Stat 5303 (Oehlert): Tukey One Degree of Freedom 1
|
|
|
- Rachel Pearson
- 10 years ago
- Views:
Transcription
1 Stat 5303 (Oehlert): Tukey One Degree of Freedom 1 > catch<-c(19.1,50.1,123,23.4,166.1,407.4, 29.5,223.9,398.1,23.4,58.9,229.1,16.6,64.6,251.2) These data are average numbers of insects trapped for 3 kinds of traps used in 5 periods. Data from Snedecor and Cochran. > trap<-factor(rep(1:3,5)) Factors to indicate traps and periods. Replication is just n=1. > period<-factor(rep(1:5,each=3)) > fit1 <- lm(catch period+trap); anova(fit1) Here is the standard ANOVA. Because we have only a single replication, we have no estimate of pure error. Our error here is really interaction, so we might want to check to see if some of this could be reduced via transformation. Response: catch period trap *** Residuals > plot(fit1,which=1) OK, here is trouble. If the interaction can truly be ignored, this plot should just look like random noise. It doesn t. This curved shape suggests that a transformation could help. Residuals vs Fitted 1 Residuals Fitted values lm.default(catch ~ period + trap) > preds<-predict(fit1) To do Tukey One DF, start by getting the predicted values.
2 Stat 5303 (Oehlert): Tukey One Degree of Freedom 2 > coef(fit1) (Intercept) period1 period2 period3 period4 trap trap > rspv<-predsˆ2/2/coef(fit1)[1] Get the squares of the predicted values and rescale them by dividing by twice the mean. (The first coefficient is ˆµ.) > fit2 <- lm(catch period+trap+rspv);anova(fit2) Get the Tukey 1df test by doing an ANOVA with the squared predicted values as a third term after rows and columns. This is the simplest way to get a test for Tukey nonadditivity. In this case, preds2 is highly significant, so the Tukey test is indicating that interaction can be reduced through a transformation. Response: catch period ** trap e-06 *** rspv ** Residuals > plot(fit2,which=1) The residual plot is improved, but still not great. Residuals vs Fitted 8 Residuals Fitted values lm.default(catch ~ period + trap + rspv)
3 Stat 5303 (Oehlert): Tukey One Degree of Freedom 3 > summary(fit2) The coefficient of preds2 is 0.88, with a standard error of.17. Thus, a reasonable range for the coefficient is.54 to So a reasonable range for 1 minus the coefficient is -.22 up to.46. So log is in the range, as is a fourth root, (almost) a square root, and various others. The fact of the matter is that this is not always the best way to find the transformation power. A better way is to try a bunch of different powers and then take the one that minimizes the Tukey F-test. Here, the power that minimizes things is about -.5 (not shown). Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) period period period period trap trap rspv ** Residual standard error: on 7 degrees of freedom Multiple R-squared: ,Adjusted R-squared: F-statistic: on 7 and 7 DF, p-value: 4.122e-05 > boxcox(fit1) Box Cox also suggests a reciprocal square root. 95% log Likelihood λ
4 Stat 5303 (Oehlert): Tukey One Degree of Freedom 4 > inverseresponseplot(fit1) The inverse response plot is also supposed to transform to a better fit. It likes the regular square root. lambda RSS λ^: yhat catch > # So we now have three suggested transformations ranging from square root to reciprocal square root. Which one do we use? The proof of the pudding is in the tasting, and the proof of the transformation is in doing the transformation and then looking at the residuals. > fit3 <- lm(log(catch) period+trap);anova(fit3) Here we look at the log. Note that the error, which is also the interaction, is about 4% of total variation (it was about 12% on the original scale). Response: log(catch) period * trap e-06 *** Residuals
5 Stat 5303 (Oehlert): Tukey One Degree of Freedom 5 > plot(fit3,which=1) This is better than the original scale, but in no way could it be called good. Compare this to the residuals when we include rspv. Residuals vs Fitted Residuals Fitted values lm.default(log(catch) ~ period + trap) > fit4 <- lm(catchˆ-.5 period+trap);anova(fit4) Repeat with reciprocal square root. Now the error is about 0.3% of total variation, so it s the best one yet. Response: catchˆ-0.5 period * trap e-07 *** Residuals
