Ridge Regression. Patrick Breheny. September 1. Ridge regression Selection of λ Ridge regression in R/SAS
|
|
|
- Evan Cooper
- 9 years ago
- Views:
Transcription
1 Ridge Regression Patrick Breheny September 1 Patrick Breheny BST 764: Applied Statistical Modeling 1/22
2 Ridge regression: Definition Definition and solution Properties As mentioned in the previous lecture, ridge regression penalizes the size of the regression coefficients Specifically, the ridge regression estimate β is defined as the value of β that minimizes (y i x T i β) 2 + λ i p j=1 β 2 j Patrick Breheny BST 764: Applied Statistical Modeling 2/22
3 Ridge regression: Solution Definition and solution Properties Theorem: The solution to the ridge regression problem is given by β = (X T X + λi) 1 X T y Note the similarity to the ordinary least squares solution, but with the addition of a ridge down the diagonal Corollary: As λ 0, β ridge Corollary: As λ, β ridge 0 β OLS Patrick Breheny BST 764: Applied Statistical Modeling 3/22
4 Definition and solution Properties Ridge regression: Solution (Cont d) Corollary: In the special case of an orthonormal design matrix, ˆβ ridge J = ˆβ OLS J 1 + λ This illustrates the essential feature of ridge regression: shrinkage Applying the ridge regression penalty has the effect of shrinking the estimates toward zero introducing bias but reducing the variance of the estimate Patrick Breheny BST 764: Applied Statistical Modeling 4/22
5 Definition and solution Properties Ridge vs. OLS in the presence of collinearity The benefits of ridge regression are most striking in the presence of multicollinearity, as illustrated in the following example: > x1 <- rnorm(20) > x2 <- rnorm(20,mean=x1,sd=.01) > y <- rnorm(20,mean=3+x1+x2) > lm(y~x1+x2)$coef (Intercept) x1 x > lm.ridge(y~x1+x2,lambda=1) x1 x Patrick Breheny BST 764: Applied Statistical Modeling 5/22
6 Invertibility Ridge regression Definition and solution Properties Recall from BST 760 that the ordinary least squares estimates do not always exist; if X is not full rank, X T X is not invertible and there is no unique solution for β OLS This problem does not occur with ridge regression, however Theorem: For any design matrix X, the quantity X T X + λi is always invertible; thus, there is always a unique solution β ridge Patrick Breheny BST 764: Applied Statistical Modeling 6/22
7 Bias and variance Ridge regression Definition and solution Properties Theorem: The variance of the ridge regression estimate is Var( β) = σ 2 WX T XW, where W = (X T X + λi) 1 Theorem: The bias of the ridge regression estimate is Bias( β) = λwβ It can be shown that the total variance ( j Var( ˆβ j )) is a monotone decreasing sequence with respect to λ, while the total squared bias ( j Bias2 ( ˆβ j )) is a monotone increasing sequence with respect to λ Patrick Breheny BST 764: Applied Statistical Modeling 7/22
8 Existence theorem Ridge regression Definition and solution Properties Existence Theorem: There always exists a λ such that the MSE of β ridge λ is less than the MSE of β OLS This is a rather surprising result with somewhat radical implications: even if the model we fit is exactly correct and follows the exact distribution we specify, we can always obtain a better estimator by shrinking towards zero Patrick Breheny BST 764: Applied Statistical Modeling 8/22
9 Bayesian interpretation Definition and solution Properties As mentioned in the previous lecture, penalized regression can be interpreted in a Bayesian context: Theorem: Suppose β N(0, τ 2 I). Then the posterior mean of β given the data is ) 1 (X T X + σ2 τ 2 I X T y. Patrick Breheny BST 764: Applied Statistical Modeling 9/22
10 Degrees of freedom Ridge regression Information criteria Cross-validation Information criteria are a common way of choosing among models while balancing the competing goals of fit and parsimony In order to apply AIC or BIC to the problem of choosing λ, we will need an estimate of the degrees of freedom Recall that in linear regression: ŷ = Hy, where H was the projection ( hat ) matrix tr(h) = p, the degrees of freedom Patrick Breheny BST 764: Applied Statistical Modeling 10/22
11 Degrees of freedom (cont d) Information criteria Cross-validation Ridge regression is also a linear estimator (ŷ = Hy), with H ridge = X(X T X + λi) 1 X T Analogously, one may define its degrees of freedom to be tr(h ridge ) Furthermore, one can show that df ridge = λ i λ i + λ where {λ i } are the eigenvalues of X T X If you don t know what eigenvalues are, don t worry about it. The main point is to note that df is a decreasing function of λ with df = p at λ = 0 and df = 0 at λ =. Patrick Breheny BST 764: Applied Statistical Modeling 11/22
