps.
Metal Film Resistors, Industrial, Precision
Metal Film Resistors, Industrial, Precision FEATURES Small size - conformal coated Flame retardant epoxy coating Controlled temperature coefficient Available Excellent high frequency characteristics Exceptionally
High-ohmic/high-voltage resistors
FEATURES These resistors meet the safety requirements of: UL1676 (range 510 kω to 11 MΩ) EN60065 BS60065 (U.K.) NFC 92-130 (France) VDE 0860 (Germany) High pulse loading capability Small size. APPLICATIONS
Power chip resistor size 2512 PRC221 5%; 2% FEATURES Reduced size of final equipment Low assembly costs Higher component and equipment reliability.
FEATURES Reduced size of final equipment Low assembly costs Higher component and equipment reliability. APPLICATIONS Power supplies Printers Computers Battery chargers Automotive Converters CD-ROM. QUICK
WW12X, WW08X, WW06X, WW04X ±1%, ±5% Thick Film Low ohm chip resistors
WW12X, WW08X, WW06X, WW04X ±1%, ±5% Thick Film Low ohm chip resistors Size 1206, 0805, 0603, 0402 *Contents in this sheet are subject to change without prior notice. Page 1 of 8 ASC_WWxxX_V12 Nov.- 2011
Standard Thick Film Chip Resistors
Standard Thick Film Chip Resistors FEATURES Stability R/R = 1 % for 00 h at 70 C 2 mm pitch packaging option for size Pure tin solder contacts on Ni barrier layer provides compatibility with lead (Pb)-free
AC Line Rated Ceramic Disc Capacitors Class X1, 760 V AC, Class Y1, 500 V AC
AC Line Rated Ceramic Disc Capacitors Class X1, 760 V AC, Class Y1, 500 V AC QUICK REFERENCE DATA DESCRIPTION VALUE Ceramic Class 1 2 Ceramic Dielectric U2J U2J Y5S, Y5U Y5S, Y5U Voltage (V AC ) 500 760
Features. Typical Applications G9. ProLight PEA2-3FVE 3W Warm White AC LED Technical Datasheet Version: 1.7 1 DS-0042
ProLight PEA2-3FVE 3W Warm White AC LED Technical Datasheet Version: 1.7 Features High Color rendering index Follow ANSI C78.788.2008 Chromaticity co-ordinates High flux per LED Good color uniformity Industry
AC and Pulse Film Foil Capacitors KP Radial Potted Type
AC and Pulse Film Foil Capacitors KP Radial Potted Type 0.5 L max. W max. Marking H max. FEATURES 5 mm lead pitch, supplied loose in box taped in ammopack or reel Material categorization: for definitions
CMR Series Isolated 0.75W Single and Dual Output Isolated DC/DC Converters
www.murata-ps.com CMR Series SELECTION GUIDE FEATURES Single or Dual Isolated Outputs 1kVDC or 3kVDC options Wide temperature performance at full 0.75W load -40 C to 85C Industry Standard Pinouts 5V, 12V
WR12, WR08, WR06, WR04 ±1%, ±5% Thick Film General Purpose Chip Resistors Size 1206, 0805, 0603, 0402
WR12, WR08, WR06, WR04 ±1%, ±5% Thick Film General Purpose Chip Resistors Size 1206, 0805, 0603, 0402 *Contents in this sheet are subject to change without prior notice. Page 1 of 10 ASC_WR_V23 APR.- 2015
WCAP-CSGP Ceramic Capacitors
A Dimensions: [mm] B Recommended land pattern: [mm] D1 Electrical Properties: Properties Test conditions Value Unit Tol. Capacitance 1±0.2 Vrms, 1 khz ±10% C 15000 pf ± 10% Rated voltage Dissipation factor
CLA4607-085LF: Surface Mount Limiter Diode
DATA SHEET CLA4607-085LF: Surface Mount Limiter Diode Applications Low-loss, high-power limiters Receiver protectors Anode (Pin 1) Anode (Pin 3) Features Low thermal resistance: 55 C/W Typical threshold
Optocoupler, Phototransistor Output, Dual Channel, SOIC-8 Package
ILD25T, ILD26T, ILD27T, ILD211T, ILD213T Optocoupler, Phototransistor Output, Dual Channel, SOIC-8 Package i17925 A1 C2 A3 C4 i17918-2 8C 7E 6C 5E DESCRIPTION The ILD25T, ILD26T, ILD27T, ILD211T, and ILD213T
Wirewound Resistors, Industrial Power, Aluminum Housed, Chassis Mount
Wirewound Resistors, Industrial Power, Aluminum Housed, hassis Mount FEATURES Molded construction for total environmental protection omplete welded construction Meets applicable requirements of MIL-PRF-18546
Application Note AN-0994 Maximizing the Effectiveness of your SMD Assemblies
Application Note AN-0994 Maximizing the Effectiveness of your SMD Assemblies Table of Contents Page Method...2 Thermal characteristics of SMDs...2 Adhesives...4 Solder pastes...4 Reflow profiles...4 Rework...6
T5050M-MCL1 High Power Mixing Color LED
PRODUCT DATASHEET T5050M-MCL1 High Power Mixing Color LED Introduction The T5050M-MCL1 LED from TSLC brings industry leading technology to the solid state lighting market with its high quality and performance.
