Dr Brian Beaudrie pg. 1


 Shauna Bridges
 5 years ago
 Views:
Transcription
1 Multiplication of Decimals Name: Multiplication of a decimal by a whole number can be represented by the repeated addition model. For example, means add 0.14 three times, regroup, and simplify, as shown below: = roughly There are three separate cases of multiplication, each with its own representation. The first case has already been described: multiplication of a whole number by a decimal. Try these two multiplication problems, modeling what is shown in the example above: = = Dr Brian Beaudrie pg. 1
2 How about this one? = + Multiplication of a whole number by a decimal is an important step in helping a child conceptualize multiplication of two decimals. The second case is the opposite of the first case: multiplication of a decimal by a whole number. For example, suppose you going to find the solution to Of course, you could use the law, which allows you to rewrite the equation as ; but since most 3 rd graders don t understand that law, let s try a different approach: Since we are multiplying a decimal by 2 (in this case) begin with two decimal squares, and shade each with Then, combine them into one decimal square (with regrouping, if necessary) = 0.56 joining regroup Go ahead and try it: (you can combine the joining and regrouping steps): = join and regroup The third case involves multiplying a decimal by a decimal. For this activity, we will only do tenths multiplied by tenths. The method we employ might look a bit familiar we did something similar to it when we did fractions. Dr Brian Beaudrie pg. 2
3 Suppose we wanted to multiply 0.3 by 0.4. Looking at our decimal square we would do the following: We would divide the tenths along the horizontal axis into tenths as well, as many tenths as we needed. From there, we would shade in up to 0.3 and over to 0.4. From that, we would then count the shaded boxes to obtain our answer. So, =.12 Try out this idea on a few examples: = = Questions: 1) How could you represent thousandths using decimal squares? 2) Why do we only do examples that show tenths multiplied by tenths? Why would showing an example having tenths multiplied by hundredths be difficult? 3) What are some of the limitations of using the decimal squares? Dr Brian Beaudrie pg. 3
4 Division of Decimals With division of decimals, there are also three separate cases to consider. The first case, division of a decimal by a whole number, is done using the partitive model of division. Example: The problem is essentially asking to separate 0.54 into three sets of equal size. If we were to estimate a range for our answer, we know that our answer will be more than 0.1 but less than 0.2 because we can split the columns (tenths) into three equal groups once, but not twice. Therefore, to use this method, we will divide up the columns (tenths) first (one for each group), then divide the remaining squares (hundredths) into 3 equal groups, as shown to the right. We can then see that each color uses exactly eighteen squares, so we know: =.18 Use the method (estimating first) described above to do the following examples. a) = b) = For the second case, dividing a whole number by a decimal, the repeated subtraction (measurement) method of division is the model to employ. In this method, you count the number of sets equivalent to the divisor (the second number) that are in the dividend (the first number). For example, in the problem: =, you are being asked how many sets of 0.6 can you take away from three whole units? So, starting with three whole units, you will make groups of size 0.6, as shown below: So, we know that = 5, since we ended up with five different colors. Dr Brian Beaudrie pg. 4
5 Use the repeated subtraction model to find the correct answer to the following problem: = What happens, though, when you don t have a whole number solution? Well, consider The decimal square to the right shows what happens you end up with six groups, each size 0.04, with three extra groups left over. If I look at 0.03/0.04, I can see that it is exactly 0.75 of another group of size Therefore, I have: = 6.75 The third case concerns dividing one decimal by another decimal. For this, you will also use the repeated subtraction model of division. For example, with , you need to find out how many sets of 0.19 exist in So, you would pull out groups of 19 little squares at a time, as shown on the left. So, you will have: = 4. Use your decimal squares and the method described above to find the following quotients. Estimate first where appropriate. a) = b) = Dr Brian Beaudrie pg. 5
Decimals Adding and Subtracting
1 Decimals Adding and Subtracting Decimals are a group of digits, which express numbers or measurements in units, tens, and multiples of 10. The digits for units and multiples of 10 are followed by a decimal
More informationParamedic Program PreAdmission Mathematics Test Study Guide
Paramedic Program PreAdmission Mathematics Test Study Guide 05/13 1 Table of Contents Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7 Page 8 Page 9 Page 10 Page 11 Page 12 Page 13 Page 14 Page 15 Page
More informationPreAlgebra Lecture 6
PreAlgebra Lecture 6 Today we will discuss Decimals and Percentages. Outline: 1. Decimals 2. Ordering Decimals 3. Rounding Decimals 4. Adding and subtracting Decimals 5. Multiplying and Dividing Decimals
More informationYOU MUST BE ABLE TO DO THE FOLLOWING PROBLEMS WITHOUT A CALCULATOR!