12 AIC and BIC Ridge regression Information criteria Cross-validation Now that we have a way to quantify the degrees of freedom in a ridge regression model, we can calculate AIC or BIC and use them to guide the choice of λ: AIC = n log(rss) + 2df BIC = n log(rss) + df log(n) Patrick Breheny BST 764: Applied Statistical Modeling 12/22
13 Introduction Ridge regression Information criteria Cross-validation An alternative way of choosing λ is to see how well predictions based on β λ do at predicting actual instances of Y Now, it would not be fair to use the data twice twice once to fit the model and then again to estimate the prediction accuracy as this would reward overfitting Ideally, we would have an external data set for validation, but obviously data is expensive to come by and this is rarely practical Patrick Breheny BST 764: Applied Statistical Modeling 13/22
14 Cross-validation Ridge regression Information criteria Cross-validation One idea is to split the data set into two fractions, then use one portion to fit β and the other to evaluate how well X β predicted the observations in the second portion The problem with this solution is that we rarely have so much data that we can freely part with half of it solely for the purpose of choosing λ To finesse this problem, cross-validation splits the data into K folds, fits the data on K 1 of the folds, and evaluates risk on the fold that was left out Patrick Breheny BST 764: Applied Statistical Modeling 14/22
15 Cross-validation figure Information criteria Cross-validation This process is repeated for each of the folds, and the risk averaged across all of these results: Common choices for K are 5, 10, and n (also known as leave-one-out cross-validation) Patrick Breheny BST 764: Applied Statistical Modeling 15/22
16 Generalized cross-validation Information criteria Cross-validation You may recall from BST 760 that we do not actually have to refit the model to obtain the leave-one-out ( deleted ) residuals: y i ŷ i( i) = r i 1 H ii Actually calculating H turns out to be computationally inefficient for a number of reasons, so the following simplification (called generalized cross validation) is often used instead: GCV = 1 ( ) yi ŷ 2 i n 1 tr(h)/n i Patrick Breheny BST 764: Applied Statistical Modeling 16/22
17 Prostate cancer study An an example, consider the data from a 1989 study examining the relationship prostate-specific antigen (PSA) and a number of clinical measures in a sample of 97 men who were about to receive a radical prostatectomy PSA is typically elevated in patients with prostate cancer, and serves a biomarker for the early detection of the cancer The explanatory variables: lcavol: Log cancer volume lweight: Log prostate weight age lbph: Log benign prostatic hyperplasia svi: Seminal vesicle invasion lcp: Log capsular penetration gleason: Gleason score pgg45: % Gleason score 4 or 5 Patrick Breheny BST 764: Applied Statistical Modeling 17/22
18 SAS/R syntax Ridge regression To fit a ridge regression model in SAS, we can use PROC REG: PROC REG DATA=prostate ridge=0 to 50 by 0.1 OUTEST=fit; MODEL lpsa = pgg45 gleason lcp svi lbph age lweight lcavol; RUN; In R, we can use lm.ridge in the MASS package: fit <- lm.ridge(lpsa~.,prostate,lambda=seq(0,50,by=0.1)) R (unlike SAS, unfortunately) also provides the GCV criterion for each λ: fit$gcv Patrick Breheny BST 764: Applied Statistical Modeling 18/22
19 Results Ridge regression Coefficients λ svi lcavol lweight lbph gleason pgg45 age lcp Degrees of freedom Red=AIC, black=gcv, green=bic Patrick Breheny BST 764: Applied Statistical Modeling 19/22
20 Additional plots Degrees of freedom RSS λ Degrees of freedom Patrick Breheny BST 764: Applied Statistical Modeling 20/22
21 Model selection criteria Red=AIC, black=gcv, green=bic: Criterion min Degrees of freedom Patrick Breheny BST 764: Applied Statistical Modeling 21/22
22 Ridge vs. OLS Ridge regression Estimate Std. Error z-score OLS Ridge OLS Ridge OLS Ridge lcavol lweight age lbph svi lcp gleason pgg Patrick Breheny BST 764: Applied Statistical Modeling 22/22
Model selection in R featuring the lasso. Chris Franck LISA Short Course March 26, 2013
Model selection in R featuring the lasso Chris Franck LISA Short Course March 26, 2013 Goals Overview of LISA Classic data example: prostate data (Stamey et. al) Brief review of regression and model selection.