Type RP73 Series. SMD High Power Precision Resistors. Key Features. Applications. Characteristics - Electrical - RP73 Series - Standard
Key Features n High precision - tolerances down to 0.05% n Low TCR - down to 5ppm/ C n Stable high frequency performance n Operating temperature -55 C to +155 C n Increased power rating - up to 1.0W n
Aluminum Electrolytic Capacitors Axial Miniature, Long-Life
Aluminum Electrolytic Capacitors Axial Miniature, Long-Life 38 AML 0 ASM smaller dimensions Fig. QUICK REFERENCE DATA DESCRIPTION Nominal case sizes (Ø D x L in mm) 6.3 x.7 to 0 x 5 VALUE 0 x 30 to x 38
High Ohmic/High Voltage Metal Glaze Leaded Resistors
VR37 High Ohmic/High Voltage FEATURES A metal glazed film is deposited on a high grade ceramic body. After a helical groove has been cut in the resistive layer, tinned electrolytic copper wires are welded
DATA SHEET HIGH POWER CHIP RESISTORS RC high power series 5%, 1% sizes 0603/0805/1206/2512. RoHS compliant & Halogen free
DATA SHEET HIGH POWER CHIP RESISTORS RC high power series 5%, 1% sizes 0603/005/1206/2512 RoHS compliant & Halogen free Product specification Supersedes Date of Mar. 06, 2003 Product specification 2 SCOPE
Product Name Hexa-Band Cellular SMD Antenna GSM / CDMA / DCS / PCS / WCDMA /UMTS /HSDPA / GPRS / EDGE 800 MHz to 2200 MHz
Anam PA.25a Specification Part No. PA.25a Product Name Anam Hexa-Band Cellular SMD Antenna GSM / CDMA / DCS / PCS / WCDMA /UMTS /HSDPA / GPRS / EDGE 800 MHz to 2200 MHz Feature High Efficiency Multi-Band
ESCC 4001/026 Qualified ( ) High Stability Thick Film Resistor Chips
ESCC 4001/026 Qualified ( ) High Stability Thick Film Resistor Chips thick film chip resistors are specially designed to meet the requirements of the ESA 4001/026 specification. They have undergone the
Contents. 12. Lot Number 10. 13. Reel Packing Structure 11. 14. Precaution for Use 13. 15. Hazard Substance Analysis 14. 16. Revision History 18
Rev : 00 ISSUE NO : DATE OF ISSUE : 2009. 04. 10 S P E C I F I CATION MODEL : SLHNNWW629T1S0U0S0 [Rank : (S0), (U0), (S0)] HIGH POWER LED - SUNNIX6 CUSTOMER : CUSTOMER CHECKED CHECKED APPROVED SAMSUNG
Chapter 5 - Aircraft Welding
Chapter 5 - Aircraft Welding Chapter 5 Section A Study Aid Questions Fill in the Blanks 1. There are 3 types of welding:, and, welding. 2. The oxy acetylene flame, with a temperature of Fahrenheit is produced
DOMINANT. Opto Technologies Innovating Illumination. InGaN White S-Spice : SSW-SLD DATA SHEET: SpiceLED TM. Features: Applications:
DATA SHEET: SpiceLED TM SpiceLED TM Like spice, its diminutive size is a stark contrast to its standout performance in terms of brightness, durability and reliability. Despite being the smallest in size
DC Film Capacitors MKT Radial Potted Type
DC Film Capacitors MKT Radial Potted Type FEATURES 15 mm to 27.5 mm lead pitch. Supplied loose in box and taped on reel Material categorization: for definitions of compliance please see www.vishay.com/doc?99912
Metal Film Resistors, Non-Magnetic, Industrial, Precision
Metal Film Resistors, Non-Magnetic, Industrial, Precision FEATURES Small size - conformal coated Flame retardant epoxy coating Controlled temperature coefficient Excellent high frequency characteristics
Aluminum Electrolytic Capacitors Power Economic Printed Wiring