DETAILED SOLUTIONS AND CONCEPTS  DECIMALS AND WHOLE NUMBERS Prepared by Ingrid Stewart, Ph.D., College of Southern Nevada Please Send Questions and Comments to ingrid.stewart@csn.edu. Thank you! YOU MUST
More informationIntroduce Decimals with an Art Project Criteria Charts, Rubrics, Standards By Susan Ferdman
Introduce Decimals with an Art Project Criteria Charts, Rubrics, Standards By Susan Ferdman hundredths tenths ones tens Decimal Art An Introduction to Decimals Directions: Part 1: Coloring Have children
More informationJobTestPrep's Numeracy Review Decimals & Percentages
JobTestPrep's Numeracy Review Decimals & Percentages 1 Table of contents What is decimal? 3 Converting fractions to decimals 4 Converting decimals to fractions 6 Percentages 6 Adding and subtracting decimals
More informationActivity 1: Using base ten blocks to model operations on decimals
Rational Numbers 9: Decimal Form of Rational Numbers Objectives To use base ten blocks to model operations on decimal numbers To review the algorithms for addition, subtraction, multiplication and division
More informationDecimal Notations for Fractions Number and Operations Fractions /4.NF
Decimal Notations for Fractions Number and Operations Fractions /4.NF Domain: Cluster: Standard: 4.NF Number and Operations Fractions Understand decimal notation for fractions, and compare decimal fractions.
More informationFractions to decimals
Worksheet.4 Fractions and Decimals Section Fractions to decimals The most common method of converting fractions to decimals is to use a calculator. A fraction represents a division so is another way of
More informationINTRODUCTION TO FRACTIONS
Tallahassee Community College 16 INTRODUCTION TO FRACTIONS Figure A (Use for 1 5) 1. How many parts are there in this circle?. How many parts of the circle are shaded?. What fractional part of the circle
More informationDIVISION OF DECIMALS. 1503 9. We then we multiply by the
Tallahassee Community College 0 DIVISION OF DECIMALS To divide 9, we write these fractions: reciprocal of the divisor 0 9. We then we multiply by the 0 67 67 = = 9 67 67 The decimal equivalent of is. 67.
More informationUnit 1 Number Sense. In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions.
Unit 1 Number Sense In this unit, students will study repeating decimals, percents, fractions, decimals, and proportions. BLM Three Types of Percent Problems (p L34) is a summary BLM for the material
More informationRational Number Project
Rational Number Project Fraction Operations and Initial Decimal Ideas Lesson : Overview Students estimate sums and differences using mental images of the 0 x 0 grid. Students develop strategies for adding
More informationChapter 4  Decimals
Chapter 4  Decimals $34.99 decimal notation ex. The cost of an object. ex. The balance of your bank account ex The amount owed ex. The tax on a purchase. Just like Whole Numbers Place Value  1.23456789
More informationDATE PERIOD. Estimate the product of a decimal and a whole number by rounding the Estimation
A Multiplying Decimals by Whole Numbers (pages 135 138) When you multiply a decimal by a whole number, you can estimate to find where to put the decimal point in the product. You can also place the decimal
More informationThe gas can has a capacity of 4.17 gallons and weighs 3.4 pounds.
hundred million$ ten million$ million$ 00,000,000 0,000,000,000,000 00,000 0,000,000 00 0 0 0 0 0 0 0 0 0 Session 26 Decimal Fractions Explain the meaning of the values stated in the following sentence.