Penalized regression: Introduction
Penalized regression: Introduction Patrick Breheny August 30 Patrick Breheny BST 764: Applied Statistical Modeling 1/19 Maximum likelihood Much of 20th-century statistics dealt with maximum likelihood
5. Multiple regression
5. Multiple regression QBUS6840 Predictive Analytics https://www.otexts.org/fpp/5 QBUS6840 Predictive Analytics 5. Multiple regression 2/39 Outline Introduction to multiple linear regression Some useful
Statistical Machine Learning
Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes
2. Linear regression with multiple regressors
2. Linear regression with multiple regressors Aim of this section: Introduction of the multiple regression model OLS estimation in multiple regression Measures-of-fit in multiple regression Assumptions
Econometrics Simple Linear Regression
Econometrics Simple Linear Regression Burcu Eke UC3M Linear equations with one variable Recall what a linear equation is: y = b 0 + b 1 x is a linear equation with one variable, or equivalently, a straight
Basic Statistics and Data Analysis for Health Researchers from Foreign Countries
Basic Statistics and Data Analysis for Health Researchers from Foreign Countries Volkert Siersma [email protected] The Research Unit for General Practice in Copenhagen Dias 1 Content Quantifying association
Outline. Topic 4 - Analysis of Variance Approach to Regression. Partitioning Sums of Squares. Total Sum of Squares. Partitioning sums of squares
Topic 4 - Analysis of Variance Approach to Regression Outline Partitioning sums of squares Degrees of freedom Expected mean squares General linear test - Fall 2013 R 2 and the coefficient of correlation
Building risk prediction models - with a focus on Genome-Wide Association Studies. Charles Kooperberg
Building risk prediction models - with a focus on Genome-Wide Association Studies Risk prediction models Based on data: (D i, X i1,..., X ip ) i = 1,..., n we like to fit a model P(D = 1 X 1,..., X p )
NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )
Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates
IAPRI Quantitative Analysis Capacity Building Series. Multiple regression analysis & interpreting results
IAPRI Quantitative Analysis Capacity Building Series Multiple regression analysis & interpreting results How important is R-squared? R-squared Published in Agricultural Economics 0.45 Best article of the
Quadratic forms Cochran s theorem, degrees of freedom, and all that
Quadratic forms Cochran s theorem, degrees of freedom, and all that Dr. Frank Wood Frank Wood, [email protected] Linear Regression Models Lecture 1, Slide 1 Why We Care Cochran s theorem tells us
I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
Beckman HLM Reading Group: Questions, Answers and Examples Carolyn J. Anderson Department of Educational Psychology I L L I N O I S UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Linear Algebra Slide 1 of
Multiple Linear Regression
Multiple Linear Regression A regression with two or more explanatory variables is called a multiple regression. Rather than modeling the mean response as a straight line, as in simple regression, it is
Data Mining and Data Warehousing. Henryk Maciejewski. Data Mining Predictive modelling: regression
Data Mining and Data Warehousing Henryk Maciejewski Data Mining Predictive modelling: regression Algorithms for Predictive Modelling Contents Regression Classification Auxiliary topics: Estimation of prediction
Lecture 3: Linear methods for classification
Lecture 3: Linear methods for classification Rafael A. Irizarry and Hector Corrada Bravo February, 2010 Today we describe four specific algorithms useful for classification problems: linear regression,
Section 6: Model Selection, Logistic Regression and more...