Aluminum Electrolytic Capacitors Power Economic Printed Wiring 0/0 PECPW 00/0 PEDPW Fig. QUICK REFERENCE DATA DESCRIPTION high ripple current 0/0 PECPW long life 0 C Nominal case size (Ø D x L in mm) Rated
High Ohmic/High Voltage Metal Glaze Leaded Resistors
High Ohmic/High Voltage FEATURES A metal glazed film is deposited on a high grade ceramic body. After a helical groove has been cut in the resistive layer, tinned electrolytic copper wires are welded to
Ceramic Trimmer Capacitors
!Note T3E8.pdf 2.9.2 Ceramic Trimmer Capacitors TZB4 Series.±. Depth.5.4±. dia. Features. Miniature rectangular shape : 4.(W)x4.5(L)x3.(H)mm. 2. Color coded case facilitates identification of capacitance
Polymer Termination. Mechanical Cracking 2. The reason for polymer termination. What is Polymer Termination? 3
Polymer Termination An alternative termination material specifically designed to absorb greater levels of mechanical stress thereby reducing capacitor failures associated with mechanical cracking Mechanical
Pulse Proof, High Power Thick Film Chip Resistors
Pulse Proof, High Power Thick Film Chip Resistors STANDARD ELTRICAL SPIFICATIONS MODEL CASE SIZE INCH CASE SIZE METRIC POWER RATING P 70 W LIMITING ELEMENT VOLTAGE U max. AC/DC -HP e3 FTURES Excellent
Surface Mount LEDs - Applications Application Note
Surface Mount LEDs - Applications Application Note Introduction SMT Replaces Through Hole Technology The use of SMT-TOPLED varies greatly from the use of traditional through hole LEDs. Historically through
Automotive and Anti-Sulfuration Chip Resistor 0402
The resistors are constructed in a high grade ceramic body (aluminium oxide). Internal metal electrodes are added at each end and connected by a resistive paste that is applied to the top surface of the
NBB-402. RoHS Compliant & Pb-Free Product. Typical Applications
Typical Applications Narrow and Broadband Commercial and Military Radio Designs Linear and Saturated Amplifiers 0 RoHS Compliant & Pb-Free Product NBB-402 CASCADABLE BROADBAND GaAs MMIC AMPLIFIER DC TO
28 Volt Input - 40 Watt
Features Powers 28 volt dc-dc converters during power dropout Input voltage 12 to 40 volts Operating temperature -55 to +125 C Reduces hold-up capacitance by 80% Inhibit function Synchronization function
Specification MBT801-S
Specification MBT801S Drawn SSC Approval 고객명 Approval.com MBT801S 1. Features 2. Absolute Maximum Ratings 3. Electro Characteristics 4. Optical characteristics 5. Outline Dimension 6. Packing 7. Soldering
CATHODIC PROTECTION SYSTEM DESIGN
CATHODIC PROTECTION SYSTEM DESIGN Presented By DENIS L ROSSI P.E. CORROSION ENGINEER New England C P Inc. Corrosion Fundamentals What is corrosion? It is defined as the degradation or deterioration of
Precision Leaded Resistors
FEATURES Approved according to CECC 40101-806 Advanced thin film technology Low TC: ± 15 to Precision tolerance of value: ± 0.1 % and ± 0.25 % Superior overall : class 0.05 Wide precision range: 10 Ω to
Fractus Compact Reach Xtend
Fractus Compact Reach Xtend Bluetooth, Zigbee, 82.11 b/g/n WLAN Chip Antenna Antenna Part Number: FR5-S1-N--12 This product is protected by at least the following patents PAT. US 7,148,85, US 7,22,822
Aluminum Electrolytic Capacitors Power Eurodin Printed Wiring