More informationFRACTIONS MODULE Part I
FRACTIONS MODULE Part I I. Basics of Fractions II. Rewriting Fractions in the Lowest Terms III. Change an Improper Fraction into a Mixed Number IV. Change a Mixed Number into an Improper Fraction BMR.Fractions
More informationSequential Skills. Strands and Major Topics
Sequential Skills This set of charts lists, by strand, the skills that are assessed, taught, and practiced in the Skills Tutorial program. Each Strand ends with a Mastery Test. You can enter correlating
More informationLesson Plan  Rational Number Operations
Lesson Plan  Rational Number Operations Chapter Resources  Lesson 312 Rational Number Operations  Lesson 312 Rational Number Operations Answers  Lesson 313 Take Rational Numbers to WholeNumber
More informationGrade 5 Common Core State Standard
2.1.5.B.1 Apply place value concepts to show an understanding of operations and rounding as they pertain to whole numbers and decimals. M05.AT.1.1.1 Demonstrate an understanding that 5.NBT.1 Recognize
More informationPREPARATION FOR MATH TESTING at CityLab Academy
PREPARATION FOR MATH TESTING at CityLab Academy compiled by Gloria Vachino, M.S. Refresh your math skills with a MATH REVIEW and find out if you are ready for the math entrance test by taking a PRETEST
More informationCalculation Policy Fractions
Calculation Policy Fractions This policy is to be used in conjunction with the calculation policy to enable children to become fluent in fractions and ready to calculate them by Year 5. It has been devised
More informationThe Crescent Primary School Calculation Policy
The Crescent Primary School Calculation Policy Examples of calculation methods for each year group and the progression between each method. January 2015 Our Calculation Policy This calculation policy has
More informationIntroduction to Fractions, Equivalent and Simplifying (12 days)
Introduction to Fractions, Equivalent and Simplifying (12 days) 1. Fraction 2. Numerator 3. Denominator 4. Equivalent 5. Simplest form Real World Examples: 1. Fractions in general, why and where we use
More informationPart 1 Expressions, Equations, and Inequalities: Simplifying and Solving
Section 7 Algebraic Manipulations and Solving Part 1 Expressions, Equations, and Inequalities: Simplifying and Solving Before launching into the mathematics, let s take a moment to talk about the words
More informationSolution Guide Chapter 14 Mixing Fractions, Decimals, and Percents Together
Solution Guide Chapter 4 Mixing Fractions, Decimals, and Percents Together Doing the Math from p. 80 2. 0.72 9 =? 0.08 To change it to decimal, we can tip it over and divide: 9 0.72 To make 0.72 into a
More informationHow do you compare numbers? On a number line, larger numbers are to the right and smaller numbers are to the left.
The verbal answers to all of the following questions should be memorized before completion of prealgebra. Answers that are not memorized will hinder your ability to succeed in algebra 1. Number Basics
More informationUsing Proportions to Solve Percent Problems I
RP71 Using Proportions to Solve Percent Problems I Pages 46 48 Standards: 7.RP.A. Goals: Students will write equivalent statements for proportions by keeping track of the part and the whole, and by solving
More informationNUMBER SYSTEMS. William Stallings
NUMBER SYSTEMS William Stallings The Decimal System... The Binary System...3 Converting between Binary and Decimal...3 Integers...4 Fractions...5 Hexadecimal Notation...6 This document available at WilliamStallings.com/StudentSupport.html
More informationPreliminary Mathematics
Preliminary Mathematics The purpose of this document is to provide you with a refresher over some topics that will be essential for what we do in this class. We will begin with fractions, decimals, and
More informationGrade 5 Math Content 1
Grade 5 Math Content 1 Number and Operations: Whole Numbers Multiplication and Division In Grade 5, students consolidate their understanding of the computational strategies they use for multiplication.
More informationMathematics Success Grade 6
T276 Mathematics Success Grade 6 [OBJECTIVE] The student will add and subtract with decimals to the thousandths place in mathematical and realworld situations. [PREREQUISITE SKILLS] addition and subtraction
More informationREVIEW SHEETS BASIC MATHEMATICS MATH 010
REVIEW SHEETS BASIC MATHEMATICS MATH 010 A Summary of Concepts Needed to be Successful in Mathematics The following sheets list the key concepts that are taught in the specified math course. The sheets
More informationMath Circle Beginners Group October 18, 2015
Math Circle Beginners Group October 18, 2015 Warmup problem 1. Let n be a (positive) integer. Prove that if n 2 is odd, then n is also odd. (Hint: Use a proof by contradiction.) Suppose that n 2 is odd
More informationUnit 6 Number and Operations in Base Ten: Decimals
Unit 6 Number and Operations in Base Ten: Decimals Introduction Students will extend the place value system to decimals. They will apply their understanding of models for decimals and decimal notation,
More information1004.6 one thousand, four AND six tenths 3.042 three AND fortytwo thousandths 0.0063 sixtythree tenthousands Two hundred AND two hundreds 200.