6 Stat 5303 (Oehlert): Tukey One Degree of Freedom 6 > plot(fit4,which=1) This is the best we ve seen, but still not very good. Residuals vs Fitted Residuals Fitted values lm.default(catch^ 0.5 ~ period + trap) > fit5 <- lm(sqrt(catch) period+trap);anova(fit5) Repeat with square root. Now the error is about 7% of total variation, so not so good. Response: sqrt(catch) period * trap e-05 *** Residuals > # Let s look at what a Tukey style interaction looks like in residuals. We work from the original model. What these steps will do is to put the residuals in a matrix, and then order the rows and columns so that the row and column effects are in increasing order. > m <- matrix(residuals(fit1),3);m Here is the matrix of residuals. Note that this worked because the data were entered in a systematic order. If things were randomized we would need to work harder to associate treatments with their residuals in a matrix form. [,1] [,2] [,3] [,4] [,5] [1,] [2,] [3,] > p <- model.effects(fit1,"period");p
7 Stat 5303 (Oehlert): Tukey One Degree of Freedom 7 These are the period effects > op <- order(p);op This is the order in which we will need to sort the columns to put column effects in increasing order. [1] > t<-model.effects(fit1,"trap");t Trap effects > ot <- order(t);ot Order to put trap effects into increasing order. Well, they were already in increasing order, so this doesn t change anything. [1] > m[ot,op] Here are the residuals reordered into increasing row and column effect orders. Note the pattern of negatives and positives in opposite corners. This is the Tukey 1 df interaction pattern in residuals. It looks a lot like a linear by linear interaction (once the rows and columns have been properly ordered). [,1] [,2] [,3] [,4] [,5] [1,] [2,] [3,] > # What we re going to do now is to redo the Tukey using comparison values (in preparation for the Mandel models). > p <- model.effects(fit1,"period");allp <- p[period] As above, but now repeat these values as appropriate for levels of period. > t <- model.effects(fit,"trap");allt <- t[trap] Similarly for trap effects. > compvals <- allp*allt/coef(fit1)[1] These are the comparison values. > fit2b <- lm(catch period+trap+compvals) Refit the Tukey model with comparison values.
8 Stat 5303 (Oehlert): Tukey One Degree of Freedom 8 > summary(fit2b) Two points. First, the estimated coefficient using compvals is the same as using rspv. However, when you use compvals the coefficients for period and trap are the same as they were in fit1 (this is not true when using rspv). Call: lm.default(formula = catch period + trap + compvals) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) e-07 *** period ** period ** period ** period trap e-05 *** trap * compvals ** Residual standard error: on 7 degrees of freedom Multiple R-squared: ,Adjusted R-squared: F-statistic: on 7 and 7 DF, p-value: 4.122e-05 > fit.rowmodel <- lm(catch trap+period+period*allt) The distinction of rows versus columns is arbitrary, but here we we fit a different slope to trap effects separately for each period. > fit.rowmodel The ally will always be non-estimable, and the trap and period effects are the same as in the base model. Call: lm.default(formula = catch trap + period + period * allt) Coefficients: (Intercept) trap1 trap2 period1 period period3 period4 allt period1:allt period2:allt NA period3:allt period4:allt
9 Stat 5303 (Oehlert): Tukey One Degree of Freedom 9 > model.effects(fit.rowmodel,"period:allt") The slope adjustments sum to 0. allt > anova(fit.rowmodel) The row model is borderline significantly better than the additive model. Response: catch trap *** period * period:allt Residuals > anova(fit1,fit2b,fit.rowmodel) Tukey is significantly better than additive, but the row model does not significantly improve on Tukey. Model 1: catch trap + period Model 2: catch period + trap + compvals Model 3: catch trap + period + period * allt Res.Df RSS Df Sum of Sq F Pr(>F) ** > fit.colmodel <- lm(catch trap+period+trap*allp) Here we fit different period slopes for each trap. > anova(fit.colmodel) Column model is significantly better than additive. Response: catch trap e-06 *** period ** trap:allp ** Residuals
10 Stat 5303 (Oehlert): Tukey One Degree of Freedom 10 > anova(fit1,fit2b,fit.colmodel) But the column model is not really significantly better than the Tukey model. Model 1: catch trap + period Model 2: catch period + trap + compvals Model 3: catch trap + period + trap * allp Res.Df RSS Df Sum of Sq F Pr(>F) *** > fit.slpmodel <- lm(catch trap+period+trap*allp+period*allt) We can fit the model with both the slopes. > anova(fit.slpmodel)... but it is not significantly better than period slopes model. Response: catch trap ** period * trap:allp * period:allt Residuals > # Note that we get the same predicted values but different individual terms estimated in the model depending on which order we enter the rows and column slope effects.