Section 6: Model Selection, Logistic Regression and more... Carlos M. Carvalho The University of Texas McCombs School of Business http://faculty.mccombs.utexas.edu/carlos.carvalho/teaching/ 1 Model Building
Lecture 11: Confidence intervals and model comparison for linear regression; analysis of variance
Lecture 11: Confidence intervals and model comparison for linear regression; analysis of variance 14 November 2007 1 Confidence intervals and hypothesis testing for linear regression Just as there was
Cross Validation techniques in R: A brief overview of some methods, packages, and functions for assessing prediction models.
Cross Validation techniques in R: A brief overview of some methods, packages, and functions for assessing prediction models. Dr. Jon Starkweather, Research and Statistical Support consultant This month
New Work Item for ISO 3534-5 Predictive Analytics (Initial Notes and Thoughts) Introduction
Introduction New Work Item for ISO 3534-5 Predictive Analytics (Initial Notes and Thoughts) Predictive analytics encompasses the body of statistical knowledge supporting the analysis of massive data sets.
Penalized Logistic Regression and Classification of Microarray Data
Penalized Logistic Regression and Classification of Microarray Data Milan, May 2003 Anestis Antoniadis Laboratoire IMAG-LMC University Joseph Fourier Grenoble, France Penalized Logistic Regression andclassification
Estimation of σ 2, the variance of ɛ
Estimation of σ 2, the variance of ɛ The variance of the errors σ 2 indicates how much observations deviate from the fitted surface. If σ 2 is small, parameters β 0, β 1,..., β k will be reliably estimated
Chapter Seven. Multiple regression An introduction to multiple regression Performing a multiple regression on SPSS
Chapter Seven Multiple regression An introduction to multiple regression Performing a multiple regression on SPSS Section : An introduction to multiple regression WHAT IS MULTIPLE REGRESSION? Multiple
1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96
1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years
Introduction to General and Generalized Linear Models
Introduction to General and Generalized Linear Models General Linear Models - part I Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby
CURVE FITTING LEAST SQUARES APPROXIMATION
CURVE FITTING LEAST SQUARES APPROXIMATION Data analysis and curve fitting: Imagine that we are studying a physical system involving two quantities: x and y Also suppose that we expect a linear relationship
n + n log(2π) + n log(rss/n)
There is a discrepancy in R output from the functions step, AIC, and BIC over how to compute the AIC. The discrepancy is not very important, because it involves a difference of a constant factor that cancels
MULTIPLE REGRESSION WITH CATEGORICAL DATA
DEPARTMENT OF POLITICAL SCIENCE AND INTERNATIONAL RELATIONS Posc/Uapp 86 MULTIPLE REGRESSION WITH CATEGORICAL DATA I. AGENDA: A. Multiple regression with categorical variables. Coding schemes. Interpreting
Statistical Models in R
Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 1-6233 Fall, 2007 Outline Statistical Models Linear Models in R Regression Regression analysis is the appropriate
Constrained Least Squares
Constrained Least Squares Authors: G.H. Golub and C.F. Van Loan Chapter 12 in Matrix Computations, 3rd Edition, 1996, pp.580-587 CICN may05/1 Background The least squares problem: min Ax b 2 x Sometimes,
Similarity and Diagonalization. Similar Matrices
MATH022 Linear Algebra Brief lecture notes 48 Similarity and Diagonalization Similar Matrices Let A and B be n n matrices. We say that A is similar to B if there is an invertible n n matrix P such that