Section 4 Decimal Notation Place Value Chart 00 0 0 00 000 0000 00000 0. 0.0 0.00 0.000 0.0000 hundred ten one tenth hundredth thousandth Ten thousandth Hundred thousandth Identify the place value for
More information2.3 Solving Equations Containing Fractions and Decimals
2. Solving Equations Containing Fractions and Decimals Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Solve equations containing fractions
More informationChanging a Decimal or Fraction to a Percent
6. Changing a Decimal or Fraction to a Percent 6. OBJECTIVES. Change a decimal to a percent. Change a fraction to a percent. Change a mixed number to a percent Changing a decimal to a percent is the opposite
More informationSolve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem.
Solve addition and subtraction word problems, and add and subtract within 10, e.g., by using objects or drawings to represent the problem. Solve word problems that call for addition of three whole numbers
More informationMath 0306 Final Exam Review
Math 006 Final Exam Review Problem Section Answers Whole Numbers 1. According to the 1990 census, the population of Nebraska is 1,8,8, the population of Nevada is 1,01,8, the population of New Hampshire
More information+ = has become. has become. Maths in School. Fraction Calculations in School. by Kate Robinson
+ has become 0 Maths in School has become 0 Fraction Calculations in School by Kate Robinson Fractions Calculations in School Contents Introduction p. Simplifying fractions (cancelling down) p. Adding
More informationAccuplacer Arithmetic Study Guide
Accuplacer Arithmetic Study Guide Section One: Terms Numerator: The number on top of a fraction which tells how many parts you have. Denominator: The number on the bottom of a fraction which tells how
More informationDecimals and other fractions
Chapter 2 Decimals and other fractions How to deal with the bits and pieces When drugs come from the manufacturer they are in doses to suit most adult patients. However, many of your patients will be very
More informationRecall the process used for adding decimal numbers. 1. Place the numbers to be added in vertical format, aligning the decimal points.
2 MODULE 4. DECIMALS 4a Decimal Arithmetic Adding Decimals Recall the process used for adding decimal numbers. Adding Decimals. To add decimal numbers, proceed as follows: 1. Place the numbers to be added
More informationSection 4.1 Rules of Exponents
Section 4.1 Rules of Exponents THE MEANING OF THE EXPONENT The exponent is an abbreviation for repeated multiplication. The repeated number is called a factor. x n means n factors of x. The exponent tells
More informationMaths methods Key Stage 2: Year 3 and Year 4
Maths methods Key Stage 2: Year 3 and Year 4 Maths methods and strategies taught in school now are very different from those that many parents learned at school. This can often cause confusion when parents
More informationContents. Subtraction (Taking Away)... 6. Multiplication... 7 by a single digit. by a two digit number by 10, 100 or 1000
This booklet outlines the methods we teach pupils for place value, times tables, addition, subtraction, multiplication, division, fractions, decimals, percentages, negative numbers and basic algebra Any
More informationPAYCHEX, INC. BASIC BUSINESS MATH TRAINING MODULE
PAYCHEX, INC. BASIC BUSINESS MATH TRAINING MODULE 1 Property of Paychex, Inc. Basic Business Math Table of Contents Overview...3 Objectives...3 Calculator...4 Basic Calculations...6 Order of Operation...9
More informationMath and FUNDRAISING. Ex. 73, p. 111 1.3 0. 7
Standards Preparation Connect 2.7 KEY VOCABULARY leading digit compatible numbers For an interactive example of multiplying decimals go to classzone.com. Multiplying and Dividing Decimals Gr. 5 NS 2.1
More information1 BPS Math Year at a Glance (Adapted from A Story of Units Curriculum Maps in Mathematics P5)
Grade 5 Key Areas of Focus for Grades 35: Multiplication and division of whole numbers and fractionsconcepts, skills and problem solving Expected Fluency: Multidigit multiplication Module M1: Whole
More informationWhat Is Singapore Math?
What Is Singapore Math? You may be wondering what Singapore Math is all about, and with good reason. This is a totally new kind of math for you and your child. What you may not know is that Singapore has
More informationMultiplication. Year 1 multiply with concrete objects, arrays and pictorial representations
Year 1 multiply with concrete objects, arrays and pictorial representations Children will experience equal groups of objects and will count in 2s and 10s and begin to count in 5s. They will work on practical
More informationThis lesson introduces students to decimals.