Statistical Models in R
Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 1-6233 Fall, 2007 Outline Statistical Models Linear Models in R Regression Regression analysis is the appropriate
Multiple Linear Regression
Multiple Linear Regression A regression with two or more explanatory variables is called a multiple regression. Rather than modeling the mean response as a straight line, as in simple regression, it is
Testing for Lack of Fit
Chapter 6 Testing for Lack of Fit How can we tell if a model fits the data? If the model is correct then ˆσ 2 should be an unbiased estimate of σ 2. If we have a model which is not complex enough to fit
E(y i ) = x T i β. yield of the refined product as a percentage of crude specific gravity vapour pressure ASTM 10% point ASTM end point in degrees F
Random and Mixed Effects Models (Ch. 10) Random effects models are very useful when the observations are sampled in a highly structured way. The basic idea is that the error associated with any linear,
NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )
Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates
BIOL 933 Lab 6 Fall 2015. Data Transformation
BIOL 933 Lab 6 Fall 2015 Data Transformation Transformations in R General overview Log transformation Power transformation The pitfalls of interpreting interactions in transformed data Transformations
DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9
DEPARTMENT OF PSYCHOLOGY UNIVERSITY OF LANCASTER MSC IN PSYCHOLOGICAL RESEARCH METHODS ANALYSING AND INTERPRETING DATA 2 PART 1 WEEK 9 Analysis of covariance and multiple regression So far in this course,
Comparing Nested Models
Comparing Nested Models ST 430/514 Two models are nested if one model contains all the terms of the other, and at least one additional term. The larger model is the complete (or full) model, and the smaller
Psychology 205: Research Methods in Psychology
Psychology 205: Research Methods in Psychology Using R to analyze the data for study 2 Department of Psychology Northwestern University Evanston, Illinois USA November, 2012 1 / 38 Outline 1 Getting ready
ANOVA. February 12, 2015
ANOVA February 12, 2015 1 ANOVA models Last time, we discussed the use of categorical variables in multivariate regression. Often, these are encoded as indicator columns in the design matrix. In [1]: %%R
1. What is the critical value for this 95% confidence interval? CV = z.025 = invnorm(0.025) = 1.96
1 Final Review 2 Review 2.1 CI 1-propZint Scenario 1 A TV manufacturer claims in its warranty brochure that in the past not more than 10 percent of its TV sets needed any repair during the first two years
Lucky vs. Unlucky Teams in Sports
Lucky vs. Unlucky Teams in Sports Introduction Assuming gambling odds give true probabilities, one can classify a team as having been lucky or unlucky so far. Do results of matches between lucky and unlucky
5. Linear Regression
5. Linear Regression Outline.................................................................... 2 Simple linear regression 3 Linear model............................................................. 4
Using R for Linear Regression
Using R for Linear Regression In the following handout words and symbols in bold are R functions and words and symbols in italics are entries supplied by the user; underlined words and symbols are optional
Outline. Topic 4 - Analysis of Variance Approach to Regression. Partitioning Sums of Squares. Total Sum of Squares. Partitioning sums of squares
Topic 4 - Analysis of Variance Approach to Regression Outline Partitioning sums of squares Degrees of freedom Expected mean squares General linear test - Fall 2013 R 2 and the coefficient of correlation
Final Exam Practice Problem Answers
Final Exam Practice Problem Answers The following data set consists of data gathered from 77 popular breakfast cereals. The variables in the data set are as follows: Brand: The brand name of the cereal
EDUCATION AND VOCABULARY MULTIPLE REGRESSION IN ACTION
EDUCATION AND VOCABULARY MULTIPLE REGRESSION IN ACTION EDUCATION AND VOCABULARY 5-10 hours of input weekly is enough to pick up a new language (Schiff & Myers, 1988). Dutch children spend 5.5 hours/day