[3] Big Data: Model Selection
[3] Big Data: Model Selection Matt Taddy, University of Chicago Booth School of Business faculty.chicagobooth.edu/matt.taddy/teaching [3] Making Model Decisions Out-of-Sample vs In-Sample performance Regularization
Model Validation Techniques
Model Validation Techniques Kevin Mahoney, FCAS kmahoney@ travelers.com CAS RPM Seminar March 17, 2010 Uses of Statistical Models in P/C Insurance Examples of Applications Determine expected loss cost
HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION
HYPOTHESIS TESTING: CONFIDENCE INTERVALS, T-TESTS, ANOVAS, AND REGRESSION HOD 2990 10 November 2010 Lecture Background This is a lightning speed summary of introductory statistical methods for senior undergraduate
We discuss 2 resampling methods in this chapter - cross-validation - the bootstrap
Statistical Learning: Chapter 5 Resampling methods (Cross-validation and bootstrap) (Note: prior to these notes, we'll discuss a modification of an earlier train/test experiment from Ch 2) We discuss 2
Fitting Subject-specific Curves to Grouped Longitudinal Data
Fitting Subject-specific Curves to Grouped Longitudinal Data Djeundje, Viani Heriot-Watt University, Department of Actuarial Mathematics & Statistics Edinburgh, EH14 4AS, UK E-mail: [email protected] Currie,
Part II. Multiple Linear Regression
Part II Multiple Linear Regression 86 Chapter 7 Multiple Regression A multiple linear regression model is a linear model that describes how a y-variable relates to two or more xvariables (or transformations
MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors. Jordan canonical form (continued).
MATH 423 Linear Algebra II Lecture 38: Generalized eigenvectors Jordan canonical form (continued) Jordan canonical form A Jordan block is a square matrix of the form λ 1 0 0 0 0 λ 1 0 0 0 0 λ 0 0 J = 0
E(y i ) = x T i β. yield of the refined product as a percentage of crude specific gravity vapour pressure ASTM 10% point ASTM end point in degrees F
Random and Mixed Effects Models (Ch. 10) Random effects models are very useful when the observations are sampled in a highly structured way. The basic idea is that the error associated with any linear,
SAS Software to Fit the Generalized Linear Model
SAS Software to Fit the Generalized Linear Model Gordon Johnston, SAS Institute Inc., Cary, NC Abstract In recent years, the class of generalized linear models has gained popularity as a statistical modeling
Dimensionality Reduction: Principal Components Analysis
Dimensionality Reduction: Principal Components Analysis In data mining one often encounters situations where there are a large number of variables in the database. In such situations it is very likely
DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9
DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9 Analysis of covariance and multiple regression So far in this course,
Introduction to nonparametric regression: Least squares vs. Nearest neighbors
Introduction to nonparametric regression: Least squares vs. Nearest neighbors Patrick Breheny October 30 Patrick Breheny STA 621: Nonparametric Statistics 1/16 Introduction For the remainder of the course,
ECON 142 SKETCH OF SOLUTIONS FOR APPLIED EXERCISE #2
University of California, Berkeley Prof. Ken Chay Department of Economics Fall Semester, 005 ECON 14 SKETCH OF SOLUTIONS FOR APPLIED EXERCISE # Question 1: a. Below are the scatter plots of hourly wages
[1] Diagonal factorization
8.03 LA.6: Diagonalization and Orthogonal Matrices [ Diagonal factorization [2 Solving systems of first order differential equations [3 Symmetric and Orthonormal Matrices [ Diagonal factorization Recall:
Coefficient of Determination