Aluminum Electrolytic Capacitors Power Eurodin Printed Wiring 00/0 PEDPW Fig. QUICK REFERENCE DATA DESCRIPTION VALUE 00 0 Nominal case size (Ø D x L in mm) x 0 to 0 x 00 Rated capacitance range 0 μf to
WIRE, TERMINAL AND CONNECTOR REPAIR CONDUCTORS
CONDUCTORS Conductors are needed to complete the path for electrical current to flow from the power source to the working devices and back to the power source. Special wiring is needed for battery cables
50 W Power Resistor, Thick Film Technology, TO-220
50 W Power Resistor, Thick Film Technology, TO-220 FEATURES 50 W at 25 C heatsink mounted Adjusted by sand trimming Leaded or surface mount versions High power to size ratio Non inductive element Material
COATED CARBIDE. TiN. Al 2 O 3
COATED CARBIDE GENERAL INFORMATION CVD = Chemical Vapour Deposition coated grades GC2015, GC2025, GC2135, GC235, GC3005, GC3015, GC3020, GC3025, GC3115, GC4015, GC4025, GC4035, S05F, and CD1810. PVD =
Mounting Instructions for SP4 Power Modules
Mounting Instructions for SP4 Power Modules Pierre-Laurent Doumergue R&D Engineer Microsemi Power Module Products 26 rue de Campilleau 33 520 Bruges, France Introduction: This application note gives the
Pulse Withstanding Thick Film Chip Resistor-SMDP Series. official distributor of
Product: Pulse Withstanding Thick Film Chip Resistor-SMDP Series Size: /// official distributor of Pulse Withstanding Thick Film Chip Resistor-SMDP Series 1. Scope -This specification applies to ~ sizes
Pulse Proof Thick Film Chip Resistors
Pulse Proof Thick Film Chip Resistors FEATURES High pulse performance, up to kw Stability R/R 1 % for h at 70 C AEC-Q200 qualified Material categorization: for definitions of compliance please see www.vishay.com/doc?99912
High Ohmic/High Voltage Metal Film Leaded Resistors
, High Ohmic/High Voltage FEATURES Metal film technology High pulse loading (up to 10 kv) capability Small size (0207/0411) Compatible with lead (Pb)-free and lead containing soldering processes Compliant
Aluminum Electrolytic Capacitors Radial Miniature, Low Impedance, High Vibration Capability
Aluminum Electrolytic Capacitors Radial Miniature, Low Impedance, High Vibration Capability 048 RML 48 RUS lower longer life 36 RVI miniaturize 50 RMI high vibration FEATURES Very long useful life: 7000
1mm Flexible Printed Circuit (FPC) Connectors
ApplicationType 114-1072 Specification PRE: YM Lee 29 Oct 10 Rev F APP: SF Leong DCR No. D20101029031638_635573 1mm Flexible Printed Circuit (FPC) Connectors NOTE All numerical values are in metric units
Gas Discharge Tube (GDT) Products CG5 and SL0902A Series. CG5 and SL0902A Series
Description Agency Approvals AGENCY AGENCY FILE NUMBER E128662 2 Electrode GDT Graphical Symbol Littelfuse Broadband Optimized SL0902A Series offers high surge ratings in a miniature package. Special design
SD Memory Card Connectors
SD Memory Card Connectors DM Series Withstands higher force of card insertion. Card Standard type Metal cover extends over the back of the connector. Features. Withstands higher force of card insertion
Good Boards = Results
Section 2: Printed Circuit Board Fabrication & Solderability Good Boards = Results Board fabrication is one aspect of the electronics production industry that SMT assembly engineers often know little about.