1.1. Simple Regression in Excel (Excel 2010).
.. Simple Regression in Excel (Excel 200). To get the Data Analysis tool, first click on File > Options > Add-Ins > Go > Select Data Analysis Toolpack & Toolpack VBA. Data Analysis is now available under
How To Run Statistical Tests in Excel
How To Run Statistical Tests in Excel Microsoft Excel is your best tool for storing and manipulating data, calculating basic descriptive statistics such as means and standard deviations, and conducting
MIXED MODEL ANALYSIS USING R
Research Methods Group MIXED MODEL ANALYSIS USING R Using Case Study 4 from the BIOMETRICS & RESEARCH METHODS TEACHING RESOURCE BY Stephen Mbunzi & Sonal Nagda www.ilri.org/rmg www.worldagroforestrycentre.org/rmg
Basic Statistics and Data Analysis for Health Researchers from Foreign Countries
Basic Statistics and Data Analysis for Health Researchers from Foreign Countries Volkert Siersma [email protected] The Research Unit for General Practice in Copenhagen Dias 1 Content Quantifying association
We extended the additive model in two variables to the interaction model by adding a third term to the equation.
Quadratic Models We extended the additive model in two variables to the interaction model by adding a third term to the equation. Similarly, we can extend the linear model in one variable to the quadratic
Correlation and Simple Linear Regression
Correlation and Simple Linear Regression We are often interested in studying the relationship among variables to determine whether they are associated with one another. When we think that changes in a
Chapter 4 and 5 solutions
Chapter 4 and 5 solutions 4.4. Three different washing solutions are being compared to study their effectiveness in retarding bacteria growth in five gallon milk containers. The analysis is done in a laboratory,
n + n log(2π) + n log(rss/n)
There is a discrepancy in R output from the functions step, AIC, and BIC over how to compute the AIC. The discrepancy is not very important, because it involves a difference of a constant factor that cancels
Stat 412/512 CASE INFLUENCE STATISTICS. Charlotte Wickham. stat512.cwick.co.nz. Feb 2 2015
Stat 412/512 CASE INFLUENCE STATISTICS Feb 2 2015 Charlotte Wickham stat512.cwick.co.nz Regression in your field See website. You may complete this assignment in pairs. Find a journal article in your field
Lecture 11: Confidence intervals and model comparison for linear regression; analysis of variance
Lecture 11: Confidence intervals and model comparison for linear regression; analysis of variance 14 November 2007 1 Confidence intervals and hypothesis testing for linear regression Just as there was
Chapter 3 Quantitative Demand Analysis
Managerial Economics & Business Strategy Chapter 3 uantitative Demand Analysis McGraw-Hill/Irwin Copyright 2010 by the McGraw-Hill Companies, Inc. All rights reserved. Overview I. The Elasticity Concept
Week 5: Multiple Linear Regression
BUS41100 Applied Regression Analysis Week 5: Multiple Linear Regression Parameter estimation and inference, forecasting, diagnostics, dummy variables Robert B. Gramacy The University of Chicago Booth School
Simple Linear Regression Inference
Simple Linear Regression Inference 1 Inference requirements The Normality assumption of the stochastic term e is needed for inference even if it is not a OLS requirement. Therefore we have: Interpretation
MULTIPLE LINEAR REGRESSION ANALYSIS USING MICROSOFT EXCEL. by Michael L. Orlov Chemistry Department, Oregon State University (1996)
MULTIPLE LINEAR REGRESSION ANALYSIS USING MICROSOFT EXCEL by Michael L. Orlov Chemistry Department, Oregon State University (1996) INTRODUCTION In modern science, regression analysis is a necessary part
SPSS Guide: Regression Analysis
SPSS Guide: Regression Analysis I put this together to give you a step-by-step guide for replicating what we did in the computer lab. It should help you run the tests we covered. The best way to get familiar
KSTAT MINI-MANUAL. Decision Sciences 434 Kellogg Graduate School of Management
KSTAT MINI-MANUAL Decision Sciences 434 Kellogg Graduate School of Management Kstat is a set of macros added to Excel and it will enable you to do the statistics required for this course very easily. To
Multiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear.