Coefficient of Determination The coefficient of determination R 2 (or sometimes r 2 ) is another measure of how well the least squares equation ŷ = b 0 + b 1 x performs as a predictor of y. R 2 is computed
Notes on Applied Linear Regression
Notes on Applied Linear Regression Jamie DeCoster Department of Social Psychology Free University Amsterdam Van der Boechorststraat 1 1081 BT Amsterdam The Netherlands phone: +31 (0)20 444-8935 email:
Part 2: Analysis of Relationship Between Two Variables
Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable
Orthogonal Diagonalization of Symmetric Matrices
MATH10212 Linear Algebra Brief lecture notes 57 Gram Schmidt Process enables us to find an orthogonal basis of a subspace. Let u 1,..., u k be a basis of a subspace V of R n. We begin the process of finding
Location matters. 3 techniques to incorporate geo-spatial effects in one's predictive model
Location matters. 3 techniques to incorporate geo-spatial effects in one's predictive model Xavier Conort [email protected] Motivation Location matters! Observed value at one location is
An Introduction to Path Analysis. nach 3
An Introduction to Path Analysis Developed by Sewall Wright, path analysis is a method employed to determine whether or not a multivariate set of nonexperimental data fits well with a particular (a priori)
MISSING DATA TECHNIQUES WITH SAS. IDRE Statistical Consulting Group
MISSING DATA TECHNIQUES WITH SAS IDRE Statistical Consulting Group ROAD MAP FOR TODAY To discuss: 1. Commonly used techniques for handling missing data, focusing on multiple imputation 2. Issues that could
Au = = = 3u. Aw = = = 2w. so the action of A on u and w is very easy to picture: it simply amounts to a stretching by 3 and 2, respectively.
Chapter 7 Eigenvalues and Eigenvectors In this last chapter of our exploration of Linear Algebra we will revisit eigenvalues and eigenvectors of matrices, concepts that were already introduced in Geometry
Regression Analysis. Regression Analysis MIT 18.S096. Dr. Kempthorne. Fall 2013
Lecture 6: Regression Analysis MIT 18.S096 Dr. Kempthorne Fall 2013 MIT 18.S096 Regression Analysis 1 Outline Regression Analysis 1 Regression Analysis MIT 18.S096 Regression Analysis 2 Multiple Linear
Chapter 13 Introduction to Nonlinear Regression( 非 線 性 迴 歸 )
Chapter 13 Introduction to Nonlinear Regression( 非 線 性 迴 歸 ) and Neural Networks( 類 神 經 網 路 ) 許 湘 伶 Applied Linear Regression Models (Kutner, Nachtsheim, Neter, Li) hsuhl (NUK) LR Chap 10 1 / 35 13 Examples
Math 115A HW4 Solutions University of California, Los Angeles. 5 2i 6 + 4i. (5 2i)7i (6 + 4i)( 3 + i) = 35i + 14 ( 22 6i) = 36 + 41i.
Math 5A HW4 Solutions September 5, 202 University of California, Los Angeles Problem 4..3b Calculate the determinant, 5 2i 6 + 4i 3 + i 7i Solution: The textbook s instructions give us, (5 2i)7i (6 + 4i)(
Regression III: Advanced Methods
Lecture 16: Generalized Additive Models Regression III: Advanced Methods Bill Jacoby Michigan State University http://polisci.msu.edu/jacoby/icpsr/regress3 Goals of the Lecture Introduce Additive Models
Detection of changes in variance using binary segmentation and optimal partitioning
Detection of changes in variance using binary segmentation and optimal partitioning Christian Rohrbeck Abstract This work explores the performance of binary segmentation and optimal partitioning in the
Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model
Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model 1 September 004 A. Introduction and assumptions The classical normal linear regression model can be written
Chapter 15. Mixed Models. 15.1 Overview. A flexible approach to correlated data.