NATIONAL MATH + SCIENCE INITIATIVE Elementary Math Introduction to Decimals LEVEL Grade Five OBJECTIVES Students will compare fractions to decimals. explore and build decimal models. MATERIALS AND RESOURCES
More informationPreCalculus II Factoring and Operations on Polynomials
Factoring... 1 Polynomials...1 Addition of Polynomials... 1 Subtraction of Polynomials...1 Multiplication of Polynomials... Multiplying a monomial by a monomial... Multiplying a monomial by a polynomial...
More informationSession 29 Scientific Notation and Laws of Exponents. If you have ever taken a Chemistry class, you may have encountered the following numbers:
Session 9 Scientific Notation and Laws of Exponents If you have ever taken a Chemistry class, you may have encountered the following numbers: There are approximately 60,4,79,00,000,000,000,000 molecules
More informationMathematics Navigator. Misconceptions and Errors
Mathematics Navigator Misconceptions and Errors Introduction In this Guide Misconceptions and errors are addressed as follows: Place Value... 1 Addition and Subtraction... 4 Multiplication and Division...
More informationGeorgia Standards of Excellence Grade Level Curriculum Overview. Mathematics. GSE Fifth Grade
Georgia Standards of Excellence Grade Level Curriculum Overview Mathematics GSE Fifth Grade These materials are for nonprofit educational purposes only. Any other use may constitute copyright infringement.
More informationArithmetic Computation Test (ACT) Preparation Guide
Arithmetic Computation Test (ACT) Preparation Guide CONFIDENTIAL A.C.T. PREPARATION GUIDE It is important that employees demonstrate that they have basic problem solving skills. The purpose of the Arithmetic
More informationBuilding Concepts: Dividing a Fraction by a Whole Number
Lesson Overview This TINspire lesson uses a unit square to explore division of a unit fraction and a fraction in general by a whole number. The concept of dividing a quantity by a whole number, n, can
More information1. The Fly In The Ointment
Arithmetic Revisited Lesson 5: Decimal Fractions or Place Value Extended Part 5: Dividing Decimal Fractions, Part 2. The Fly In The Ointment The meaning of, say, ƒ 2 doesn't depend on whether we represent
More information1.4 Compound Inequalities
Section 1.4 Compound Inequalities 53 1.4 Compound Inequalities This section discusses a technique that is used to solve compound inequalities, which is a phrase that usually refers to a pair of inequalities
More informationNumerator Denominator
Fractions A fraction is any part of a group, number or whole. Fractions are always written as Numerator Denominator A unitary fraction is one where the numerator is always 1 e.g 1 1 1 1 1...etc... 2 3
More informationGRADE 5 SKILL VOCABULARY MATHEMATICAL PRACTICES Evaluate numerical expressions with parentheses, brackets, and/or braces.
Common Core Math Curriculum Grade 5 ESSENTIAL DOMAINS AND QUESTIONS CLUSTERS Operations and Algebraic Thinking 5.0A What can affect the relationship between numbers? round decimals? compare decimals? What
More informationSection 5.4 Multiplying Decimals
Section 5.4 Multiplying Decimals Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Multiply a decimal by a decimal. Multiplying whole numbers
More informationEVALUATING ACADEMIC READINESS FOR APPRENTICESHIP TRAINING Revised For ACCESS TO APPRENTICESHIP
EVALUATING ACADEMIC READINESS FOR APPRENTICESHIP TRAINING For ACCESS TO APPRENTICESHIP MATHEMATICS SKILL OPERATIONS WITH INTEGERS AN ACADEMIC SKILLS MANUAL for The Precision Machining And Tooling Trades
More informationConsultant: Lynn T. Havens. Director of Project CRISS Kalispell, Montana
Teacher Annotated Edition Study Notebook Consultant: Lynn T. Havens SM Director of Project CRISS Kalispell, Montana i_sn_c1fmtwe_893629.indd i 3/16/09 9:17:03 PM Copyright by The McGrawHill Companies,
More informationNo Solution Equations Let s look at the following equation: 2 +3=2 +7
5.4 Solving Equations with Infinite or No Solutions So far we have looked at equations where there is exactly one solution. It is possible to have more than solution in other types of equations that are
More informationDECIMAL COMPETENCY PACKET
DECIMAL COMPETENCY PACKET Developed by: Nancy Tufo Revised: Sharyn Sweeney 2004 Student Support Center North Shore Community College 2 In this booklet arithmetic operations involving decimal numbers are