Multiple Regression in SPSS This example shows you how to perform multiple regression. The basic command is regression : linear. In the main dialog box, input the dependent variable and several predictors.
Exchange Rate Regime Analysis for the Chinese Yuan
Exchange Rate Regime Analysis for the Chinese Yuan Achim Zeileis Ajay Shah Ila Patnaik Abstract We investigate the Chinese exchange rate regime after China gave up on a fixed exchange rate to the US dollar
Univariate Regression
Univariate Regression Correlation and Regression The regression line summarizes the linear relationship between 2 variables Correlation coefficient, r, measures strength of relationship: the closer r is
Simple Regression Theory II 2010 Samuel L. Baker
SIMPLE REGRESSION THEORY II 1 Simple Regression Theory II 2010 Samuel L. Baker Assessing how good the regression equation is likely to be Assignment 1A gets into drawing inferences about how close the
2. What is the general linear model to be used to model linear trend? (Write out the model) = + + + or
Simple and Multiple Regression Analysis Example: Explore the relationships among Month, Adv.$ and Sales $: 1. Prepare a scatter plot of these data. The scatter plots for Adv.$ versus Sales, and Month versus
Doing Multiple Regression with SPSS. In this case, we are interested in the Analyze options so we choose that menu. If gives us a number of choices:
Doing Multiple Regression with SPSS Multiple Regression for Data Already in Data Editor Next we want to specify a multiple regression analysis for these data. The menu bar for SPSS offers several options:
Getting Correct Results from PROC REG
Getting Correct Results from PROC REG Nathaniel Derby, Statis Pro Data Analytics, Seattle, WA ABSTRACT PROC REG, SAS s implementation of linear regression, is often used to fit a line without checking
Module 5: Multiple Regression Analysis
Using Statistical Data Using to Make Statistical Decisions: Data Multiple to Make Regression Decisions Analysis Page 1 Module 5: Multiple Regression Analysis Tom Ilvento, University of Delaware, College
Random effects and nested models with SAS
Random effects and nested models with SAS /************* classical2.sas ********************* Three levels of factor A, four levels of B Both fixed Both random A fixed, B random B nested within A ***************************************************/
Recall this chart that showed how most of our course would be organized:
Chapter 4 One-Way ANOVA Recall this chart that showed how most of our course would be organized: Explanatory Variable(s) Response Variable Methods Categorical Categorical Contingency Tables Categorical
Gamma Distribution Fitting
Chapter 552 Gamma Distribution Fitting Introduction This module fits the gamma probability distributions to a complete or censored set of individual or grouped data values. It outputs various statistics
Outline. Dispersion Bush lupine survival Quasi-Binomial family
Outline 1 Three-way interactions 2 Overdispersion in logistic regression Dispersion Bush lupine survival Quasi-Binomial family 3 Simulation for inference Why simulations Testing model fit: simulating the
Data Analysis Tools. Tools for Summarizing Data
Data Analysis Tools This section of the notes is meant to introduce you to many of the tools that are provided by Excel under the Tools/Data Analysis menu item. If your computer does not have that tool
ABSORBENCY OF PAPER TOWELS
ABSORBENCY OF PAPER TOWELS 15. Brief Version of the Case Study 15.1 Problem Formulation 15.2 Selection of Factors 15.3 Obtaining Random Samples of Paper Towels 15.4 How will the Absorbency be measured?
Statistics and Data Analysis
Statistics and Data Analysis In this guide I will make use of Microsoft Excel in the examples and explanations. This should not be taken as an endorsement of Microsoft or its products. In fact, there are
Using Microsoft Excel to Plot and Analyze Kinetic Data
Entering and Formatting Data Using Microsoft Excel to Plot and Analyze Kinetic Data Open Excel. Set up the spreadsheet page (Sheet 1) so that anyone who reads it will understand the page (Figure 1). Type
Statistical Functions in Excel
Statistical Functions in Excel There are many statistical functions in Excel. Moreover, there are other functions that are not specified as statistical functions that are helpful in some statistical analyses.