Chapter 15 Mixed Models A flexible approach to correlated data. 15.1 Overview Correlated data arise frequently in statistical analyses. This may be due to grouping of subjects, e.g., students within classrooms,
Cross Validation. Dr. Thomas Jensen Expedia.com
Cross Validation Dr. Thomas Jensen Expedia.com About Me PhD from ETH Used to be a statistician at Link, now Senior Business Analyst at Expedia Manage a database with 720,000 Hotels that are not on contract
Section 14 Simple Linear Regression: Introduction to Least Squares Regression
Slide 1 Section 14 Simple Linear Regression: Introduction to Least Squares Regression There are several different measures of statistical association used for understanding the quantitative relationship
Multivariate Logistic Regression
1 Multivariate Logistic Regression As in univariate logistic regression, let π(x) represent the probability of an event that depends on p covariates or independent variables. Then, using an inv.logit formulation
Numerical methods for American options
Lecture 9 Numerical methods for American options Lecture Notes by Andrzej Palczewski Computational Finance p. 1 American options The holder of an American option has the right to exercise it at any moment
Review Jeopardy. Blue vs. Orange. Review Jeopardy
Review Jeopardy Blue vs. Orange Review Jeopardy Jeopardy Round Lectures 0-3 Jeopardy Round $200 How could I measure how far apart (i.e. how different) two observations, y 1 and y 2, are from each other?
Logistic Regression (a type of Generalized Linear Model)
Logistic Regression (a type of Generalized Linear Model) 1/36 Today Review of GLMs Logistic Regression 2/36 How do we find patterns in data? We begin with a model of how the world works We use our knowledge
Multiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear.
Multiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear. In the main dialog box, input the dependent variable and several predictors.
Testing for Lack of Fit
Chapter 6 Testing for Lack of Fit How can we tell if a model fits the data? If the model is correct then ˆσ 2 should be an unbiased estimate of σ 2. If we have a model which is not complex enough to fit
Stat 5303 (Oehlert): Tukey One Degree of Freedom 1
Stat 5303 (Oehlert): Tukey One Degree of Freedom 1 > catch
University of Lille I PC first year list of exercises n 7. Review
University of Lille I PC first year list of exercises n 7 Review Exercise Solve the following systems in 4 different ways (by substitution, by the Gauss method, by inverting the matrix of coefficients
Lasso on Categorical Data
Lasso on Categorical Data Yunjin Choi, Rina Park, Michael Seo December 14, 2012 1 Introduction In social science studies, the variables of interest are often categorical, such as race, gender, and nationality.
Multivariate Analysis of Variance (MANOVA)
Chapter 415 Multivariate Analysis of Variance (MANOVA) Introduction Multivariate analysis of variance (MANOVA) is an extension of common analysis of variance (ANOVA). In ANOVA, differences among various
Rockefeller College University at Albany
Rockefeller College University at Albany PAD 705 Handout: Hypothesis Testing on Multiple Parameters In many cases we may wish to know whether two or more variables are jointly significant in a regression.
Introduction to proc glm
Lab 7: Proc GLM and one-way ANOVA STT 422: Summer, 2004 Vince Melfi SAS has several procedures for analysis of variance models, including proc anova, proc glm, proc varcomp, and proc mixed. We mainly will
Solving Linear Systems, Continued and The Inverse of a Matrix
, Continued and The of a Matrix Calculus III Summer 2013, Session II Monday, July 15, 2013 Agenda 1. The rank of a matrix 2. The inverse of a square matrix Gaussian Gaussian solves a linear system by reducing
11. Analysis of Case-control Studies Logistic Regression
Research methods II 113 11. Analysis of Case-control Studies Logistic Regression This chapter builds upon and further develops the concepts and strategies described in Ch.6 of Mother and Child Health:
Mean squared error matrix comparison of least aquares and Stein-rule estimators for regression coefficients under non-normal disturbances
METRON - International Journal of Statistics 2008, vol. LXVI, n. 3, pp. 285-298 SHALABH HELGE TOUTENBURG CHRISTIAN HEUMANN Mean squared error matrix comparison of least aquares and Stein-rule estimators
4. Multiple Regression in Practice
30 Multiple Regression in Practice 4. Multiple Regression in Practice The preceding chapters have helped define the broad principles on which regression analysis is based. What features one should look
Multinomial and Ordinal Logistic Regression
Multinomial and Ordinal Logistic Regression ME104: Linear Regression Analysis Kenneth Benoit August 22, 2012 Regression with categorical dependent variables When the dependent variable is categorical,
Exercise 1.12 (Pg. 22-23)
Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.