More informationFlorida Math 0018. Correlation of the ALEKS course Florida Math 0018 to the Florida Mathematics Competencies  Lower
Florida Math 0018 Correlation of the ALEKS course Florida Math 0018 to the Florida Mathematics Competencies  Lower Whole Numbers MDECL1: Perform operations on whole numbers (with applications, including
More informationCCSS Mathematics Implementation Guide Grade 5 2012 2013. First Nine Weeks
First Nine Weeks s The value of a digit is based on its place value. What changes the value of a digit? 5.NBT.1 RECOGNIZE that in a multidigit number, a digit in one place represents 10 times as much
More informationCOMPSCI 210. Binary Fractions. Agenda & Reading
COMPSCI 21 Binary Fractions Agenda & Reading Topics: Fractions Binary Octal Hexadecimal Binary > Octal, Hex Octal > Binary, Hex Decimal > Octal, Hex Hex > Binary, Octal Animation: BinFrac.htm Example
More informationSolving Exponential Equations
Solving Exponential Equations Deciding How to Solve Exponential Equations When asked to solve an exponential equation such as x + 6 = or x = 18, the first thing we need to do is to decide which way is
More information5 th Grade Common Core State Standards. Flip Book
5 th Grade Common Core State Standards Flip Book This document is intended to show the connections to the Standards of Mathematical Practices for the content standards and to get detailed information at
More informationWritten methods for addition of whole numbers
Stage 1: The empty number line Mathematics written methods at the Spinney Written methods for addition of whole numbers The mental methods that lead to column addition generally involve partitioning, e.g.
More information47 Numerator Denominator
JH WEEKLIES ISSUE #22 20122013 Mathematics Fractions Mathematicians often have to deal with numbers that are not whole numbers (1, 2, 3 etc.). The preferred way to represent these partial numbers (rational
More informationInteger Operations. Overview. Grade 7 Mathematics, Quarter 1, Unit 1.1. Number of Instructional Days: 15 (1 day = 45 minutes) Essential Questions
Grade 7 Mathematics, Quarter 1, Unit 1.1 Integer Operations Overview Number of Instructional Days: 15 (1 day = 45 minutes) Content to Be Learned Describe situations in which opposites combine to make zero.
More information3.3 Addition and Subtraction of Rational Numbers
3.3 Addition and Subtraction of Rational Numbers In this section we consider addition and subtraction of both fractions and decimals. We start with addition and subtraction of fractions with the same denominator.
More informationOverview. Essential Questions. Grade 4 Mathematics, Quarter 4, Unit 4.1 Dividing Whole Numbers With Remainders
Dividing Whole Numbers With Remainders Overview Number of instruction days: 7 9 (1 day = 90 minutes) Content to Be Learned Solve for wholenumber quotients with remainders of up to fourdigit dividends
More informationFraction Vocabulary. It is important that vocabulary terms are taught to students.
Rational Numbers Fractions Decimals Percents It is important for students to know how these 3 concepts relate to each other and how they can be interchanged. Fraction Vocabulary It is important that vocabulary
More informationCONTENTS. Please note:
CONTENTS Introduction...iv. Number Systems... 2. Algebraic Expressions.... Factorising...24 4. Solving Linear Equations...8. Solving Quadratic Equations...0 6. Simultaneous Equations.... Long Division
More informationA Prime Investigation with 7, 11, and 13
. Objective To investigate the divisibility of 7, 11, and 13, and discover the divisibility characteristics of certain sixdigit numbers A c t i v i t y 3 Materials TI73 calculator A Prime Investigation
More informationSolving Quadratic Equations
9.3 Solving Quadratic Equations by Using the Quadratic Formula 9.3 OBJECTIVES 1. Solve a quadratic equation by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation
More informationChapter 5. Decimals. Use the calculator.
Chapter 5. Decimals 5.1 An Introduction to the Decimals 5.2 Adding and Subtracting Decimals 5.3 Multiplying Decimals 5.4 Dividing Decimals 5.5 Fractions and Decimals 5.6 Square Roots 5.7 Solving Equations
More informationMake your child a Maths Star!