An analysis method for a quantitative outcome and two categorical explanatory variables.
Chapter 11 Two-Way ANOVA An analysis method for a quantitative outcome and two categorical explanatory variables. If an experiment has a quantitative outcome and two categorical explanatory variables that
GLM I An Introduction to Generalized Linear Models
GLM I An Introduction to Generalized Linear Models CAS Ratemaking and Product Management Seminar March 2009 Presented by: Tanya D. Havlicek, Actuarial Assistant 0 ANTITRUST Notice The Casualty Actuarial
MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS
MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS MSR = Mean Regression Sum of Squares MSE = Mean Squared Error RSS = Regression Sum of Squares SSE = Sum of Squared Errors/Residuals α = Level of Significance
International Statistical Institute, 56th Session, 2007: Phil Everson
Teaching Regression using American Football Scores Everson, Phil Swarthmore College Department of Mathematics and Statistics 5 College Avenue Swarthmore, PA198, USA E-mail: [email protected] 1. Introduction
ORTHOGONAL POLYNOMIAL CONTRASTS INDIVIDUAL DF COMPARISONS: EQUALLY SPACED TREATMENTS
ORTHOGONAL POLYNOMIAL CONTRASTS INDIVIDUAL DF COMPARISONS: EQUALLY SPACED TREATMENTS Many treatments are equally spaced (incremented). This provides us with the opportunity to look at the response curve
Bill Burton Albert Einstein College of Medicine [email protected] April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1
Bill Burton Albert Einstein College of Medicine [email protected] April 28, 2014 EERS: Managing the Tension Between Rigor and Resources 1 Calculate counts, means, and standard deviations Produce
Section 13, Part 1 ANOVA. Analysis Of Variance
Section 13, Part 1 ANOVA Analysis Of Variance Course Overview So far in this course we ve covered: Descriptive statistics Summary statistics Tables and Graphs Probability Probability Rules Probability
Please follow the directions once you locate the Stata software in your computer. Room 114 (Business Lab) has computers with Stata software
STATA Tutorial Professor Erdinç Please follow the directions once you locate the Stata software in your computer. Room 114 (Business Lab) has computers with Stata software 1.Wald Test Wald Test is used
Regression step-by-step using Microsoft Excel
Step 1: Regression step-by-step using Microsoft Excel Notes prepared by Pamela Peterson Drake, James Madison University Type the data into the spreadsheet The example used throughout this How to is a regression
Multiple Optimization Using the JMP Statistical Software Kodak Research Conference May 9, 2005
Multiple Optimization Using the JMP Statistical Software Kodak Research Conference May 9, 2005 Philip J. Ramsey, Ph.D., Mia L. Stephens, MS, Marie Gaudard, Ph.D. North Haven Group, http://www.northhavengroup.com/
Statistical Models in R
Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 1-6233 Fall, 2007 Outline Statistical Models Structure of models in R Model Assessment (Part IA) Anova
New SAS Procedures for Analysis of Sample Survey Data
New SAS Procedures for Analysis of Sample Survey Data Anthony An and Donna Watts, SAS Institute Inc, Cary, NC Abstract Researchers use sample surveys to obtain information on a wide variety of issues Many
Main Effects and Interactions
Main Effects & Interactions page 1 Main Effects and Interactions So far, we ve talked about studies in which there is just one independent variable, such as violence of television program. You might randomly
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression
Unit 31 A Hypothesis Test about Correlation and Slope in a Simple Linear Regression Objectives: To perform a hypothesis test concerning the slope of a least squares line To recognize that testing for a
Part 2: Analysis of Relationship Between Two Variables
Part 2: Analysis of Relationship Between Two Variables Linear Regression Linear correlation Significance Tests Multiple regression Linear Regression Y = a X + b Dependent Variable Independent Variable
N-Way Analysis of Variance
N-Way Analysis of Variance 1 Introduction A good example when to use a n-way ANOVA is for a factorial design. A factorial design is an efficient way to conduct an experiment. Each observation has data
Exercise 1.12 (Pg. 22-23)
Individuals: The objects that are described by a set of data. They may be people, animals, things, etc. (Also referred to as Cases or Records) Variables: The characteristics recorded about each individual.