N35L-U High Power LED
N35L-U High Power LED Introduction The N35L-U LED from SemiLEDs brings industry leading technology to the solid state lighting market with its high quality and performance. With a silicone lens, N35L-U
Rogers 3003, 3006, 3010, 3035, 3203, 3206, 3210
Stocked Materials: RIGID STANDARD FR4 High Tg 170c Black FR4 Polyclad 370HR (Lead Free) HIGH RELIABILITY Polyimide (Arlon 85N, Isola P96) BT (G200) HIGH FREQUENCY: Park Nelco 4000-13, 4000-13si Getek Gore
Interference Suppression Film Capacitors MKP Radial Potted Type
Interference Suppression Film Capacitors MKP Radial Potted Type FEATURES 7.5 mm to 27.5 mm lead pitch Supplied loose in box, taped on reel Material categorization: For definitions of compliance please
Application Note TMA Series
1W, SIP, Single & Dual Output DC/DC Converters Features SIP Package with Industry Standard Pinout Package Dimension: 19.5 x 10.2 x 6.1 mm (0.77 x 0.4 x 0.24 ) 5V&12V Models 19.5 x 10.2 x 7.1 mm (0.77 x
DC Film Capacitors MKT Radial Potted Type
DC Film Capacitors MKT Radial Potted Type MKT80 FEATURES AEC-Q00 qualified (rev. D) for PCM. mm (for larger available components on request) High temperature capabilities, up to 0 C Capacitance up to 60
P O W E R C A P A C I T O R A S S E M B L I E S
AMERICAN TECHNICAL CERAMICS P O W E R C A P A C I T O R A S S E M B L I E S ISO 9001 REGISTERED COMPANY Overview About ATC Power Assemblies ATC standard & custom Power Assemblies are fabricated from PARALLEL
SIL Resistor Network. Resistors. Electrical. Environmental. L Series. Thick Film Low Profile SIP Conformal Coated Resistor Networks RoHS Compliant
Resistors SIL Resistor Network Thick Film Low Profile SIP Conformal Coated Resistor Networks RoHS Compliant All parts are Pb-free and comply with EU Directive 2011/65/EU (RoHS2) Electrical Standard Resistance
SM Series 400W TVS Diode Array
General Purpose ESD Protection - SM5 through SM3 SM Series W TVS Diode Array RoHS Pb GREEN Description The SM series TVS Diode Array is designed to protect sensitive equipment from damage due to electrostatic
Selection Guide for Conversion of Carbon Composition Resistors
Selection Guide for Conversion of Carbon Composition Resistors believes that the information described in this publication is accurate and reliable, and much care has been taken in its preparation. However,
Antenna Part Number: FR05-S1-R-0-105
Fractus EZConnect Zigbee, RFID, ISM868/9 Chip Antenna Antenna Part Number: FR5-S1-R--15 This product is protected by at least the following patents PAT. US 7,148,85, US 7,22,822 and other domestic and
What is surface mount?
A way of attaching electronic components to a printed circuit board The solder joint forms the mechanical and electrical connection What is surface mount? Bonding of the solder joint is to the surface
Low Current SMD LED PLCC-2
Low Current SMD LED PLCC-2 VLMC31. 19225 DESCRIPTION These new devices have been designed to meet the increasing demand for low current SMD LEDs. The package of the VLMC31. is the PLCC-2 (equivalent to
DATA SHEET GENERAL PURPOSE CHIP RESISTORS RC0402 5%, 1% RoHS compliant & Halogen Free
DATA SHEET GENERAL PURPOSE CHIP RESISTORS 5%, 1% RoHS compliant & Halogen Free Product specification Supersedes Date of Mar. 06, 2003 Product specification 2 SCOPE This specification describes series chip
KSC Series Sealed Tact Switch for SMT
KSC Series Features/enefits Positive tactile feeling J or G terminations Various heights IP67 Typical Applications Automotive Cellular phones Industrial electronics Network infrastructure and IT Elevator
High flux for outdoor applications
General Illumination LUXEON R High flux for outdoor applications LUXEON R brings illumination grade LED light sources to outdoor and industrial lighting applications and makes it easier than ever to design
1 Form A Solid State Relay
Form A Solid State Relay VOAT, VOAABTR FEATURES 9 S S DC S' 3 S' High speed SSR - t on /t off < 8 μs Maximum R ON. Isolation test voltage 3 V RMS Load voltage V Load current A DC configuration DIP- package
SURFACE MOUNT CERMET TRIMMERS (SINGLE TURN) Rotor. Wiper. Cover. Pin S T - 2 T A 1 0 0 Ω ( 1 0 1 )
SURFACE MOUNT CERMET TRIMMERS (SINGLE TURN) COPAL ELECTRONICS RoHS compliant INTERNAL STRUCTURE 8 4 7! 5! 9 FEATURES RoHS compliant Compact and low-profile mm single turn type Sealed construction 4 5 7
High Ohmic / High Voltage Metal Glaze Leaded Resistors
High Ohmic / High Voltage Metal Glaze Leaded Resistors A metal glazed film is deposited on a high grade ceramic body. After a helical groove has been cut in the resistive layer, tinned electrolytic copper
Anodes and Misc Equipment
Anodes and Misc Equipment Application: Platinised Titanium Anodes Platinised titanium anodes are recommended for use in the following electrolytic processes:- Precious metal electroplating - e.g. Au, Pt,
MCS 0402 AT, MCT 0603 AT, MCU 0805 AT, MCA 1206 AT - Precision www.vishay.com. Precision Thin Film Chip Resistors
Precision Thin Film Chip Resistors FEATURES Rated dissipation P 70 up to 0.4 W for size 1206 AEC-Q200 qualified Approved to EN 140401-801 Superior temperature cycling robustness Sulfur resistance verified