Make your child a Maths Star! A parents guide to helping your children with Maths Booklet 2 of 3: Key Stage 2 Year 3 to Year 4 It wasn t like this when I was AT school! Have you ever wished that you understood
More informationRational Exponents. Squaring both sides of the equation yields. and to be consistent, we must have
8.6 Rational Exponents 8.6 OBJECTIVES 1. Define rational exponents 2. Simplify expressions containing rational exponents 3. Use a calculator to estimate the value of an expression containing rational exponents
More informationFree PreAlgebra Lesson 55! page 1
Free PreAlgebra Lesson 55! page 1 Lesson 55 Perimeter Problems with Related Variables Take your skill at word problems to a new level in this section. All the problems are the same type, so that you can
More informationGraphic Organizers SAMPLES
This document is designed to assist North Carolina educators in effective instruction of the new Common Core State and/or North Carolina Essential Standards (Standard Course of Study) in order to increase
More informationMultiplying and Dividing Signed Numbers. Finding the Product of Two Signed Numbers. (a) (3)( 4) ( 4) ( 4) ( 4) 12 (b) (4)( 5) ( 5) ( 5) ( 5) ( 5) 20
SECTION.4 Multiplying and Dividing Signed Numbers.4 OBJECTIVES 1. Multiply signed numbers 2. Use the commutative property of multiplication 3. Use the associative property of multiplication 4. Divide signed
More informationMATH0910 Review Concepts (Haugen)
Unit 1 Whole Numbers and Fractions MATH0910 Review Concepts (Haugen) Exam 1 Sections 1.5, 1.6, 1.7, 1.8, 2.1, 2.2, 2.3, 2.4, and 2.5 Dividing Whole Numbers Equivalent ways of expressing division: a b,
More informationExponents, Radicals, and Scientific Notation
General Exponent Rules: Exponents, Radicals, and Scientific Notation x m x n = x m+n Example 1: x 5 x = x 5+ = x 7 (x m ) n = x mn Example : (x 5 ) = x 5 = x 10 (x m y n ) p = x mp y np Example : (x) =
More informationCBA Fractions Student Sheet 1
Student Sheet 1 1. If 3 people share 12 cookies equally, how many cookies does each person get? 2. Four people want to share 5 cakes equally. Show how much each person gets. Student Sheet 2 1. The candy
More informationClick on the links below to jump directly to the relevant section
Click on the links below to jump directly to the relevant section What is algebra? Operations with algebraic terms Mathematical properties of real numbers Order of operations What is Algebra? Algebra is
More informationAddition Methods. Methods Jottings Expanded Compact Examples 8 + 7 = 15
Addition Methods Methods Jottings Expanded Compact Examples 8 + 7 = 15 48 + 36 = 84 or: Write the numbers in columns. Adding the tens first: 47 + 76 110 13 123 Adding the units first: 47 + 76 13 110 123
More information3.1. RATIONAL EXPRESSIONS
3.1. RATIONAL EXPRESSIONS RATIONAL NUMBERS In previous courses you have learned how to operate (do addition, subtraction, multiplication, and division) on rational numbers (fractions). Rational numbers
More informationMath  5th Grade. two digit by one digit multiplication fact families subtraction with regrouping
Number and Operations Understand division of whole numbers N.MR.05.01 N.MR.05.02 N.MR.05.03 Understand the meaning of division of whole numbers with and without remainders; relate division to and to repeated
More informationCalculate Highest Common Factors(HCFs) & Least Common Multiples(LCMs) NA1
Calculate Highest Common Factors(HCFs) & Least Common Multiples(LCMs) NA1 What are the multiples of 5? The multiples are in the five times table What are the factors of 90? Each of these is a pair of factors.
More informationChapter 1: Order of Operations, Fractions & Percents
HOSP 1107 (Business Math) Learning Centre Chapter 1: Order of Operations, Fractions & Percents ORDER OF OPERATIONS When finding the value of an expression, the operations must be carried out in a certain
More informationFractional Part of a Set
Addition and Subtraction Basic Facts... Subtraction Basic Facts... Order in Addition...7 Adding Three Numbers...8 Inverses: Addition and Subtraction... Problem Solving: TwoStep Problems... 0 Multiplication
More informationWhat are the place values to the left of the decimal point and their associated powers of ten?
The verbal answers to all of the following questions should be memorized before completion of algebra. Answers that are not memorized will hinder your ability to succeed in geometry and algebra. (Everything
More informationUnit 11 Fractions and decimals
Unit 11 Fractions and decimals Five daily lessons Year 4 Spring term (Key objectives in bold) Unit Objectives Year 4 Use fraction notation. Recognise simple fractions that are Page several parts of a whole;
More information