Chapter 7. One-way ANOVA
Chapter 7 One-way ANOVA One-way ANOVA examines equality of population means for a quantitative outcome and a single categorical explanatory variable with any number of levels. The t-test of Chapter 6 looks
Case Study in Data Analysis Does a drug prevent cardiomegaly in heart failure?
Case Study in Data Analysis Does a drug prevent cardiomegaly in heart failure? Harvey Motulsky [email protected] This is the first case in what I expect will be a series of case studies. While I mention
xtmixed & denominator degrees of freedom: myth or magic
xtmixed & denominator degrees of freedom: myth or magic 2011 Chicago Stata Conference Phil Ender UCLA Statistical Consulting Group July 2011 Phil Ender xtmixed & denominator degrees of freedom: myth or
POLYNOMIAL AND MULTIPLE REGRESSION. Polynomial regression used to fit nonlinear (e.g. curvilinear) data into a least squares linear regression model.
Polynomial Regression POLYNOMIAL AND MULTIPLE REGRESSION Polynomial regression used to fit nonlinear (e.g. curvilinear) data into a least squares linear regression model. It is a form of linear regression
Introduction to Regression and Data Analysis
Statlab Workshop Introduction to Regression and Data Analysis with Dan Campbell and Sherlock Campbell October 28, 2008 I. The basics A. Types of variables Your variables may take several forms, and it
Minitab Tutorials for Design and Analysis of Experiments. Table of Contents
Table of Contents Introduction to Minitab...2 Example 1 One-Way ANOVA...3 Determining Sample Size in One-way ANOVA...8 Example 2 Two-factor Factorial Design...9 Example 3: Randomized Complete Block Design...14
MSwM examples. Jose A. Sanchez-Espigares, Alberto Lopez-Moreno Dept. of Statistics and Operations Research UPC-BarcelonaTech.
MSwM examples Jose A. Sanchez-Espigares, Alberto Lopez-Moreno Dept. of Statistics and Operations Research UPC-BarcelonaTech February 24, 2014 Abstract Two examples are described to illustrate the use of
2013 MBA Jump Start Program. Statistics Module Part 3
2013 MBA Jump Start Program Module 1: Statistics Thomas Gilbert Part 3 Statistics Module Part 3 Hypothesis Testing (Inference) Regressions 2 1 Making an Investment Decision A researcher in your firm just
Lets suppose we rolled a six-sided die 150 times and recorded the number of times each outcome (1-6) occured. The data is
In this lab we will look at how R can eliminate most of the annoying calculations involved in (a) using Chi-Squared tests to check for homogeneity in two-way tables of catagorical data and (b) computing
Multiple Regression. Page 24
Multiple Regression Multiple regression is an extension of simple (bi-variate) regression. The goal of multiple regression is to enable a researcher to assess the relationship between a dependent (predicted)
SAS Software to Fit the Generalized Linear Model
SAS Software to Fit the Generalized Linear Model Gordon Johnston, SAS Institute Inc., Cary, NC Abstract In recent years, the class of generalized linear models has gained popularity as a statistical modeling
Predictor Coef StDev T P Constant 970667056 616256122 1.58 0.154 X 0.00293 0.06163 0.05 0.963. S = 0.5597 R-Sq = 0.0% R-Sq(adj) = 0.
Statistical analysis using Microsoft Excel Microsoft Excel spreadsheets have become somewhat of a standard for data storage, at least for smaller data sets. This, along with the program often being packaged
This can dilute the significance of a departure from the null hypothesis. We can focus the test on departures of a particular form.
One-Degree-of-Freedom Tests Test for group occasion interactions has (number of groups 1) number of occasions 1) degrees of freedom. This can dilute the significance of a departure from the null hypothesis.