5. Linear Regression
5. Linear Regression Outline.................................................................... 2 Simple linear regression 3 Linear model............................................................. 4
Inner Product Spaces
Math 571 Inner Product Spaces 1. Preliminaries An inner product space is a vector space V along with a function, called an inner product which associates each pair of vectors u, v with a scalar u, v, and
Local classification and local likelihoods
Local classification and local likelihoods November 18 k-nearest neighbors The idea of local regression can be extended to classification as well The simplest way of doing so is called nearest neighbor
Two-sample inference: Continuous data
Two-sample inference: Continuous data Patrick Breheny April 5 Patrick Breheny STA 580: Biostatistics I 1/32 Introduction Our next two lectures will deal with two-sample inference for continuous data As
Week 3&4: Z tables and the Sampling Distribution of X
Week 3&4: Z tables and the Sampling Distribution of X 2 / 36 The Standard Normal Distribution, or Z Distribution, is the distribution of a random variable, Z N(0, 1 2 ). The distribution of any other normal
Random effects and nested models with SAS
Random effects and nested models with SAS /************* classical2.sas ********************* Three levels of factor A, four levels of B Both fixed Both random A fixed, B random B nested within A ***************************************************/
FACTOR ANALYSIS NASC
FACTOR ANALYSIS NASC Factor Analysis A data reduction technique designed to represent a wide range of attributes on a smaller number of dimensions. Aim is to identify groups of variables which are relatively
Chapter 4: Vector Autoregressive Models
Chapter 4: Vector Autoregressive Models 1 Contents: Lehrstuhl für Department Empirische of Wirtschaftsforschung Empirical Research and und Econometrics Ökonometrie IV.1 Vector Autoregressive Models (VAR)...
Notes on Orthogonal and Symmetric Matrices MENU, Winter 2013
Notes on Orthogonal and Symmetric Matrices MENU, Winter 201 These notes summarize the main properties and uses of orthogonal and symmetric matrices. We covered quite a bit of material regarding these topics,
Lesson 1: Comparison of Population Means Part c: Comparison of Two- Means
Lesson : Comparison of Population Means Part c: Comparison of Two- Means Welcome to lesson c. This third lesson of lesson will discuss hypothesis testing for two independent means. Steps in Hypothesis
Statistical Models in R
Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 1-6233 Fall, 2007 Outline Statistical Models Structure of models in R Model Assessment (Part IA) Anova
Nonlinear Regression Functions. SW Ch 8 1/54/
Nonlinear Regression Functions SW Ch 8 1/54/ The TestScore STR relation looks linear (maybe) SW Ch 8 2/54/ But the TestScore Income relation looks nonlinear... SW Ch 8 3/54/ Nonlinear Regression General
Topic 3. Chapter 5: Linear Regression in Matrix Form
Topic Overview Statistics 512: Applied Linear Models Topic 3 This topic will cover thinking in terms of matrices regression on multiple predictor variables case study: CS majors Text Example (NKNW 241)
Nonparametric statistics and model selection
Chapter 5 Nonparametric statistics and model selection In Chapter, we learned about the t-test and its variations. These were designed to compare sample means, and relied heavily on assumptions of normality.
Hypothesis testing - Steps
Hypothesis testing - Steps Steps to do a two-tailed test of the hypothesis that β 1 0: 1. Set up the hypotheses: H 0 : β 1 = 0 H a : β 1 0. 2. Compute the test statistic: t = b 1 0 Std. error of b 1 =
Imputing Missing Data using SAS
ABSTRACT Paper 3295-2015 Imputing Missing Data using SAS Christopher Yim, California Polytechnic State University, San Luis Obispo Missing data is an unfortunate reality of statistics. However, there are
Rob J Hyndman. Forecasting using. 11. Dynamic regression OTexts.com/fpp/9/1/ Forecasting using R 1
Rob J Hyndman Forecasting using 11. Dynamic regression OTexts.com/fpp/9/1/ Forecasting using R 1 Outline 1 Regression with ARIMA errors 2 Example: Japanese cars 3 Using Fourier terms for seasonality 4