Generalized Linear Models
Generalized Linear Models We have previously worked with regression models where the response variable is quantitative and normally distributed. Now we turn our attention to two types of models where the
STATISTICA Formula Guide: Logistic Regression. Table of Contents
: Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 Sigma-Restricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary
Analysis of Variance. MINITAB User s Guide 2 3-1
3 Analysis of Variance Analysis of Variance Overview, 3-2 One-Way Analysis of Variance, 3-5 Two-Way Analysis of Variance, 3-11 Analysis of Means, 3-13 Overview of Balanced ANOVA and GLM, 3-18 Balanced
Analysis of Variance ANOVA
Analysis of Variance ANOVA Overview We ve used the t -test to compare the means from two independent groups. Now we ve come to the final topic of the course: how to compare means from more than two populations.
Elementary Statistics Sample Exam #3
Elementary Statistics Sample Exam #3 Instructions. No books or telephones. Only the supplied calculators are allowed. The exam is worth 100 points. 1. A chi square goodness of fit test is considered to
" Y. Notation and Equations for Regression Lecture 11/4. Notation:
Notation: Notation and Equations for Regression Lecture 11/4 m: The number of predictor variables in a regression Xi: One of multiple predictor variables. The subscript i represents any number from 1 through
STAT 350 Practice Final Exam Solution (Spring 2015)
PART 1: Multiple Choice Questions: 1) A study was conducted to compare five different training programs for improving endurance. Forty subjects were randomly divided into five groups of eight subjects
MEAN SEPARATION TESTS (LSD AND Tukey s Procedure) is rejected, we need a method to determine which means are significantly different from the others.
MEAN SEPARATION TESTS (LSD AND Tukey s Procedure) If Ho 1 2... n is rejected, we need a method to determine which means are significantly different from the others. We ll look at three separation tests
One-Way Analysis of Variance (ANOVA) Example Problem
One-Way Analysis of Variance (ANOVA) Example Problem Introduction Analysis of Variance (ANOVA) is a hypothesis-testing technique used to test the equality of two or more population (or treatment) means
EXCEL Analysis TookPak [Statistical Analysis] 1. First of all, check to make sure that the Analysis ToolPak is installed. Here is how you do it:
EXCEL Analysis TookPak [Statistical Analysis] 1 First of all, check to make sure that the Analysis ToolPak is installed. Here is how you do it: a. From the Tools menu, choose Add-Ins b. Make sure Analysis
The Analysis of Variance ANOVA
-3σ -σ -σ +σ +σ +3σ The Analysis of Variance ANOVA Lecture 0909.400.0 / 0909.400.0 Dr. P. s Clinic Consultant Module in Probability & Statistics in Engineering Today in P&S -3σ -σ -σ +σ +σ +3σ Analysis
Chapter 7: Simple linear regression Learning Objectives
Chapter 7: Simple linear regression Learning Objectives Reading: Section 7.1 of OpenIntro Statistics Video: Correlation vs. causation, YouTube (2:19) Video: Intro to Linear Regression, YouTube (5:18) -
Regression Analysis: A Complete Example
Regression Analysis: A Complete Example This section works out an example that includes all the topics we have discussed so far in this chapter. A complete example of regression analysis. PhotoDisc, Inc./Getty
Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data
Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data Introduction In several upcoming labs, a primary goal will be to determine the mathematical relationship between two variable
Curve Fitting. Before You Begin
Curve Fitting Chapter 16: Curve Fitting Before You Begin Selecting the Active Data Plot When performing linear or nonlinear fitting when the graph window is active, you must make the desired data plot
Part II. Multiple Linear Regression
Part II Multiple Linear Regression 86 Chapter 7 Multiple Regression A multiple linear regression model is a linear model that describes how a y-variable relates to two or more xvariables (or transformations
Multivariate Analysis of Variance (MANOVA)
Chapter 415 Multivariate Analysis of Variance (MANOVA) Introduction Multivariate analysis of variance (MANOVA) is an extension of common analysis of variance (ANOVA). In ANOVA, differences among various
Statistics Review PSY379
Statistics Review PSY379 Basic concepts Measurement scales Populations vs. samples Continuous vs. discrete variable Independent vs. dependent variable Descriptive vs. inferential stats Common analyses
Exploratory data analysis (Chapter 2) Fall 2011
Exploratory data analysis (Chapter 2) Fall 2011 Data Examples Example 1: Survey Data 1 Data collected from a Stat 371 class in Fall 2005 2 They answered questions about their: gender, major, year in school,
